
Superconductivity above 30 K in
alkali-metal-doped hydrocarbon
Mianqi Xue1,2, Tingbing Cao2, Duming Wang3, Yue Wu1, Huaixin Yang1, Xiaoli Dong1, Junbao He3,
Fengwang Li2 & G. F. Chen1,3

1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190,
China, 2Department of Chemistry, Renmin University of China, Beijing 100872, China, 3Department of Physics, Renmin University of
China, Beijing 100872, China.

The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has
extended the possibility of high-Tc superconductors in organic materials. Previous experience based on
similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition
temperatures might be achieved in alkali-metals or alkali-earth-metals doped such
polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings.
Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene
(C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor
under ambient pressure. This finding provides an indication that superconductivity at much higher
temperature may be possible in such PAHs system and is worthy of further exploration.

T
he discovery of high-temperature superconductivity in iron pnictides has greatly renewed the interest in
searching for other new high-Tc materials1–4. Organic metals and superconductors share many features with
iron pnictides and cuprates - a quasi-two-dimensional band structure, the proximity to antiferromagnetism,

unconventional superconductivity, etc. It becomes more and more evident that organic metals and supercon-
ductors serve as a fascinating field for materials science and solid state physics. More than one hundred molecu-
lar-based superconductors have been found since the discovery of first organic superconductor (TMTSF)2PF6 in
1979 [ref.5]. The highest transition temperature (Tc < 13 K) was reported for the k-(ET)2Cu[N(CN)2]Cl salt
under applied pressure6. The discovery of Carbon-60 (C60, composed of fused benzene rings), has led to the
discovery of a new subclass of organic superconductors, alkali-metal doped fullerides, A3C60 [ref.7–9], with the
transition temperature up to 38 K under applied pressure9. In their chemical nature, all these compounds are
either cation radical salts based on TTF-derivatives or anion radical salts based on the M(dmit)2 complexes and
fullerene complexes. Their novel electronic properties are attributed to the delocalized p-electrons due to orbital
overlap. Furthermore, superconductivity in graphite intercalation compounds (GICs) has been extensively
studied for several decades, where Tc ranges from below 1 K for KC8 (Tc 5 0.39 K) up to 11.5 K for CaC6

[ref.10,11]. Graphite is an extreme of the polycyclic condensed aromatic hydrocarbon, consisting of an infinite
network of benzene rings. Thus, doping of such materials with p-electron networks might bring out novel
physical properties, such as superconductivity. Indeed, very recently, Mitsuhashi et al. reported that supercon-
ductivity with Tc of 18 K could be induced by doping potassium into picene (C22H14)12, a hydrocarbon molecular
with five benzene rings condensed in an armchair manner13–16. Here we report the superconductivity
with transition temperature up to 33.1 K in potassium doped hydrocarbon with seven benzene rings, 1,2:8,9-
dibenzopentacene. It is reasonable to expect that, through carrier doping, higher Tc superconductivity may be
realized in other PAHs, a large family of molecules based on fused benzene rings.

Results
The temperature dependence of the magnetization measured in a field of 10 Oe for K3.17dibenzopentacene is
given in Fig. 1. The zero-field-cooling (ZFC) and field-cooling (FC) susceptibility shows a sharp drop at around
28.2 K which also can be seen from the ac susceptibility as shown in the left inset in Fig. 1a. Such diamagnetic
behavior is characteristic of superconductivity. The distinct magnetic signatures of ZFC and FC below the
superconducting critical temperature originate from the screening supercurrent (ZFC regime) and the
Meissner-Ochsenfeld effect of magnetic flux expulsion (FC regime). The diamagnetic signal onset temperature
is described as superconductivity temperature Tc

onset. As seen from Fig. 1a, Tc
onset was defined to be 28.2 K for
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K3.17dibenzopentacene. The shielding volume fraction at 5 K is esti-
mated to be 5.5% (assuming a density of 1.8 g/cm3), which is com-
parable to the value reported for superconducting Kxpicene12,
Kxphenanthrene17, and is about the same as that initially reported
for K-doped C60 and for Rb-doped C60 [ref.8,18], although following
works have dramatically increased the superconducting fraction for
alkaline-earth-metal doped phenanthrene19 and alkali-metal doped
C60 [ref.20,21]. The small superconducting fraction may be due to the
smaller sizes of the obtained crystallites than the London penetration
depths12. Further investigations of the dependence of the supercon-
ducting fraction on temperature, initial composition and reaction
time will undoubtedly lead to high yields of superconducting phase.

Figure 1b shows temperature dependence of measured x for vari-
ous applied fields H in the ZFC measurements. There was an obvious
drop of x at 23 K even at 1000 Oe, indicating that the superconduct-
ing phase is not completely destroyed at weak applied field. The fact
that Tc is suppressed slowly by applying the magnetic fields indicates
the observed superconductivity in this material is intrinsic. The cor-
responding upper critical field H versus Tc is plotted in Fig. 1c. Tc was
determined through a linear extrapolation of the slopes before and
after the point at which the sample began superconducting, as shown
in Fig. 1b. At the present stage, it is difficult to determine the upper
critical field Hc2(0) at 0 K from H-Tc curve. Figure 1d depicts the
M(H) versus H plot at 4.5 K measured by sweeping the magnetic
field at a constant rate of 10 Oe/sec, which indicates that
K3.17dibenzopentacene is a type-II superconductor with a strong
vortex pinning. In the Meissner state, M(H) curve is linear and the
lower critical field Hc1 is defined as the field in which M(H) deviates
from linearity. Here Hc1 was estimated to be 200 Oe at 4.5 K, which
is higher than that of the potassium doped picene with Tc 5 18 K
[ref. 12] (Hc1 ,100 Oe; however, the authors gave the value of 380 Oe
determined from the minimum position of the M-H plot).

Superconductivity with higher temperature can also be observed
for high K-content sample, K3.45dibenzopentacene. The onset

temperature of diamagnetism is Tc
onset 5 33.1 K as seen in ZFC

experiment (see Fig. 2a), where the critical temperature is the highest
to date among the organic superconductors under ambient pressure.
The magnitude of the shielding signal at 25 K corresponds roughly to
3.2% of perfect diamagnetism. Additional features are seen at 20 K
and 5 K, which might be ascribed to different superconducting
phases with lower transition temperatures. One should note that
the latter two characteristic temperatures are similar to the reported
values for the superconducting Kxpicene and Kxphenanthrene12,17. It
is reasonable to suspect that these two superconducting phases come
from the breakdown of PAH chains during the reaction process.
Interestingly, the Tc obtained for twice annealed sample of
K3dibenzopentacene was 7.4 K, with superconducting shielding
fraction of 3.6%, as shown in Fig. 2b. Similar phenomenon has been
observed in Kxpicene12, where two superconducting phases (Tc 5 7
or 18 K) were occasionally obtained under the same experimental
conditions, but did not coexist with each other. Further efforts should
be made to clarify this issue in the near future.

Discussion
1,2:8,9-dibenzopentacene is a condensed aromatic hydrocarbon with
both linear and angular fusion of the benzene rings, which can be
viewed as two phenanthrene segments bridged through two –CH5
group (see right inset of Fig. 1a). Regardless of the influence of the
structural/geometric difference among picene, phenanthrene and
dibenzopentacene (one should note that superconductivity with Tc

up to 15 K was also observed for K-doped coronene, which is com-
posed of six peri-fused benzene rings. It is still not clear whether the
perfect W-shaped configurations of benzene rings are the key role to
achieve superconductivity in doped PAHs13–16, although there is no
superconductivity found for petancene, the isomer of picene12), it can
be seen that with increasing the length of PAH chain, the super-
conducting transition temperature increases dramatically (see
Fig. 3): Tc increases from 5 K for Kxphenanthrene17 with three

Figure 1 | Magnetization data for K3.17dibenzopentacene. (a) x versus T plots for K3.17dibenzopentacene with Tc
onset 5 28.2 K at H 5 10 Oe (main

panel). The left inset shows the ac susceptibility at H 5 5 Oe, and the right inset shows the molecular structure of dibenzopentacene; unfortunately, to our

knowledge, no report on the crystal structure of 1,2:8,9-dibenzopentacene has been published. (b) x versus T plots for the sample in the ZFC

measurements under different magnetic field H. The solid lines indicate the determination of the transition temperature as described in the text. (c) The H

versus Tc plot. (d) Field dependence of the magnetization isotherm for the sample measured at 4.5 K. The solid line gives the linear fit to the low field

M(H) curve.
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benzene rings to 18 K for Kxpicene12 with five benzene rings, and up
to 33.1 K for Kxdibenzopentacene with seven benzene rings, which is
in contrast to the theoretical predication22,23. In general, the dimen-
sionless electron-phonon coupling constant l 5N(eF)V is directly
related to V and N(eF). Here, the interaction matrix element V domi-
nated by intramolecular vibrational modes is inversely proportional
to the number of atoms in the molecule that donates p-electrons.
Assuming a conventional Bardeen-Cooper-Schrieffer (BCS) mech-
anism with electron–phonon interaction, and the same density of
states N(eF) at the Fermi level, the doped phenanthrene should have
the highest Tc in all the aromatic hydrocarbons22,23. However, in a
molecular crystal, the crystal structure, molecular overlaps, and pho-
non modes are important factors for determining the strength of
pairing interaction.

Usually, increasing the length of the PAH chain would increase
the extent of its interactions with neighboring chains, while the den-
sity of states at the Fermi level, is mainly dominated by intermolecu-
lar interactions. One can speculate that an increase in N(eF)
overcomes any decreases in V on going from K3phenanthrene to
K3dibenzopentacene. Further studies are needed, however, to shed
more light on the microscopic aspects of pairing. It is believed that

organic materials with higher superconducting transition temper-
ature could be produced in the near future.

Methods
Samples were prepared by direct heating potassium metal with 1,2:8,9-dibenzopen-
tacene in an evacuated tube at 300–350uC for 7–20 days. To improve the homogeneity
of products, a second anneal is sometimes performed. An alternative method for
sample synthesis was also developed. The starting materials were loaded into liquid
ammonia solution and stirred for 6 hours. The resulting products were then dried
under vacuum for several hours to remove the solvent, and subsequently sealed in an
evacuated tube and annealed at 250–300uC for 7–20 days. The latter synthetic route
allows for a reduction of annealing temperature and improvement of homogeneity of
the products, but it does not allow precise control of the potassium content of the
resulting samples. All the obtained powder samples are uniform dark black in color,
which is totally different from the red color of pure dibenzopentacene.
Superconductivity was observed for the samples with compositions of the form
Kxdibenzopentacene, for 3.0#x#3.5. It seems to be the fact that the superconducting
shielding fraction could be improved by increasing the annealing temperature.
Magnetization measurements have been performed in a commercial SQUID-VSM
magnetometer (Quantum Design). For the zero-field-cooled (ZFC) magnetization
measurements, the samples were first cooled down to 2.5 K in zero field, then the
magnetic field was applied and the temperature raised to 50 K with 1 K/min.
Thereafter, temperature was reduced to 2.5 K without changing the applied field. The
field-cooled (FC) magnetization was then measured with increasing temperature.
Hysteresis loop measurements were carried out at 4.5 K, after cooling in zero field
from room temperature.
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