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One important use of genome-wide transcriptional profiles is to identify relationships between transcription
levels and patient outcomes. These translational insights can guide the development of biomarkers for
clinical application. Data from thousands of translational-biomarker studies have been deposited in public
repositories, enabling reuse. However, data-reuse efforts require considerable time and expertise because
transcriptional data are generated using heterogeneous profiling technologies, preprocessed using diverse
normalization procedures, and annotated in non-standard ways. To address this problem, we curated 45
publicly available, translational-biomarker datasets from a variety of human diseases. To increase the data's
utility, we reprocessed the raw expression data using a uniform computational pipeline, addressed quality-
control problems, mapped the clinical annotations to a controlled vocabulary, and prepared consistently
structured, analysis-ready data files. These data, along with scripts we used to prepare the data, are
available in a public repository. We believe these data will be particularly useful to researchers seeking to
perform benchmarking studies—for example, to compare and optimize machine-learning algorithms' ability
to predict biomedical outcomes.
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• ovary • prostate gland • uterus • glia • peripheral blood • peripheral
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cell • leukocyte • connective tissue
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Background & Summary
DNA encodes a cell’s instruction manual in the form of genes and regulatory sequences1. Cells behave
differently, in part, because genes are transcribed into RNA in different quantities within those cells2.
Researchers examine gene-expression levels to understand cellular dynamics and the mechanisms behind
cellular aberrations, including those that lead to disease development. Modern technologies now make it
possible to profile expression levels for thousands of genes at a time for a modest expense3. Using these
high-throughput technologies, scientists have performed thousands of studies to characterize biological
processes and to evaluate the potential for precision-medicine applications. One such application is to
derive transcriptional biomarkers—patterns of expression that indicate disease states or that predict
medical outcomes, such as relapse, survival, or treatment response4–10. Indeed, already to date, more than
100 transcriptional biomarkers have been proposed for predicting breast-cancer survival alone11.

Many funding agencies and academic journals have imposed policies that require scientists to deposit
transcriptional data in publicly accessible databases. These policies seek to ensure that other scientists can
verify the original study's findings and can reuse the data in secondary analyses. For example, Gene
Expression Omnibus (GEO) currently contains data for more than 2 million biological samples12. Upon
considering infrastructure and personnel costs, we estimate that these data represent hundreds of
millions—if not billions—of dollars (USD) of collective research investment. Reusing these vast resources
offers an opportunity to reap a greater return on investment—perhaps most importantly via informing
and validating new studies. Unfortunately, although anyone can access GEO data, researchers vastly
underutilize this treasure trove because preparing data for new analyses requires considerable background
knowledge and informatics expertise.

In GEO, data are typically available in two forms: 1) raw data, as produced originally by the data-
generating technology, and 2) processed data, which were used in the data generators' analyses. In most
cases, researchers process raw data in a series of steps that might include quality-control filtering, noise
reduction, standardization, and summarization (e.g., summarizing to gene-level values and excluding
outliers). Data from different profiling technologies must be handled in ways that are specific to each
technology. However, even for datasets generated using the same profiling technology, the methods
employed for data preprocessing vary widely across studies. This heterogeneity makes it difficult for
researchers to perform secondary analyses and to trust that analytical findings are driven primarily by
biological mechanisms rather than differences in data preprocessing. In addition, when data have not
been mapped to biologically meaningful identifiers, it may be difficult for researchers to draw biological
conclusions from the data.

Sample-level annotations accompany each GEO dataset. For biomarker studies, such metadata might
include medical diagnoses or treatment outcomes, as well as covariates such as age, sex, or ethnicity.
Although GEO publishes metadata in a semi-standardized format and bioinformatics tools exist for
downloading and parsing GEO data13,14, it is difficult for many researchers to extract these data into a
form that is suitable for secondary analyses. Within annotation files, values are often stored in key/value
pairs with nondescript column names. Many columns are not useful for analytical purposes (e.g., when all
samples have the same value). When values are missing, the columns often become shifted; accordingly,
data for a given variable may be spread across multiple columns. Moreover, a variety of descriptors (e.g.,
“?”, “N/A”, or “Unknown”) are used to indicate missing values, thus requiring the analyst to account for
these differences. In addition, seemingly minor errors, such as spelling mistakes or inconsistent
capitalization, can hamper secondary-analysis efforts.

In response to these challenges, we compiled the Biomarker Benchmark, a curated compendium of 45
transcriptional-biomarker datasets from GEO. These datasets represent a variety of human-disease states
and outcomes, many related to cancer. We obtained raw gene-expression files, renormalized them using a
common algorithm, and summarized the data using gene-level annotations (Figure 1). We used two
techniques to check for quality-control issues in the gene-expression data. For datasets where gene-
expression data were processed in multiple batches—and where batch information was available—we
corrected for batch effects. Finally, we prepared a version of the data that is suitable for direct application
in machine-learning analyses. For this version of the data, we one-hot encoded any discrete values and
imputed any missing values.

Methods
Selecting data
To select datasets to be included in our compendium, we performed a custom search in Gene Expression
Omnibus (GEO). First, we limited our search to data series that were associated with the Medical Subject
Heading (MeSH) term "biomarker" and that came from Homo sapiens subjects. Next we limited the
search to data generated using Affymetrix gene-expression microarrays and for which raw expression
data were available (so we could renormalize the data). For each dataset, we examined the metadata to
ensure that each series had at least one biomarker-relevant clinical variable. These included variables such
as prognosis, disease stage, histology, and treatment success or relapse. Lastly, we selected series that
included data for at least 70 samples (before additional filtering, see below).

Based on these criteria, we identified 36 GEO series. Two series (GSE6532 and GSE26682, Data
Citation 1) contained data for two types of Affymetrix microarray. To avoid platform-related biases, we
separated each of these series into two datasets; we used a suffix for each that indicates the microarray
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Figure 1. Flow diagram that illustrates the process we used to collect and curate the data. We wrote

computer scripts that downloaded the data, checked for quality, normalized and standardized data values, and

stored the data in analysis-ready file formats. The specific steps differed for clinical and expression data (see

Methods).
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platform (e.g., GSE6532_U133A and GSE6532_U133Plus2). For both of these series, the biological
samples profiled using either microarray platform were distinct. The GSE2109 series—known as the
Expression Project for Oncology (expO)—had been produced by the International Genomics Consortium
and contains data for 129 different cancer types15. To avoid confounding effects due to tissue-specific
expression and because the metadata differed considerably across the cancer types, we split this dataset
into multiple datasets based on cancer type (Table 1 (available online only)). We excluded tissue types for
which fewer than 70 samples were available; we also excluded the "omentum" cancer type because it was
relatively heterogeneous and had relatively few samples.

We used publicly available data for this study and played no role in contacting the research subjects.
We received approval to work with these data from Brigham Young University's Institutional Review
Board (E 14522).

Preparing clinical annotations
For each dataset, we wrote custom R scripts16 that download, parse, and reformat the clinical annotations.
Initially, these scripts retrieve data from GEO using the GEOquery package13. Next they generate a tab-
delimited text file for each dataset that contains all available clinical annotations, except those with
identical values for all samples (for example, platform name, species name, submission date) or that were
unique to each biological sample (for example, sample title). In addition, these scripts generate
Markdown files that summarize each dataset and indicate sources.

In some cases, multiple data values are included in the same cell in GEO annotation files. For example,
in GSE5462 (Data Citation 1), one patient's clinical demographics and treatment responses are listed as
"female; breast tumor; Letrozole, 2.5 mg/day,oral, 10–14 days; responder." We parsed these values and
split them into separate columns for each sample. After these cleaning steps, the datasets contained an
average of 7.8 variables of metadata (Table 1 (available online only)). Next we searched each dataset for
missing values. Across the datasets, 11 distinct expressions had been used by the original data generators
to represent missingness; these included "N/A", "NA", "MISSING", "NOT AVAILABLE", "?", and others.
To support consistency, we standardized these values across the datasets, using a value of "NA". On
average, 17.0% of the metadata values were missing per dataset; this proportion differed considerably
across the datasets (Figure 2).

We anticipate that many researchers will use these data to develop and benchmark machine-learning
algorithms (although they can be used in many other types of analysis). Accordingly, we prepared a
secondary version of the clinical annotations that are ready to use in machine-learning analyses. First, we
identified class variables that have potential relevance for biomarker applications. In many cases, these
variables were identical to those used in the original studies; but we also included class variables that had
not been used in the original studies. On average, the datasets contain 2.8 class variables. Second, we
identified clinical variables that could be used as predictor variables (covariates). Using these data, we
generated one "Analysis" file per class variable that contains the class values for each sample as well as
covariates that we suggest are relevant to the class variable. (A given variable may be used as a class
variable in one context and a predictor variable in a different context.) We named these analysis files
using descriptive prefixes (e.g., "Prognosis", "Diagnosis", or "Stage"). In addition, we identified concepts in
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Figure 2. Histogram showing the proportion of missing clinical-annotation values per dataset. Some

datasets contained no missing values, while others were missing as many as as 72.3% of data values.
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the National Cancer Institute Thesaurus17 that map to each class and covariate variable. The name of
each analysis file indicates the thesaurus term (preferred name) that corresponds to the class variable for
that file. Within these files, the column names indicate the thesaurus terms that correspond to each
covariate. We hope the use of this controlled vocabulary will make it easier for others to better
understand the semantic meaning of these variables and identify commonalities across datasets. A tab-
separated file that indicates mappings between the original annotation terms and the thesaurus terms can
be found in our data repository (see https://osf.io/szwx6/).

When a given sample was missing data for a given class variable, we excluded that sample from the
respective analysis file for that class variable. After this filtering step, we identified class variables with
fewer than 40 samples and excluded these class variables. When covariates were missing more than 20%
data (Figure 2), we excluded these variables from the analysis files. When covariates were missing less
than 20% data, we imputed missing values using median-based imputation for continuous variables and
mode-based imputation for discrete variables18. We transformed discrete predictor variables using one-
hot encoding; each unique value, except the first, was treated as a binary variable. In cases where discrete
values were rare, we merged values. For example, in GSE2109_Breast (Data Citation 1), we merged
Pathological_Stage values 3A, 3B, 3C, and 4 into a category called "3-4" because relatively few patients fell
into the individual categories (38, 8, 22, and 5 samples, respectively). In addition, some class variables
were ordinal in nature (e.g., cancer stage or tumor grade); we transformed these into binary variables.
Finally, some clinical outcomes were survival or relapse times; we transformed these data to (discrete)
class variables, using dataset-specific thresholds to distinguish between "long-term" and "short-term"
survivors and excluding patients who were censored after the survival threshold had been reached. Our
computer scripts (see Code availability) encode these decisions for each dataset.

Preprocessing gene-expression data
We created a computational pipeline (using R and shell scripts) that downloads, normalizes, and
standardizes the raw-expression data. We used the GEOquery package13 to download the CEL files and
then normalized them using the SCAN.UPC package19. Some heterogeneity exists, even among platforms
from the same manufacturer (Affymetrix). The number of probes and the probe sequences used
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Figure 3. Distribution of IQRay quality scores for each dataset. Sample qualities are plotted for each dataset.

Low-quality samples were identified using Grubb’s test. Samples that fall on or below the red threshold were

excluded from the data repository.
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in designing the microarray architectures vary. To help mitigate this heterogeneity and to aid in
biological interpretation, we summarized the data using Ensembl-based gene-level annotations from
Brainarray20,21. The SCAN algorithm log2-transforms the data and scales the data to center around zero.
Relatively high values indicate relatively high gene-expression levels, and vice versa.

Code availability
Our computer scripts are stored in the open-access Biomarker Benchmark repository (Data Citation 1).
Using these scripts, other researchers can reproduce our curation process and/or produce alternative
versions of the data.

Data Records
After we filtered the original data (see Methods), our compendium includes data for 7,037 biological
samples across 45 datasets (Table 1 (available online only)). On average, the datasets contain values for
18,043 genes (Table 1 (available online only)). In total, our repository contains 128 class variables (2.8 per
dataset) and 2.1 unique values per class variable.

All output data are stored in tab-delimited text files and are structured using the "tidy data"
methodology22. Accordingly, data users can import the files directly into analytical tools such as
Microsoft Excel, R, or Python. All data files are publicly and freely available in the open-access Biomarker
Benchmark repository (Data Citation 1). The original data files are available via Gene Expression
Omnibus using the accession numbers listed in Table 1 (available online only).

Technical Validation
We evaluated each sample using the IQRray23 software, which produces a quality score for individual
samples. Using these metrics, we applied Grubb’s statistical test (outliers package24) to each dataset,
identified poor-quality outliers (Figure 3), and excluded these samples (Table 2 (available online only)).
Next we used the DoppelgangR package25 to identify samples that may have been duplicated
inadvertently. We manually reviewed sample pairs that DoppelgangR flagged as potential duplicates. We
excluded most sample pairs that were flagged (Table 2 (available online only)), even if the clinical
annotations for both samples were distinct, under the assumption that these samples had somehow been
mislabeled. In GSE46449 (Data Citation 1), many samples were biological replicates; we retained one of
each replicate set. GSE5462, GSE19804, and GSE20181 (Data Citation 1) contained samples that had
been profiled in a paired manner (e.g., pre- and post-treatment); we retained these pairs of samples.

When transcriptomic data are processed in multiple batches, batch assignments can lead to
confounding effects26. In the clinical annotations, we identified batch-processing information for datasets
GSE25507, GSE37199, GSE39582, and GSE40292 (Data Citation 1). We corrected for batch effects using
the ComBat software27. The Biomarker Benchmark repository contains pre- and post-batch-corrected
data. For dataset GSE37199, we identified two variables that could have been used for batch correction
("Centre" and "Plate"). Our repository contains batch-corrected data for both of these batch variables (the
default is "Plate").

Machine-learning analysis
We created a document that illustrates how to programmatically download the data files and perform a
simple classification analysis using our data (see https://osf.io/4n62k/). This document is coded for the R
statistical package, but similar analyses could be performed using other programming languages.
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