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Basal-like breast cancer is a molecular subtype of breast cancer with a poor prognosis. Follow-up studies of
long-term outcome in these patients, demonstrates they can be separated into two clinical groups: those who
succumb to their disease within the first 5 years and those expected to show excellent long term survival.
Currently available clinical/histopathological variables as well as molecular signatures show little capacity to
identify basal breast cancer patients with either a high or low risk of disease relapse. Using data derived from
85 basal-like breast cancer patients, we identified a 14-gene signature, which we subsequently validated on
an additional 49 basal breast cancer patient set. The ability to distinguish between these two sub-groups of
basal breast cancer patients at the time of initial diagnosis would permit tailoring aggressive therapeutic
regimens to those patients with a poor prognosis and conversely avoid such therapy in low risk patients.

T
raditionally a number of tumor characteristics have been used to determine the prognosis of breast cancer
patients. Such factors include tumor size, grade, hormone receptor status, HER2 status, lympho-vascular
space invasion and lymph node involvement1,2. More recently whole genome analysis technology (gene

expression profiling) has been added to the armamentarium of experimental techniques, thus providing a new
molecular classification for breast cancer and contributing to the development of a number of prognostic multi-
gene assays including a 21-gene, 70-gene, 76-gene, 77-gene genomic grade profile, wound response signature and
others3–9. One of these assays that is commercially available is Oncotype DXH, a 21-gene quantitative (q)RT-PCR
assay, which evaluates expression of 16 genes identified to be of prognostic importance as well as 5 house-keeping
genes3. Oncotype DXH predicts the risk of distant recurrence in Estrogen Receptor (ER) positive breast cancers
and their responsiveness to CMF (Cyclophosphamide, Methotrexate and 5-Fluorouracil) chemotherapy10.
MammaPrintH, a commercially available microarray evaluates the expression of 70 genes using RNA extracted
from fresh frozen tumor samples. This assay distinguishes patients that have a good prognosis (no relapse within
5 years) from those that have a poor prognosis (relapse within 5 years)11. Indeed, large clinical trials, such as
TAILORx [Trial Assigning Individualized Options for Treatment] and MINDACT [Microarray In Node
Negative and 1-3 positive lymph node Disease may Avoid Chemotherapy] are ongoing to evaluate the use of
both Oncotype DXH and MammaPrintH in clinical practice.

The term basal-like breast cancer (BLBC) originated in 2000 from gene expression profiling experiments
conducted on invasive breast cancers by Perou and colleagues at Stanford University12–14. Using hierarchical
clustering these investigators identified a new molecular taxonomy for breast cancer based on the relative
expression of the ,500 genes, known as the ‘intrinsic’ gene set. These investigators discovered that breast cancers
could be classified into five molecular subgroups. Two of these are ER positive whereas three are ER negative. The
ER positive subgroups, termed Luminal A and Luminal B, were identified based on their relative expression of
the ER gene, ER regulated genes and other genes expressed by normal breast ‘luminal’ cells. The ER negative
subgroups were termed HER2 overexpressing (ERBB21), normal breast-like and BLBC. The HER2 overexpres-
sing subgroup was characterized by the overexpression of the HER-2 and other genes on the 17q amplicon, such as
GRB7. The normal breast-like subgroup expresses genes characteristic of adipose tissue suggesting that this
subgroup may be a technical artifact resulting from low tumor cellularity. Lastly, the basal-like subgroup repre-
sents a distinct class of tumors characterized by the lack of expression of ER, PR and HER2 and the high
expression of cytokeratins (CK) 5, and/or CK 17 (amongst other genes), characteristic of the basal/myoepithelial
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cell layer of the normal breast epithelium. As gene expression studies
continued to evolve, new molecular subtypes of breast cancer con-
tinued to be discovered; for example in 2007 the claudin low subtype
was identified15.

Most importantly the initial gene expression profiling experiments
demonstrated that BLBCs together with the HER2 overexpressing
subtype were associated with a particularly poor prognosis. By com-
parison, patients with Luminal A type tumors displayed an excellent
prognosis13,14. However, on closer examination these studies addi-
tionally demonstrated that the prognosis of patients with BLBCs is
highly time dependent. Some patients with BLBCs experience par-
ticularly poor survival in the first 3–5 years following diagnosis, but
for others their mortality wanes such that at 10 years post diagnosis
these patients have a better survival than those with luminal-type
(ER1) tumors16–19. This suggests that patients with BLBCs can be
separated into two clinically distinct groups: those likely to experi-
ence a recurrence and to succumb to their disease in the first 3–5
years after diagnosis, and those expected to show excellent long term
survival.

Whereas several multi-gene signatures exist to predict breast can-
cer patient prognosis, their prognostic values appears to be mostly
derived from their capacity to measure expression of genes associated
with proliferation20,21. Because BLBCs are generally highly proliferat-
ive, the existing prognostic signatures fail to identify a subset of BLBC
with good prognosis22. Some recent work has focused on identifying
multi-gene predictors of outcome in triple negative (ER-, PR-,
HER2-) and hormone receptor negative breast cancer21–26. How-
ever, a robust method of distinguishing between BLBCs with good
and poor outcome has yet to be developed. To the latter end, we have
begun optimizing such a method and report here the identification of
a 14-gene signature that is associated with patient outcome in BLBCs.

Results
Compiling multiple gene expression profiles of basal breast
tumors. To identify genes whose expression might be associated
with the clinical outcome of BLBC patients, we compiled a large
collection of human breast tumor gene expression data for which
clinical data was also available (n5995). Hierarchical clustering
using the ‘intrinsic’ gene set revealed that many of these tumors (n5

547) clustered into the previously described molecular subtypes12–14

(Fig. 1a). Importantly, survival analysis using Kaplan-Meier survival
curves revealed distinct differences in clinical outcome among the
patients with tumors of different molecular subtypes. As observed
previously patients with tumors of the basal-like, ERBB2, claudin-
low and luminal B subtypes experienced the poorest 10-year survival,
whereas patients with luminal A or normal-like tumors experi-
enced the best 10-year survival13 (Fig. 1b). Interestingly, the 10-year

survival rate of patients with basal-like tumors was approximately
60% and very few BLBC patient mortalities occurred after this time
(Fig. 1b). The latter findings are consistent with previous observa-
tions that the prognosis of BLBC patients is time dependent, where
these patients are at highest risk for relapse during the first 5 years
post diagnosis and experience a very low risk for relapse 10-years
post diagnosis16–18.

Importantly, the BLBC tumor cohort comprised 134 patients with
clinical follow-up data, thus providing a fairly large number of basal
tumors to identify a genomic predictor that could be used to guide
prognosis for patients with basal-like breast tumors.

Training signature. To develop a genomic predictor that could be
used to identify BLBC patients who were likely to have either good or
poor survival outcomes, we first divided the 134 patient BLBC cohort
into a 85 patient training set and a 49 patient validation set. We
used binary regression probabilistic models for feature selection to
identify genes that had the best prognostic performance among the
gene expression profiles derived from the 85 BLBCs of the training
set27. For these analysis, ,5 year DFS was taken to indicate poor out-
come, whereas .5 year DFS was taken to indicate good outcome.
Previous studies have shown that the vast majority of disease recur-
rence among BLBC patients occurs within the first 5 years16–18.
Starting with a single probe set signature, we iteratively generated
signatures by gradually adding probe sets and tested the resulting
signature using leave-one-out cross-validation. In this fashion we
generated multiple signatures comprising n probe sets, where n 5

1,2,3…,50 (Fig. 2A). For each discrete value of n, this technique
assigned a probability to every patient within the training set that
indicated the likelihood of a patient experiencing disease relapse. To
establish a probability cut-point, where patients with higher pro-
bability are assigned into the poor prognosis category and patients
with lower probability are assigned into the good prognosis category,
we used a previously described tertile method28. In this fashion, good
prognosis was assigned to patients whose probability score fell in
the lowest 1/3 of all probability scores, whereas poor prognosis was
assigned to patients whose score fell into the higher 2/3 of probability
scores. Indeed, these approximate proportions have been observed
in several gene expression based breast cancer prognostication
studies4,7,29,30. We therefore took this approach as a relatively non-
biased and simple means to divide patients into predicted good and
poor outcome groups. To determine which n-element signature had
optimal performance we compared the relative risk of relapse for
each signature (Fig. 2B, red line: relative risk, black line: LOWESS
(LOcally WEighted Scatterplot Smoothing) curve fitted to relative
risk data, n514 identifies optimal signature length). In this fashion
we identified a 14-probe-set (each gene represented by 1 probe set,

Figure 1 | Human breast tumors cluster into 6 distinct molecular subtypes of breast cancer with differences in patient survival. (A) Hierarchical

clustering of 547 breast tumors using the ‘intrinsic’ gene set separates tumors into the 6 molecular subtypes of human breast tumors. (B) Kaplan-Meier

survival analysis of patients comprising each of the molecular subtypes.
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henceforth called Basal 14 signature) signature, which optimally
separated patients into good and poor outcome groups (Table 1).

Assessment of Signature Performance. Validation of a gene
signature using an independent data set is a more accurate
measurement of its prognostic value than using cross-validation on
a training data set. Therefore, we tested our Basal-14 signature on an
independent cohort of patients with BLBC (n549). To learn whether
the probability of disease relapse predicted by the Basal-14 signature
could be used as a continuous predictor of disease relapse, we
calculated the proportion of patients who had experienced disease
relapse while increasing the cut-off (decreasing stringency) for
assigning a patient into the good outcome group. Indeed, the
proportion of patients experiencing disease relapse increased in an
approximate linear fashion as the probability assigned for disease
relapse by the Basal-14 signature increased (Fig. 3A). To assess the
predictive accuracy of the Basal-14 signature, we completed receiver-
operator characteristic (ROC) curve analysis. In this fashion, an
AUC (Area Under Curve) value of 0.5 indicates predictive per-
formance which is no better than chance, whereas values greater
than 0.5 indicate true predictive capacity. The Basal-14 signature
produced an AUC that was statistically significantly higher than
0.5 (AUC: 0.76, p50.003, Fig. 3B). Taken together, these data
demonstrate the capacity for the Basal-14 signature to identify
BLBC patients at high risk for disease relapse. To visualize survival
differences between groups of patients that were predicted to have
either high or low risk for disease relapse, we stratified patients from
the validation cohort into good and poor outcome groups using
tertiles, and completed Kaplan-Meier survival analysis. Patients
whose predicted probability for disease relapse fell within the
lowest tertile of predicted probabilities were stratified into the good
outcome group, whereas those whose predicted probabilities fell

within the upper two tertiles were stratified into the poor outcome
group. The Kaplan-Meier estimate for the proportion of patients in
the low-risk group who did not experience a disease relapse at 5 years
(94%) was significantly greater than the proportion in the poor out-
come category (48%) (Table 2, Fig. 3C, HR: 4.7 [CI95: 1.8–12.3],
p 5 0.0017). Because our overarching objective was to identify
patients who could be spared aggressive chemotherapy, we also
tested the capacity of our signature to predict the outcome of
patients who had not received adjuvant chemotherapy. In this
fashion, we were able to test the relationship between the Basal-14
signature and the natural progression of BLBCs without having
adjuvant chemotherapy as a potentially confounding variable. 26
patients within the 49 patient validation cohort met this criterion
(patients from GSE7390 & GSE2034). We re-tested the predictive
capacity of the Basal-14 signature on these 26 chemotherapy naı̈ve
patients and observed a statistically significant difference in the
survival of patients who were predicted to have either good or
poor outcome (Fig. 3D, HR: 4.4 [CI95: 1.1–16.7], p 5 0.03,
Table 3). The proportion of patients in the chemotherapy naı̈ve
validation cohort who were predicted to have good survival and
were free of disease at 5 years was 100%, whereas among those
patients who were predicted to have poor survival, only 50% were
disease free after 5 years. Taken together, these findings demonstrate
the capacity of our gene signature to identify patients who have
excellent long-term survival even when patients did not receive
aggressive adjuvant chemotherapy.

Comparison of the Basal-14 signature with other multigene
predictors. Previous studies have reported that many published
multigene predictors fail to accurately identify high and low risk
patients among patients with ER-negative breast cancer22,24. As
the majority of BLBCs are ER-negative, we sought to test whether

Figure 2 | 14 probe sets optimally separate patients into good and poor survival groups. (A) Experimental strategy to identify an optimal signature to

separate patients with BLBC into high and low risk groups. (B) Comparison of relative risk between leave-one-out cross-validation predicted high and low

risk groups for n length signatures (n51,2,3…,50). 14 probe sets produces maximal risk separation between high and low risk groups (blue arrow).

Table 1 | Features comprising the optimal 14-gene signature

Correlation Affymtetrix Probe Description

1 201022_s_at destrin (actin depolymerizing factor), DSTN
1 203072_at myosin IE, MYO1E
1 208089_s_at tudor domain containing 3, TDRD3
1 204338_s_at regulator of G-protein signaling 4, RGS4
1 220719_at hypothetical protein FLJ13769, FLJ13769
1 212039_x_at ribosomal protein L3, RPL3
1 211073_x_at ribosomal protein L3, RPL3
1 201217_x_at ribosomal protein L3, RPL3
1 208538_at acidic (leucine-rich) nuclear phosphoprotein 32 family, member C, ANP32C
2 217434_at melanocortin 2 receptor (adrenocorticotropic hormone), MC2R
2 216143_at MRNA; cDNA DKFZp434L092 (from clone DKFZp434L092), ---
2 221306_at G protein-coupled receptor 27, GPR27
2 204544_at Hermansky-Pudlak syndrome 5, HPS5
2 208885_at lymphocyte cytosolic protein 1 (L-plastin), LCP1
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multiple previously described multigene predictors were prognostic
in the context of BLBC. To this end, we measured the association of
the Genomic Grade Index5, NKI-70 signature31, Recurrence score3,
CSR/Wound response signature6, Triple-negative signature22, MS-14
signature32, as well as the Basal-14 signature in the 49 patient
validation cohort by calculating a signature index and completing
either Kaplan-Meier survival analysis using tertiles to dichotomize
the validation cohort into good and poor outcome groups, or
generating ROC curves. Interestingly, other than the Basal-14
signature (Fig. 4A, HR: 4.3 [CI95: 1.6–11.4], p 5 0.0032) none of
the other signatures identified patient groups with statistically
significant differences in survival (Kaplan-Meier: Fig. 4A-F. ROC:
supplementary figure. 1A–F). These data suggest that the prognostic
capacity of previously reported multigene outcome predictors may
be diminished in patients with BLBC. However, it should be noted
that the tertile method used to separate patients into good and poor
outcome groups may be non-optimal for these signatures. Inter-
estingly, the triple negative signature trended towards significance
in the Kaplan-Meier analysis (Fig. 4F, HR: 2.0 [CI95: 0.8–5.4], p 5

0.15) and was statistically significant in the ROC curve analysis
(Supplementary fig. 1G, AUC: 0.7, p 5 0.02). This is likely because
the triple negative signature was developed with triple negative breast

tumors, which comprises a sub-group that overlaps with the basal-
like molecular subtype. Together, these findings underscore the need
for prognostic multigene signatures, such as the Basal 14 signature,
for guiding therapy choice for breast cancer patients.

Performance of Basal-14 signature in other molecular subtypes of
breast cancer. Previous studies have demonstrated that biological
processes that can be linked to breast cancer patient outcome vary
among the different molecular subtypes of breast cancer21. In this
regard, we sought to test whether the Basal-14 signature could be
used to identify high and low risk patients among the other molecular
subtypes of breast cancer, or whether its capacity to stratify patients
into high and low risks groups was limited to patients with BLBCs.
The Basal-14 signature showed no capacity to identify patients at
high and low risk for disease relapse among the luminal A (HR: 1.3,
p5n.s.), luminal B (HR: 1.2, p5n.s.), claudin low (HR: 1.0, p5n.s.)
and normal (HR: 0.4, p5n.s.) molecular subtypes of breast cancer
(Fig. 5A–D). Unexpectedly, the Basal-14 signature was also prog-
nostic in the ERBB2 molecular subtype (HR: 2.8 [CI95: 1.3–6.5],
p 5 0.01). Interestingly, a previously reported prognostic gene
signature developed using Her2-positive tumors was also found to
be prognostic in BLBCs33. These data suggest that similar biological

Figure 3 | The Basal 14 signature accurately predicts outcome in independent patients with BLBC. (A) Rug plot (distribution of predicted

probabilities) of proportion of patients experiencing disease relapse increases linearly with probability of relapse predicted by Basal 14 signature. (B) ROC

curve to assess the accuracy of the Basal 14 signature in the validation cohort (AUC: 0.76, p 5 0.003). (C) Kaplan-Meier survival analysis with the

validation (HR: 4.7, [CI95: 1.8–12.3], p 5 0.0017, Log-rank test). (D) Kaplan-Meier survival analysis with chemotherapy naı̈ve patients (HR: 4.4,

[CI95: 1.1–16.7], p 5 0.03, Log-rank test).

Table 2 | Survival characteristics of the 49 patient validation cohort

Validation cohort (n549)

Risk Category # Patients % Patients % Disease free survival (5 yr)

Low 16 33 94
High 33 67 48

Table 3 | Survival characteristics of the 26 patient chemo-naı̈ve
validation cohort

Chemo-naı̈ve validation cohort (n526)

Risk Category # Patients % Patients % Disease free survival (5 yr)

Low 6 23 100
High 20 77 50
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processes may govern patient outcome in both the basal-like and
ERBB2 molecular subtypes of breast cancer. Taken with our previous
findings, it appears that transcripts whose expression may be infor-
mative for patient prognosis vary between the different molecular
subtypes of breast cancer. For example, it appears that signatures that
are prognostic in ER-positive breast tumors, such as the Reccurrence
score (OncotypeDXH) and the Genomic Grade Index, fail to stratify
BLBCs into good and poor outcome groups, whereas the Basal-14
signature is prognostic in basal-like and ERBB2-overexpressing
breast cancer, but fails to identify patients in the ER-positive luminal
subtypes of breast cancer.

Discussion
Few, if any, clinical variables show prognostic capacity in the context
of BLBC. Therefore, we sought to identify a genomic predictor of
patient outcome for patients with BLBC. In the present study, we
identified a 14 probe set signature, which we named the Basal 14
signature. We tested the Basal 14 signature on an independent valid-
ation cohort of BLBC patients and were able to accurately stratify
patients into good and poor outcome groups. Importantly, the dif-
ference in risk for disease relapse for patients who were predicted
to have either good or poor outcome was both relatively large and
statistically significant. Because it was unclear whether the Basal 14

signature was related to the natural progression of BLBCs, tumor
response to therapy, or both, we also tested the Basal 14 signature on
a smaller group of patients who did not received treatment with
adjuvant chemotherapy. In this fashion, we were able to confirm a
relationship, albeit in a small number of patients, between the Basal
14 signature and patient survival in chemotherapy naı̈ve patients.
Notably, previous reports suggest that immune-based signatures
predict response to chemotherapy in triple negative breast cancer
patients, suggesting that the Basal 14 signature might also measure
treatment response21,34. The relationship between the Basal 14 sig-
nature and response to chemotherapy was not examined in this
study. Another possibility is that the Basal 14 signature is associated
with histological subtypes of BLBC with known good prognosis, such
as the medullary subtype35,36. However, the frequency of medullary
breast tumors is exceptionally low (2%), suggesting that the Basal 14
signature would also need to identify good prognosis non-medullary
BLBCs the achieve the level of accuracy described here. In total, the
capacity of the Basal 14 signature to identify BLBC patients with good
prognosis is likely multi-factorial, and many additional possibilities
remain unexplored.

Interestingly, the Basal 14 signature comprised multiple genes
with known roles in cancer. For example, destrin (DSTN) is one
of three mammalian actin depolymerisation factors (ADFs). These

Figure 4 | Other reported prognostic signatures fail to predict patient outcome in the context of BLBC. We calculated a signature index for the (A) Basal

14, (B) Genomic Grade Index, (C) NKI-70, (D) Recurrence Score, (E) CSR/Wound response, (F) Triple Negative and (G) MS-14 signatures. Only the

Basal 14 signature was prognostic in the validation cohort of BLBC patients HR: 4.7 [CI95: 1.8–12.3], p 5 0.0017, Log-rank test). Although, the Triple

negative signature did trend to significance (HR: 2.0 [CI95: 0.8–5.4], p 5 0.15, Log-rank test).
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proteins are fundamental for multiple cellular processes such as cell
survival, cytokinesis, as well as cell migration and chemotaxis37, and
have been linked as a major determinant of metastasis in cancer
patients38,39. Tudor domain containing protein 3 (TDRD3) has prev-
iously been linked to outcome in patients with ER-negative breast
tumors40, and while being relatively poorly characterized, is thought
to play a role in the regulation of cytoplasmic stress granules41.
Regulator of G-protein signaling (RGS4) has also been linked to
patient outcome in patients with triple negative tumors22. Notably,
RGS4 appears to be a key negative regulator of breast cancer cell
migration and invasion42. It is therefore somewhat surprising that
high levels of RGS4 transcripts are associated with poor out-
come. However, it appears that RGS4 function is heavily regulated
post-translationally by proteosomal degradation, suggesting that a
negative feedback loop occurs where high levels of RGS4 transcripts
indicate low levels of RGS4 protein42. Interestingly, proteasome inhi-
bitors are being explored as possible means for cancer therapy43,44. In
this regard, BLBC patients may represent a cancer sub-group that
might benefit from such a therapeutic approach. Three of the probe
sets comprising the Basal 14 signature bind to transcripts that encode
ribosomal protein L3 (RPL3). While it seems likely that this gene is
involved in mRNA translation, implying that BLBCs with high levels
of protein synthesis are associated with poor patient outcome, the
role of RPL3 in cancer is uncharacterized. The genes representing
transcripts whose expression was related to good survival are largely
uncharacterized in regards to roles in tumor cell biology. Lym-
phocyte cytosolic protein 1 (LCP1), which is likely expressed by
tumor infiltrating lymphocytes, might represent a readout of the
extent of tumor lymphocyte infiltrate. This suggests that patient
outcome may be influenced by host immune response, where infilt-
rating immune cells, such as lymphocytes, within a tumor indicate a
good prognosis. Indeed, similar observations have been made by
multiple other groups in the context of ER negative breast tumors22,24.
Taken together, these data highlight the diverse biology of the genes
comprising the Basal 14 signature and provide a scientific rationale
for new lines of research aimed at developing BLBC specific therapies.

Several issues remain to be addressed for the Basal 14 signature to
be a useful clinical tool. Our conclusions are based on the analysis of
retrospective data, which limits its clinical value. Moreover, the valid-
ation cohort we used to test the predictive accuracy of the Basal 14
signature was relatively small. Finally, many of the patients in our
data-set had incomplete clinical data, making it impossible to learn
whether the Basal 14 signature was independently prognostic in the
context of other additional factors such as patient age, tumor size,
tumor grade, etc. However, it is important to note that previous
reports suggest that factors such as tumor size, tumor grade, extent
of vascular invasion, and patient age show little relationship to
patient outcome in the context of BLBC especially in lymph-node
negative patients45,46. Indeed, the only standard clinical variable that
is consistently prognostic in BLBC appears to be nodal status45,47.
Interestingly, we found that the Genomic Grade Index, a genomic
based measurement of tumor grade showed no capacity to stratify
BLBC patients into good and poor outcome groups. Subsequent
validation of the Basal 14 signature will need to be completed in
larger cohorts of patients that include such multivariate analyses.
In this regard, a major focus of our research is the optimization of
the Basal 14 signature for use on breast tumor tissue that is routinely
available after surgery, such as formalin fixed paraffin embedded
tumor blocks.

No rigorously validated assay exists to guide prognosis of patients
specifically with BLBC. Indeed, the data we present here suggests that
the possibility of developing such a test exists. Future experiments
will aim to extend these findings in additional retrospective cohorts
of patients with BLBCs and ultimately in a prospective based clinical
trial aimed at sparing low risk BLBCs patients from detrimental and
unnecessary adjuvant chemotherapy.

Methods
We used a four-step approach to complete proof-of-principle experiments to show
that gene-expression signatures can be identified and used to classify patients with
BLBCs into good and poor outcome groups.

Figure 5 | Basal 14 signature is prognostic in the basal and ERBB2 molecular sutbypes of breast cancer. Prognostic capacity of the Basal 14 signature was

evaluated in the (A) luminal A, (B) luminal B, (C) claudin low, (D) Normal, and (F) ERBB2 molecular subtypes of breast cancer. Notably, the Basal 14

signature was prognostic in patients with the ERBB2 molecular subtype of breast cancer (HR: 2.8 [CI95: 1.3–6.5], p 5 0.01, Log-rank test).
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1. We assembled a large cohort of 995 breast tumor gene expression profiles for
which clinical follow-up data was available.

2. We classified each tumor on the basis of its ‘intrinsic’ molecular subtype from
which we generated a new dataset consisting of only BLBCs.

3. We used a subset of BLBCs to iteratively identify several prognostic gene
signatures, and used cross-validation to identify the optimal signature for
patient outcome classification.

4. We validated our optimized signature prospectively on an independent subset
of basal breast tumors with accompanying gene expression profiles and clinical
follow-up data.

Collecting Microarray Data. We analyzed the gene expression profiles of 5
independent external datasets, obtained using Affymetrix HG-U133A GeneChips
arrays, which have been deposited in the Gene Expression Omnibus (GEO); accession
numbers GSE1456, GSE2034, GSE3494, GSE6532, and GSE7390. Together these
datasets provided expression profiles of 1,077 human breast tumor samples. All gene
expression profiles were normalized with frozen Robust Multi-Array Analysis
(fRMA), a procedure that allows one to pre-process microarrays individually or in
small batches and to then combine the data into a single comparable dataset for
further analyses48. To remove batch effect from the combined dataset, we used the
ComBat method, which uses an Empirical Bayes method to adjust for potential batch
effects in the dataset49 (http://genepattern.broadinstitute.org), and computed Pearson
correlation coefficients for pair-wise comparisons of samples using 68 house-keeping
probe sets; only samples exhibiting correlations higher than 0.95 with at least half of
the dataset were selected for further classification. The latter filtering method yielded
a dataset comprising 995 human breast tumor samples.

Tumor Classification. Each of the selected 995 samples described above, were
classified as basal-like, HER21, Luminal A, Luminal B, claudin-low or normal-like by
assigning it to a cluster representing the subtype to which it had the highest Pearson
correlation12,13,15. The correlation was computed using the subset of 1,500 averaged
and median-centered ‘intrinsic’ genes50 common to both our dataset (Affymetrix
Human Genome U133A Array) and the dataset used by Parker et al. (Stanford
Microarray). For robustness, only tumors exhibiting a correlation higher than 0.3
with any of the molecular subtypes were used for further analysis. This led to the
classification of 137 breast tumors into the basal-like molecular subtype yielding a
group of 134 tumors with useable clinical follow-up data. We randomly separated the
134 patients with basal breast tumors; approximately 2/3 (n585) were taken for
signature training purposes (training set), whereas and the remaining 1/3 (n549) was
used as an independent validation set.

Binary regression. Identification of the prognostic signature was completed using the
Bayesian binary regression algorithm BinReg ver2.0. The binary regression software
(BinReg2.0) was downloaded from http://web.duke.edu/,dinbarry/BINREG/ and
was used as a MATLAB plug-in27. In most cases, we used disease free survival (DFS) as
the relevant clinical variable, however, in some cases only distant metastasis free
survival (DMFS) was available within a patient’s clinical annotation. In these cases we
counted DMFS as DFS. We used 5 years DFS as the clinical endpoint for these studies.

Assessing signature performance. Survival differences between predicted good and
poor outcome groups were evaluated with Kaplan-Meier survival curves and a log-
rank test for significance. Many standard prognostic clinical variables (node, grad,
size, age…, etc) were unavailable in the GEO files associated with the patients used in
this study, thus a limitation of this study is that we were not able to test the capacity of
the Basal 14 signature to remain prognostic in the context of standard prognostic
factors.

Comparison of the Basal 14 signature with other genomic based predictors. We
tested multiple additional prognostic signatures on the 49 patient validation cohort:
Genomic Grade5, NKI-7031, Recurrence score3, Wound response6, Triple negative22

and MS-1432. For cross platform comparisons with other gene signatures, signature
elements were mapped by Unigene IDs to Affymetrix HG-U133A GeneChip arrays
for testing in the 49 patient validation set. The expression values for each gene were
transformed such that the mean was 0 and the standard deviation was 1. A signature
index was calculated for each patient as follows:

P
i[P xi

nP
{

P
i[N xj

nN

Where x is the transformed expression, n is the number of genes that could be mapped
to the Affymetrix HG-U133 arrays, P is the set of probes with reported positive
correlation to poor outcome, and N is the set of probes with reported positive cor-
relation to good outcome. For each signature, patients were divided into high and low
signature index groups using tertiles28.
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