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Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution
of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of
resource utilization. While these methods bring geographic datasets with global coverage into our
day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the
extensive collection of existing field data. We present the methods and maps associated with the first
spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots
from around the world. This research is the result of a collaborative effort engaging over 20 scientists and
institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise
estimates of the number of trees at global and biome scales, but should not be used for local-level
estimation. At larger scales, these datasets can contribute valuable insight into resource management,
ecological modelling efforts, and the quantification of ecosystem services.
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Background & Summary
In this paper we detail the background, methods, and data associated with the first spatially-continuous
model of global tree density1. This research was motivated by (i) a gap in the publically available
forest-based geospatial data products, (ii) a specific request from Plant for the Planet Foundation, and
(iii) recently published estimates of tree density in the Amazon basin2 implying that the previous estimate
of the number of trees globally3 was potentially an order of magnitude too low.

Forests cover approximately one-third of the world’s terrestrial land surface4. They are fundamental in
dictating ecosystem structure5,6, biogeochemical processes7,8, animal habitat9, biomass and carbon
sequestration10,11, and anthropogenic demand for building materials, pulp products, and fuelwood12. An
understanding of the extent of forest resources plays a critical role in sustainable forest management4,
helping to guide policy and to provide key targets for initiatives like the Convention on Biological
Diversity’s Strategic Plan for Biodiversity 2011–2020 (ref. 13), the United Nations Collaborative
Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries
(REDD)14, and the landmark 2015 United Nations Conference of Parties Agreement15–17.

A number of recent studies inform our understanding of the distribution and extent of forest
resources2,18–21. However, until recently, global scale models have not focused on estimating
forest population parameters such as total tree numbers or tree density1. These variables complement
existing data (e.g., refs 19,22–24) and lend themselves to modelling biogeochemical processes8,25, nutrient
cycling26, habitat suitability9, forest biodiversity27, and drivers of forest structure and heterogeneity28,29.
Furthermore, the number and density of trees are intuitive metrics of interest to public and
non-governmental organizations30,31, particularly those focused on tree planting, such as New York
City’s MillionTreesNYC32 and the United Nations Environment Programme’s (UNEP) ‘Billion
Tree Campaign’33.

To quantify the proportional impact of these reforestation campaigns and to establish meaningful
reforestation targets, a baseline understanding of current tree numbers was essential. We initially
developed the global tree density analysis to address this uncertainty. Further, we hypothesized that
available data would demonstrate the extent to which biophysical and social variables interact to
regulate global patterns in tree abundance. The previous estimate for the global number of trees
was approximately 400.25 billion3—a mere 10 billion more than has been estimated for the Amazon
basin during a recent broad-scale inventory2—highlighting a critical gap in our understanding of global
tree densities.

We emphasize that the modelling approach described herein provides precise estimates of total
number of trees and mean tree density at global and biome scales. However, this precision does not
necessarily apply to smaller scales and our data products should not be used for local- or regional-scale
analysis without further assessment (see Usage Notes).

Methods
Overview
To model global tree density we employed a spatially-explicit approach in which (i) field measurements
were first linked to a suite of remote sensing and GIS covariates; (ii) predictive regression models were
then developed using model selection criteria; and (iii) these models were then applied in a pixel-level
map algebraic framework to develop spatially-explicit predictions of global tree density (Fig. 1).

Data collection and standardization
To model tree density across large geographic extents we collected field-based forest inventory plot
records from around the globe. Plot-level data was obtained through three channels: (i) major forestry
databases, (ii) peer-reviewed studies, and (iii) correspondence with individual scientists. We used both
national and international forestry databases, including National Forest Inventory (NFI) analyses from 21
countries, the Global Index of Vegetation-Plot Database (GIVD http://www.givd.info), the Smithsonian
Tropical Research Institute’s in-house database (http://www.stri.si.edu), and ICP-Level-I plot data for
most of Europe (http://www.icp-forests.org). These sources provided the vast majority of our data, but
were supplemented with inventory data reported through peer-reviewed publications during the last 10
years2,34,35. Small, unpublished collections of field data were obtained through several contacts where we
lacked broad-scale inventory data (P. Umunay, DRC; R. Tavani, European NFI).

Although we defined trees as those larger than 10 cm diameter at breast height (DBH; i.e., to separate
established trees from seedlings and saplings), the minimum-diameter thresholds for what constitutes a
tree vary by country and inventory purpose. In the U.S. NFI—the Forest Inventory and Analysis National
Program (FIA)—a tree is defined as a plant with a woody stem and DBH equal to or greater than 12.7 cm
(i.e., 5 in). However, the 10 cm DBH threshold is used across most international forest inventory analyses,
and the U.S. FIA was easily adapted to this level. After threshold identification, plot data was cleaned and
collated using R (v. 3.1.x, Core R Development Team 2015), providing a total of 429,775 independent
records for which we had, at a minimum: (i) latitude, (ii) longitude, and (iii) tree density (trees per
hectare). Density measurements were derived through a number of proven field methods, including both
fixed and variable radius plot sampling.
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Figure 1. A conceptual model of our analytical process. (a) We amassed over 420,000 forest inventory plot

records from every continent except Antarctica. (b) We acquired and unified an initial pool of four-dozen

spatial covariates to use in model development. (c) We selected a subset of spatial covariates, extracted their

values at field plot locations, and bound these values to the plot records. (d) For each of 14 biomes we subjected

the enhanced plot records to hierarchical (agglomerative) clustering to identify the least collinear collection of

covariates. (e) Generalized linear models were fit to every possible combination of clustered covariates. (f) A

top ranking predictive model was selected or created through model averaging. (g) Each biome’s top ranking

model was applied in a pixel-level map algebraic framework. (h) We scaled a penultimate spatial model of tree

density using land cover data to arrive at our final predictions.
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In the U.S., FIA data had been subjected to ‘jiggering’ or ‘fuzzing’, and ‘swapping’, in which plot
locations had been spatially relocated by the US Forest Service to prohibit direct knowledge of plot
locations36,37. A jiggered plot is generally less than 0.5 mi, but up to 1 mi, from the original plot location,
and is to be placed in a stand that shares comparable structural attributes (i.e., the density of a jiggered
plot must match the density of its true plot). McRoberts et al.36 suggest that plot jiggering should not
introduce extensive bias in regression modelling when working with large pixel sizes (here ~1 km2), large
sample sizes, and across broad spatial extents (see Acquisition and pre-processing of spatial data).
Swapping describes the swapping of up to 20% of private plot coordinates between comparable plots
within the same county, making local-level estimate impossible. Neither jiggering nor swapping should
have affected our results given the spatial extents of our models.

Acquisition and pre-processing of spatial data
To generate spatially-explicit estimates of global tree density, we first acquired or developed 48
map-based covariates to consider during model development (Table 1 (available online only)). These
datasets were pre-processed using R’s ‘raster’ package38, ArcMap 10.1 (ESRI, Redlands, CA), and
conventional spatial data management strategies, including, as necessary: mosaicking raster tiles and
unifying projections, ensuring precise pixel-level spatial coincidence using environmental processing
controls and nearest neighbor resampling, using map algebraic operators and ArcGIS geoprocessing tools
to create derivatives, performing spatial extractions (masking) to ensure a common spatial extent across
datasets, and performing spatial joins to extract covariate values (Table 2). Each of the 48 datasets was
obtained and initially managed using the World Geodetic System 1984 (WGS84) at a spatial resolution of
30-arc seconds (0.008333 degrees). Covariate pixel values were bound to spatially coincident field plot
locations stored in a vector point file, ultimately producing a single tabular dataset from which to
generate statistical models. During preliminary data exploration we discarded 28 less useful covariates
based on (i) multicollinearity and (ii) mismatches between spatial resolution and scale. The remaining 20
covariates captured a range of topographic, climatic, vegetative, and anthropogenic factors (Table 1
(available online only)). We present the full complement of covariates and their primary sources,
including those omitted in final analyses, to provide a clear sense of the data considered throughout
model development.

Given the inherent variability of plot-based tree density estimates, we developed spatial models for
large geographic extents ensuring a high degree of confidence in mean tree density estimates. We relied
on two maps of ecologically unique regions delineated by The Nature Conservancy (TNC): Biomes and
Ecoregions (Terrestrial Ecoregions map - http://maps.tnc.org/gis_data.html). Biomes are large geographic
areas (i.e., continental scale) linked through similarities in biodiversity and associated drivers, originally
developed by the World Wildlife Fund (WWF; www.worldwildlife.org/biomes) as the Terrestrial
Ecoregions component of their Global Ecoregions dataset. TNC’s Terrestrial Ecoregions are smaller,
more localized regions that share a similar habitat type. Individual predictive models were developed for
each of the 14 unique terrestrial biomes and 806 unique ecoregions that possibly contained forested land.
These two models—hereafter biome-level and ecoregion-level—were used to create two estimates of
global forest density corresponding to two different spatial scales of inquiry.

Statistical modelling
Using the above-mentioned tabular data, we produced statistical models through a multi-step process:
(i) hierarchical clustering; (ii) model selection; (iii) model pairing. Given the interactive nature of many
biophysical factors, we suspected strong interactions and/or multicollinearity among the selected set of 20
variables (Table 1 (available online only)). To account for this we used ascendant (agglomerative)
hierarchical clustering for each biome-level model. Hierarchical clustering is an unsupervised learning

Spatial data pre-processing method Description

Environmental Controls Used in conjunction with other operations to control geospatial products.

Processing extent Used to process all datasets at a common extent to eliminate unexpected data loss around land mass peripheries prior to
controlled masking.

Snap raster Used to ensure all datasets of a common resolution had precise pixel-level spatial coincidence.

Projection Used to ensure all datasets held a common coordinate system for processing (WGS84) and area-dependent tabulation
(Interrupted Goode Homolosine).

Construction

Mosaicking Used to spatially mosaic datasets delivered in tiled format.

Nearest neighbor resampling Used to unify raster cell size across datasets without introducing new data values.

Map algebra and geoprocessing tools Used to produce derivative covariates (e.g., slope, aspect, etc.).

Spatial extraction/masking Used to reduce all datasets to the smallest common extent prior to model fitting.

Spatial joining Used to bind covariate values to coincident plot locations.

Table 2. Basic methods used to manage and pre-process spatial datasets.
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algorithm in which groups of values are iteratively split and merged, ultimately dividing them into
clusters whose inter-group distance or within-group homogeneity is maximized39. In this way, the
strategy is similar to other iterative clustering algorithms such as ISODATA or k-means40. The product of
clustering is a series of discrete groups (clusters) that contain values from one or more covariates that are
better correlated with one another than with covariates in another cluster.

We employed ascendant hierarchical clustering using the hclustvar function in the ClustOfVar
R package41. Homogeneity of clusters was defined as the sum of the squared correlation between the
variables in a cluster and their respective cluster center (here a synthetic quantitative variable equivalent
to the first principal component of a PCA mix analysis). To maximize predictive model strength and
reduce collinearity we selected a single best ‘indicator’ variable from each cluster based on the squared
loading values. This process produced, for each set of field plot records associated with a given biome or
ecoregion, a single set of top-ranking covariates to consider during model development.

To estimate tree density in each biome we used the reduced set of covariates to construct generalized
linear regression models42 with a negative binomial error structure (to accommodate count data that
cannot extend below zero). To optimize model strength we used dredge, a multi-model dredging function in
R’s MuMln package43. This function evaluates and ranks all possible candidate models from a set of
predictors in a global model according to Akaike Information Criterion (AICc) and AIC likelihood weights
(AICw). Where no single covariate was overwhelmingly influential, there were, in most cases, a number of
candidate models nested within the global model that performed comparably well. We therefore employed
weighted model averaging of the dredged models with cumulative AIC weights≥ 0.95 (ref. 44).

We constructed a unique regression model for each biome or ecoregion that contained at least 50 tree
density measurements (for rationale see Model validation and testing). We lacked sufficient plot data for
two of the forested biomes: ‘Mangroves’ and ‘Tropical and subtropical coniferous forests’, primarily due

Figure 2. Statistical and spatial model validation. (a) The standard deviation of the predicted mean number of

trees per biome as a function of sample size. As sample size increases, the variability of the predicted mean tree

density reaches a threshold, beyond which an increase in sample size results in a minimal increase in precision.

Standard deviations were calculated using a bootstrapping approach (see Statistical model validation), and

smooth curves were modeled using standard linear regression with a log–log transformation. After Crowther

et al (2015) Fig. 3b. (b) Biome-level regression models predict the mean values of the omitted validation plot

measurements in 12 biomes. Overall, the models underestimated mean tree density by ~3% (slope= 0.97) but

this difference was not statistically significant (P= 0.51). Bars show± one s.d. for the predicted mean and the

dotted boundaries represent the 95% confidence interval for the mean. The values plotted here represent mean

densities for the plot measurements (that is, for forested ecosystems), rather than those predicted for each

entire biome. Figure is modified from Crowther et al (2015) Fig. 3a.
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to the relative rarity of these biomes worldwide (representing 0.23 and 0.48% of the global land surface,
respectively). In both cases we used models from the most analogous biomes for which we had sufficient
data, relying on similarity in geography and general ecological conditions (e.g., moist environment,
broadleaf species). The ‘Tropical and subtropical moist broadleaf’ biome was substituted for the
‘Mangroves biome’, and ‘Temperate coniferous biome’ for the ‘Tropical and subtropical coniferous’
biome. Because we used ecological analogy, the biome-level estimates for these areas should be considered
less reliable than those of other biomes. At the ecoregion level, the distribution of plot-level data
prevented us from modelling a large number of global ecoregions. For each of the missing ecoregion
models we used the spatially coincident biome-level model in its place, such that the final global
ecoregion model of tree density is largely driven by biome-level regression models.

Spatial modelling
Our final biome- and ecoregion-level negative binomial regression models were applied in a map
algebraic framework45 using an iterative looping structure in R. We relied on the doSnow and foreach
packages46,47 to perform computations in an embarrassingly parallel manner, such that each
computational task bore no dependency on any other computational task. For both models, random
access memory (RAM) limitations were bypassed by individually processing more than 10,000
geographically distinct regions and mosaicking the results to create a final map of predicted global tree
density.

Prior to making area-dependent calculations, mosaicked datasets were reprojected to the Interrupted
Goode Homolosine projected coordinate system48 and outlying predictions were truncated to 10,000
trees · ha− 1 based on biome-level variability and expert knowledge of forest structure. Density estimates
were then scaled from per-hectare units to per-pixel units where each pixel was nominally 1 km2 (897.27
m× 897.27 m, or 0.805 km2 under Goode Homolosine projection). Since forest reference plots were
predominantly located in moderately forested areas (63% +/− 35% [1 s.d.] forested, on average), the
original model had minimal predictive power in regions with markedly different land cover types than
the reference plots (i.e., in grasslands, deserts, or densely forested areas). To improve the spatial mapping,
we therefore used a basic ratio estimation approach49 to scale the raw model means by an auxiliary
independent data set—the global 1-km consensus land cover data set of 2014 (ref. 21)—which provides
an estimate of the percent forested area for each pixel globally. First, we scaled the raw model means by
the average percent forest area in the reference plots, on a biome-by-biome basis. We then multiplied this
ratio by the percent forested area in the non-reference pixels. This estimation improved the final map

Terrestrial Biome n Pred. Mean Obs. Mean SD Pred. Sum Obs. Sum SD Sum

Boreal forests 1,116 98,157 94,459 1,168 109,542,928 105,416,204 1,303,045

Deserts 2,921 28,115 24,337 235 82,122,745 71,089,686 685,260

Flooded grasslands 55 47,691 50,576 2,894 2,623,006 2,781,658 159,169

Mangroves — — — — — — —

Mediterranean forests 3,333 99,681 87,080 902 332,235,677 290,238,564 3,006,751

Montane grasslands 28 88,356 83,125 6,583 2,473,968 2,327,500 184,337

Temperate broadleaf 54,681 49,524 48,548 108 2,708,012,198 2,654,674,881 5,892,683

Temperate conifer 16,808 43,864 42,661 132 737,265,239 717,049,203 2,224,412

Temperate grasslands 3,415 30,406 28,215 264 103,835,175 96,353,092 900,426

Tropical coniferous — — — — — — —

Tropical dry 17 48,525 30,938 4,083 824,925 525,938 69,415

Tropical grasslands 148 32,038 26,504 1,130 4,741,584 3,922,520 167,309

Tropical moist 1,017 80,839 77,722 795 82,212,834 79,043,004 808,476

Tundra 430 105,216 105,973 1,815 45,242,812 45,568,300 780,448

Total 83,969 752,410 700,137 4,211,133,091 4,068,990,550

% Difference 3.5%

Table 3. Summary table showing the results of model validation. n= number of withheld plots, ~20% of
total; Pred. Mean=Predicted mean number of trees per pixel, post scaling, at locations of withheld 20% of
plots; Obs. Mean=Observed mean number of trees per plot x 100, for withheld 20% of plots; s.d.= Standard
deviation of pixel-level predictions at withheld 20% of plot locations; Pred. Sum= Sum of predicted number of
trees per pixel at all plot locations within each biome, post scaling; Obs. Sum= Sum of observed number of
trees per plot × 100, for all plots within each biome; SD Sum= Standard deviation of predicted number of trees
per pixel for all plot locations within each biome; % Difference=Percent difference in the total number of trees
predicted (by pixel) and observed (plot × 100) at all plot locations within each biome.
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characteristics by ensuring that pixels with 0% forests were assigned a value of zero trees, and that the
difference in tree totals between two pixels with identical covariate values was directly proportional to
their relative difference in percent forest cover. More importantly, this approach ensured that the global
and biome-level marginal tree totals were approximately unbiased49 (see Fig. 2, Table 3).

Code availability
We used custom scripting to automate a variety of tasks in the production of our global models of tree
density. Covariate pre-processing was partially automated using R (v. 3.1.x, R Core Development Team
2015) and the raster38 package. Hierarchical clustering and model selection were fully automated using
R’s ClustOfVar41 and MuMln43 packages, as was the spatial application of statistical models in
parallel using the raster38, doSnow46, and foreach47 packages. See the above portions of Methods for
additional details. At the time of publication, we have no plans to distribute the scripts used in our
analysis.

Technical Validation
Statistical model validation
Using two cross-validation schemes to assess the bias and precision of our tree density estimates at plot
locations, we evaluated biome-level regression models prior to applying them in a spatial context. In the

Figure 3. Global models of tree density. Tree density as portrayed through biome- (a) and ecoregion-level (b)

models where values represent number of trees per ~1 km2 pixel. Actual pixel size, 897.27 m by 897.27 m in the

Goode Homolosine projection. All computations based on areal measurements were made using Goode

Homolosine. Maps were produced using ESRI basemap imagery.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160069 | DOI: 10.1038/sdata.2016.69 7



first scheme, 20% of plot locations within each biome were withheld at random as an independent testing
dataset and regression models were generated (dredged) from the remaining 80% using the hierarchically
clustered results noted above. These models were then used to predict tree density at the withheld plot
locations and the predicted densities were regressed against the observed densities (see Fig. 2 in (ref. 1)).
Table 3 provides a summary of model validation results. The 80% models were constructed
independently of the full models (see Statistical Modeling), however the additional 20% of plot locations
in the full models only reduced bias in relation to the 80% models.

A second validation scheme evaluated the number of field plots required to maximize the precision of
density estimates. Following ref. 50, we used a bootstrapping function to evaluate the incremental
decrease in standard deviation of our density estimates as a function of sample size for each biome. From
the 20% pool of withheld plots noted above, we used simple random sampling with replacement51 to
obtain a sample of size n (n= 10, 20,…, 500 plots). We next applied the fitted regression models from the
retained 80% of plots to the sample to model density at the n omitted plots, from which we computed and
stored the standard deviation of estimated densities. To obtain a reliable estimate of the standard
deviation of tree densities for each n, this process was repeated 10,000 times for each sample size. We
then plotted standard deviation as a function of sample size to evaluate the point at which an increase in
the number of field plots no longer increased the precision of estimated densities (Fig. 2a). Beyond 50
field plots the inclusion of additional data produced only minor increases in precision. This led us to use
50 field plots as the threshold for whether or not to develop a unique regression model for a given
geographic area (see Statistical modelling).

Spatial model validation
To evaluate the effect of scale on global predictions, spatial models were generated at both the biome and
ecoregion levels (Fig. 3). Where our models were sensitive to the proportion of forested land cover within
each pixel, we generated independent biome-level models using the consensus land cover dataset21 and
the map of Global Forest Change 2000–2013 (ref. 19). The former was available at 1 km2 spatial
resolution while the latter required spatial aggregation from 30m2 to 1 km2 to make it compatible with
our models. We also compared our predicted tree densities to published country-scale estimates to ensure
agreement (Fig. 4).

The close agreement of the biome- and ecoregion-level global models of tree density led us to compute
margins of error associated with the biome-level model, which we believed to be more robust given the
broader geographic regions over which it was built. We used a Taylor series approximation to estimate
the variance in the global and biome-specific totals, accounting for collinearity among predicted values
and the log-link negative binomial regression structures (Fig. 2b, Table 4).

Data Records
Due to data sharing agreements, we are unable to provide direct access to the forest inventory plot data
used in model development. However, biome- and ecoregion-level spatial models (maps) of tree density

Figure 4. Correlation of predicted and published numbers of trees per country. The dotted line is a 1:1 line,

while the solid line is the ordinary least squares line of best fit. Figure is modified from Crowther et al (2015)

Fig. 4d.
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can be downloaded from two locations (see Data Citation). Yale University’s EliScholar repository record
(Data Citation 1) does not contain a formal DOI at the time of publication and was released with
Crowther et al (2015) under a CC BY-ND license that prohibits distribution of derivatives made with the
data. The Figshare repository record (Data Citation 2) offers the same data under a CC-BY license, which
permits distribution of derivatives. The authors intend to maintain both repositories in parallel, but
refer the reader to the Figshare repository as the primary source of new versions of these datasets.

Usage Notes
To increase the number of field plots within each ecologically-meaningful region, and to account for
local-level variability in vegetative structure, we modeled tree density at large spatial scales. Through this
approach we were able to obtain high precision in our global estimates of mean tree density and total
number of trees. However, it is important to note that precision decreases with a concomitant reduction
in spatial extent. Both biome- and ecoregion-level models are less accurate than their global counterparts,
country-level estimates are less accurate than their biome- and ecoregion-level counterparts, and
pixel-level estimates are less accurate than all other scales of estimation. With this in mind, we are explicit
in stating that the spatial models we present here are not intended to provide accurate or precise
estimates of tree density at the 1 km2 scale, nor even at the scale of small countries.

Spatial models are presented without restriction. See Data collection and standardization for known
limitations in field plot information.
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considered less reliable than those for the other biomes.
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