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Prompt c-ray emissions from gamma-ray bursts (GRBs) exhibit a vast range of extremely complex temporal
structures with a typical variability time-scale significantly short – as fast as milliseconds. This work aims to
investigate the apparent randomness of the GRB time profiles making extensive use of nonlinear techniques
combining the advanced spectral method of the Singular Spectrum Analysis (SSA) with the classical tools
provided by the Chaos Theory. Despite their morphological complexity, we detect evidence of a non
stochastic short-term variability during the overall burst duration – seemingly consistent with a chaotic
behavior. The phase space portrait of such variability shows the existence of a well-defined strange attractor
underlying the erratic prompt emission structures. This scenario can shed new light on the ultra-relativistic
processes believed to take place in GRB explosions and usually associated with the birth of a fast-spinning
magnetar or accretion of matter onto a newly formed black hole.

G
amma-ray bursts (GRBs) are the most instantaneously powerful cosmic explosions known in the uni-
verse since the Big Bang. They are identified as brief, intense, and completely unpredictable flashes of
high energy c-rays in the sky. The prompt c-ray emissions from GRBs exhibit a vast range of extremely

complex temporal behaviors and any morphological classification scheme appears to be neither comprehensive
nor systematic. Moreover, GRB profiles tend to be highly variable, showing flux variations of up to 100% on a time
scale considerably shorter than the overall duration of the burst. The analysis of such variability has characterized
much of the scientific work on GRBs1. In fact, it is crucial to understand the physical mechanisms driving the
internal engine of GRBs, which remains hidden from direct observation. We demonstrate, for the first time, that
the prompt temporal variability of GRBs does not follow a pure random behavior as previously assumed, but
instead responds to a low-dimension deterministic dynamic which appears to govern the overall burst duration. A
universal strange attractor – underlying the erratic prompt structure – suggests that a coherent deterministic
mechanism is taking place during the entire dynamical evolution of a GRB explosion. Moreover, we detect clues of
a chaotic dynamic that offers the first observational evidence of deterministic chaos in relativistic astrophysical
phenomena placed at cosmological distance. A deterministic chaotic system is characterized by a high sensitivity
to initial conditions. By exhibiting an apparently stochastic behavior, such sensitivity masks the deterministic
laws of their intrinsic physical processes. For the very first time, this particular type of dynamics was observed in
objects capable of producing significant space-time distortion, even possibly emitting gravitational waves2.

Results
Data Sample. To make our analysis meaningful, we collected a very high-quality data sets with more than 3000
points for each temporal sequence sampled with a homogeneous time bin-width of 64ms. A Signal-to-Noise level
(S/N) above 50 is required to ensure the reliability of the prompt structures during the transient evolution of a
GRB. The list of prompt time profiles was taken from the daily updated compilation of Swift team. Throughout
the January 2005 to September 2010 period, two events match our selection criteria, namely GRB 051117 and
GRB 100814. In an attempt to remain brief, this paper includes the graphs of GRB 050711 exclusively. The plots
obtained for GRB 100814 are largely similar.

Search for Deterministic Components: Monte Carlo SSA. The Singular Spectrum Analysis3,4 (SSA) belongs to
the class of methods which use orthogonal functions, allegedly more efficient because calculated on the basis of
data rather than on the basis of a fixed selected base as in Fourier and Wavelet Transforms. Indeed, this property
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makes the SSA a very effective statistical method in the decomposi-
tion of the original time series into a defined number of independent
and interpretable components, e.g. low-frequency trend, anharmo-
nic oscillatory components, periodicities with varying amplitudes, or
structureless noise. It permits to separate signal from noise even if the
Signal-to-Noise level varies when recording the original time series –
a typical feature of GRBs’ prompt emissions. At all time in this
research project, a Monte Carlo SSA test5,6,7 was used to distinguish
between genuine deterministic components and components gener-
ated by a pure red-noise process. Red-noise is known to be signifi-
cantly relevant in several natural systems. It is dominated by cycles of
low frequency in its power spectrum and exhibits significant auto-
correlations that decay over time. When dealing with red-noise, a
first-order autoregressive process is usually considered: AR(1), given
by xt5wxt-11et with 0,w,1 and et independent identically distri-
buted normal errors. In this case, a total of 10000 surrogate realiza-
tions were used for the computation of percentiles for each
eigenvalue lL. Using the Monte Carlo SSA test, we estimated the
parameters of the AR(1) model starting from the very same time
series, and using a maximum-likelihood criterion. For instance, if
an eigenvalue lL lies outside a 99% noise percentile, then the red-
noise null hypothesis can be rejected with this confidence. Otherwise,
that particular SSA component of the time series cannot be con-
sidered as significantly different from red-noise.

The shape of the so-called SSA Eingespectrum is analyzed
to identify possible evidence of deterministic activity in the prompt
emission from GRBs selected in our sample. The SSA Eingespectrum
plot shows the eigenvalue, lL, ranked by order that provides the
variance of the time series in the direction specified by the corres-
ponding eigenvector EL. Each eigenvalue represents the fraction
of total variance explained by the associated component. More spe-
cifically, if two components explain more or less the same variance
and their modes are in phase quadrature, they may represent an
oscillatory patterns8. Alternatively, by selecting low-frequency SSA
components, we can identify nonlinear slow trends. In this work,
Kendall’s t nonparametric trend tests are performed to identify those
components that are significantly non-stationary over the length of
the time series at 99% confidence levels (Fig. 1). Once the eigenvalues
identifying the trend have been determined, the de-trended prompt

light curve is to be tested against the null-hypothesis, H0: the vari-
ability nature of the data are consistent with a pure AR(1) random
noise. We found that the first eigenvalues are dominant and lie
outside the intervals that define a purely stochastic behavior.
Furthermore, we were able to reject the null hypothesis at the 0.01
level, as the variances showed to be significantly different from the
noise-variance. The results of this analysis are showed in Fig. 2. In
Fig. 3 can be observed the detailed steps of the SSA reconstruction
process. As evidenced, a deterministic signal clearly emerges out of a
significant fraction of random walk noise, from the time of the ori-
ginal signal to the end of this analysis. The figure depicts the de-trend
and de-noise version of the original time series in which the red-noise
and the trend component have been isolate.

A detailed analysis of background region pre- and post- GRB
explosion confirms the validity of the results exposed in this paper.
We were indeed able to demonstrate that the background perfectly
follows a red-noise behavior, with no exceptions. Fig. 4 shows the
SSA Eigenspectrum of the local-background region of GRB 050711.

Phase Space Reconstruction and Correlation Dimension. Based on
time-delay embedding theorem of Takens9, we reconstructed the
phase space of the dynamical system from the time-sequence of
observations collected through our experiments. The reconstruction
preserves the essential properties of the dynamic system (topological
structure of the attractor like the correlation dimension and
Lyapunov exponents), but it does not preserve the geometric shape
of structures in phase space. To reconstruct the state space, we use the
method of delay (MOD). With the MOD, the spatial structure of the
dynamical system is visualized simply by plotting the scalar quantity
of the signal sampling at regular time intervals, ts, against the time-
delayed values of the scalar measurements t . Thus, we can build a
vector in m dimensions (generally referred to as embedding dimen-
sion) in order to examine the dynamics of the signal. Once a proper
time delay t and embedding dimension m have been found, a phase
space for the dynamic analysis is provided. There is a large literature
on the optimal choice of the embedding parameters m and t. The
usual autocorrelation function and the time-delayed mutual
information provide important suggestions about reasonable delay
times while the false neighbors statistic can give guidance about the

Figure 1 | SSA Eigenspectrum of prompt emission from GRB 050117. Kendall’s t trend tests are performed to identify those components that are

significantly non-stationary over the length of the time series at 99% confidence levels. These eigenvalues are circled in red.
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Figure 2 | Monte Carlo SSA Eigenspectrum of prompt emission from GRB050117 in which the low-frequency trend is subtracted. The error bars

represent the interval between the 0.01th and 99.9th percentiles, and eigenvalues that lie outside this range are significantly different from those generated

by a red-noise AR(1) process against which they are tested by using 10000 Monte Carlo simulation.

Figure 3 | SSA Reconstruction. The original time series is de-trended and de-noised in according to the SSA Eigenspectrum. As evidenced, a deterministic

signal clearly emerges out of a significant fraction of random walk noise, from the time of the original signal to the end of this analysis.
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proper embedding dimension. The study of trajectories in phase
space is essential to discriminate chaos from pure randomness, or
more generally a deterministic system from a stochastic dynamic. To
this aim, it is important to measure the geometrical structure of the
attractor, so-called correlation dimension D2. The estimation of D2

gives the minimum number of variables necessary to describe the
state of the system, at any given time. A non-integer result for the
correlation dimension indicates the fractality of the system. We fol-
lowed the method proposed by Grassberger & Procaccia10 according
to which the saturation value of D2 gives the attractor dimension. For
a truly random signal, the correlation dimension graph does not
display any kind of saturation, indicating a high-dimensional ran-
dom behaviour with D2 R ‘. Inherent deterministic signals, on the
other hand, have a distinct spatial structure, meaning that their cor-
relation dimension will saturate at some point, as embedding dimen-
sion m is increased.

A strange attractor can be chaotic or not, depending on cases.
By strange we refer to metric properties such as fractal dimensions,
while chaotic reflects dynamic properties including the exponential
divergence of nearby trajectories in phase space (sensitivity to initial
conditions).

Theory of Chaos: Maximum Lyapunov Exponent. The Theory of
Chaos (or Deterministic Chaos) deals with the study of systems that
exhibit a complex temporal evolution. Such theory, indeed,
researches whether the said systems can be described in their whole
dynamic evolution using only a relatively small number of differ-
ential equations. It is to be highlighted that their apparent random-
ness is not due to external perturbations – inherently uncontrollable
– as in the case of molecules’ impact on motes; nor is it due to the
physical principle that characterizes the microscopic world – which
prevents the prediction of the exact point of arrival when measuring
quantum particles (Heisenbergs Uncertainty Principle). Rather, it
springs from the same nonlinear deterministic law which governs
the few individuals components of the system. An important feature
of chaotic systems is the exponential growth of the distance between
trajectories initially very close (sensitivity to initial conditions). The
parameter used to measure such growth rate is the maximum

Lyapunov exponent lmax. A positive value of lmax indicates the sens-
itivity to initial conditions, typical hallmark of chaos.

Further investigations on the nature of the variability of the above
described components were conducted measuring the dynamical
invariant of their attractors. The phase space portrait of the deter-
ministic component discovered in GRB 050711 is plotted in Fig. 5.
Considering a small radius e and an embedding dimension ranging
from 6 to 11, the obtained correlation dimension shows evidence of a
fractal nature with D2 < 2.4 and D2 < 2.8 for GRB 050711 and for
GRB 100814, respectively. Because of the small number of points
collected in these time series, the previous analysis provided a lower
limit than the accepted correlation dimension. Furthering our ana-
lysis, we set to measure the maximum Lyapunov exponent using the
algorithm of Kantz11. In addition, we used the method explained in
Giannerini & Rosa12 to assess standard errors and confidence inter-
vals for the estimated maximal Lyapunov exponent. As a result, we
obtained lmax 5 0.008960.0007 and lmax 50.010260.0005 for the
strange attractor of GRB 050711 and GRB 100814, respectively.

Additional Evidence of Chaotic Dynamic: Recurrence Plot.
Finally, we were able to visualize the GRB dynamic via the recurrence
plot analysis13. Such analysis provides a graphical representation of
the patterns in a time series and was first introduced to visualize the
time-depended behaviour of the dynamical systems. It represents the
recurrence of the phase space trajectory at a certain state, exhibiting
characteristic large scale and small-scale patterns that are caused by
the particular dynamic system under examination. More specifically,
the presence of short diagonal segments indicates the presence of the
so-called unstable periodic orbits embedded in the chaotic attractor
of a dynamic system. By visual comparison, we note that the struc-
tures of GRB recurrence plots have similarities with those of know
chaotic attractors, increasing the evidence that a chaotic dynamic is
possible and not entirely negligible (Fig. 6).

Discussion
The use of the advanced spectral method of the SSA, together with
the classical tools provided for in the Theory of Chaos, proved largely
successful in the analysis of the complex morphological structure of

Figure 4 | Monte Carlo SSA Eigenspectrum test of the local-background region of GRB 050117. The error bars represent the interval between the 0.01th

and 99.9th percentiles, and eigenvalues that lie outside this range are significantly different from those generated by a red-noise AR(1) process against

which they are tested by using 10000 Monte Carlo simulation.
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the prompt emissions from GRBs. It results from such analysis
that: (i) the prompt emission of GRBs can be described by a low-
frequency trend component that represents more than 90%
of the total variance of the time profile. To this trend are super-
imposed deterministic oscillations with lower variance. A significant
fraction of red-noise affects the entire dynamic evolution. (ii) Despite
the extremely complicated and random profile of the prompt c-ray
signals, we found a well-defined strange attractor. This implies that
the nature of the prompt time variability is not purely stochastic.
Rather, similar inherent physical processes appear to take place dur-
ing the entire dynamic evolution of GRB explosions. (iii) Evidence
was found of a fractal (D2 < 2.4 and D2 < 2.8) and chaotic nature
(lmax 5 0.008960.0007 and lmax 50.010260.0005) of the GRB
attractors.

The presence of a low-dimension chaotic dynamics allow us to
simplify the descriptive theory of GRB prompt mechanisms, as well

as, to test and constrain the different theoretical scenarios. In fact, the
Theory of Chaos deals with the study of systems that exhibit a com-
plex temporal evolution. Such theory, indeed, researches whether the
said systems can be described in their whole dynamic evolution using
only a relatively small number of differential equations. The estima-
tion of correlation dimension D2 gives the minimum number of
variables necessary to describe the state of the system, at any given
time, making the GRBs signal more tractable from a mathematical
point of view.

As a conclusion, we can safely suggest that such dynamic results
common to various astrophysical objects detected in our near to
distant Universe, as also confirmed by the evidence of a deterministic
chaos gathered within the Solar System itself14. Continuous improve-
ments of sampling techniques in the field of astrophysics provide for
the possibility of many future discoveries regarding chaotic beha-
viour in cosmological environments.

Figure 5 | Phase Space Portrait of the deterministic components discovered in the prompt emission from GRB 050117. The three axes represent the

delay coordinate vector with t 5 25 s.

Figure 6 | Recurrence Plot of the deterministic components discovered in the prompt emission from GRB 050117.
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Methods
Formally, SSA method can be summarized in two main stages, each stage consisting
of two principal steps (i) decomposition stage: embedding and singular value
decomposition, and (ii) reconstruction stage: grouping and diagonal averaging. In the
first step, an one-dimensional time series F 5 (f0, f1,..., fN-1) of length N is recast as an
L-dimensional time series forming the so-called trajectory matrix X of the system. We
emphasize that the trajectory matrix X is obtained by setting a priori a specified
window length L. The second step is the singular value decomposition (SVD) of the
matrix X, which can be obtained via eigenvalues (l1,....,lL) and eigenvectors (E1,...,EL)
of the matrix S 5 XXT of size L x L. In the first and second steps of the second stage, i.e.
the ’’reconstruction stage’’, the components are grouped together. Each matrix of the
grouped decomposition is then used to reconstruct a specific component of the
original time series with the same length N than the starting signal.

In conducting the SSA tests, a suitable window length L must be chosen. L deter-
mines the number of lagged vectors that are used to form the trajectory matrix, and
thus, the resolution of the decomposition. Following the norm, L was varied and
tested over a large range of values before electing a window length of L , N/15.

Meanwhile, the attractor reconstruction and its invariant quantities (D2, lmax)
were obtained by setting embedding parameters m 5 3 and t 5 25 s as suggested by
the false neighbor statistics and the mutual information plot, respectively.

The list of prompt GRB profiles was taken from the daily updated compilation of
Swift/BAT team http://www.nasa.gov/mission_pages/swift/team/index.html.
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