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Physical activity classification utilizing SenseWear activity
monitor in manual wheelchair users with spinal cord injury

SV Hiremath1,2, D Ding1,2,3, J Farringdon4, N Vyas4 and RA Cooper1,2,3

Study design: Validation.
Objectives: The primary aim of this study was to develop and evaluate activity classification algorithms for a multisensor-based
SenseWear (SW) activity monitor that can recognize wheelchair-related activities performed by manual wheelchair users (MWUs) with
spinal cord injury (SCI). The secondary aim was to evaluate how the accuracy in activity classification affects the estimation of energy
expenditure (EE) in MWUs with SCI.
Setting: University-based laboratory.
Methods: Forty-five MWUs with SCI wore a SW on their upper arm and participated in resting, wheelchair propulsion, arm-ergometery
and deskwork activities. The investigators annotated the start and end of each activity trial while the SW collected multisensor data
and a portable metabolic cart collected criterion EE. Three methods including linear discriminant analysis, quadratic discriminant
analysis (QDA), and Naı̈ve Bayes (NB) were used to develop classification algorithms for four activities based on the training data set
from 36 subjects.
Results: The classification accuracy was 96.3% for QDA and 94.8% for NB when the classification algorithms were tested on the
validation data set from nine subjects. The average EE estimation errors using the activity-specific EE prediction model were
5.3±21.5% and 4.6±22.8% when the QDA and NB classification algorithms were applied, respectively, as opposed to 4.9±20.7%
when 100% classification accuracy was assumed.
Conclusion: The high classification accuracy and low EE estimation errors suggest that the SW can be used by researchers and
clinicians to classify and estimate the EE for the four activities tested in this study among MWUs with SCI.
Spinal Cord (2013) 51, 705–709; doi:10.1038/sc.2013.39; published online 21 May 2013
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INTRODUCTION

Activity classification using wearable activity monitors among the
ambulatory population has been well documented.1–5 The benefits of
detecting physical activities (PAs) using wearable devices include the
ability to track regular PA, provide accurate energy expenditure (EE)
estimation and assist in behavioral modifications that may lead to a
healthier active lifestyle in community settings.6–10 However, there are
only a limited number of studies that have detected and classified PAs
performed by individuals who rely on wheelchairs for mobility using
wearable devices.11–13 Identification of wheelchair-related PAs using
wearable devices provide not only all the benefits mentioned above
but also pertinent information on the functional use of upper limbs,
an important factor of upper limb pain and injury prevalent in
wheelchair users.14 The clinical practice guideline ‘Preservation of
Upper Limb Function Following Spinal Cord Injury,’ published by
the Paralyzed Veterans of America, has indicated that minimizing the
frequency of upper extremity use in wheelchair users during repetitive
tasks such as wheelchair propulsion can decrease the risk factor for
repetitive strain injury and/or wrist pain.14

Previous research by Postma et al.11 showed that a wearable activity
monitor consisting of six accelerometers and two electrocardiogram
electrodes connected to a portable data recorder (0.7 kg) was able to
detect wheelchair propulsion in ten manual wheelchair users (MWUs)
with spinal cord injury (SCI). The results showed that wheelchair
propulsion episodes were detected with an overall agreement,
sensitivity and specificity of 92%, 87% and 92%, respectively.
In another study, French et al.13 showed that wheelchair propulsion
patterns, surface types and self-propulsion versus external pushing of
a wheelchair could be detected using two dual-axis accelerometer-
based eWatches secured to the wrist and the wheelchair’s frame.
The results in three persons without disabilities showed that the
classification accuracy rates varied from 80 to 90% for arcing versus
non-arcing propulsion patterns, carpet versus tile surfaces and self-
propulsion versus external pushing using classification algorithms
such as k-nearest neighbor and support vector machines. Along
similar lines, Ding et al.12 studied activity classification in 27 MWUs
performing a series of representative activities of daily living in a
semi-structured setting with an eWatch and a wheel rotation

1Department of Veterans Affairs, Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; 2Department of Rehabilitation Science and
Technology, University of Pittsburgh, Pittsburgh, PA, USA; 3Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA and 4BodyMedia Inc., Pittsburgh,
PA, USA
Correspondence: Dr D Ding, Department of Veterans Affairs, Human Engineering Research Laboratories, VA Pittsburgh Healthcare System, 6425 Penn Avenue, Suite 400,
Pittsburgh, PA 15206, USA.
E-mail: dad5@pitt.edu

Received 27 September 2012; revised 18 February 2013; accepted 18 March 2013; published online 21 May 2013

Spinal Cord (2013) 51, 705–709
& 2013 International Spinal Cord Society All rights reserved 1362-4393/13

www.nature.com/sc

http://dx.doi.org/10.1038/sc.2013.39
mailto:dad5@pitt.edu
http://www.nature.com/sc


datalogger placed on the wrist and the wheelchair’s wheel,
respectively. The results indicated that k-nearest neighbor, support
vector machine, Naı̈ve Bayes (NB) and decision tree (C4.5)
classification algorithms could classify the activities into self-
propulsion, external pushing and sedentary activity with an
accuracy of 89.4–91.9%. The studies discussed here focused
specifically on detecting propulsion activity versus other activities
with activity monitoring systems composed of multiple components.
The primary objective of this study was to develop and evaluate

machine learning-based classification algorithms to detect PAs includ-
ing resting, wheelchair propulsion, arm ergometer exercises and
deskwork performed by MWUs with SCI based on data collected
from an off-the-shelf multisensor-based sensewear (SW) activity
monitor. Our previous research has shown that an activity-specific
EE prediction model consisting of four EE estimation equations for
the four types of PAs mentioned above had smaller EE estimation
errors than a general model consisting of only one EE estimation
equation applied for all the activities.15 Therefore, in order to use the
activity-specific EE prediction model in the field, we first need to
detect the four types of PAs. Our secondary aim was to evaluate how
the activity classification accuracy affects the performance of the
activity-specific EE prediction model for MWUs with SCI described
in our previous work.15

MATERIALS AND METHODS

Experimental protocol
The study was approved by the institutional review board at the University of

Pittsburgh and the VA Pittsburgh Healthcare System. The target population of

this study was MWUs with SCI. Participants were recruited through the

institutional review board approved registries, flyers and advertisements in

print media. Convenience sampling was used to recruit participants who

expressed an interest in the study. Little or no research has been published on

validating activity monitors for EE estimation among MWUs with SCI. Power

analysis using a correlational design with a¼ 0.05 (two-tail) and medium effect

size (r¼ 0.4) indicated that a total of 40 participants will provide a statistical

power of 74%.16 On the basis of this estimation, in this study we recruited 45

MWUs with SCI to take part in the study and provide a written informed

consent before their participation in the study. The data collection for the

study took place between February 2009 and May 2011. Participants were

included if they were between 18 and 60 years of age, used a manual

wheelchair as a primary means of mobility, had an SCI, were at least 6 months

post-injury and were able to use an arm-ergometer for exercise. Participants

were excluded if they were unable to tolerate sitting for 4 h, had active pelvic or

thigh wounds or failed to obtain their primary care physician’s consent to

participate in the study. The study required the participants to pay one visit

to the Human Engineering Research Laboratories, University of Pittsburgh to

complete the data collection. All 45 participants who provided written

informed consent participated in the study.

The research study protocol has been described in detail elsewhere.15,17 As

part of the pre-activity session, the participants answered a demographics

questionnaire and had their heights and weights measured. During the activity

session, the participants took part in resting and three other activities including

wheelchair propulsion, arm-ergometer exercises and deskwork. The three

activities were counterbalanced and the trials within each activity were

randomized to counter order effects. During the activity session, all

participants wore a SW activity monitor on their right upper arm over the

triceps and a Cosmed K4b2 portable metabolic cart (COSMED srl, Rome,

Italy). The participants performed each activity trial for a maximum period of

8min, with a resting period of 5–10min between activity trials and a period of

30–40min between activities. During the wheelchair propulsion activity, the

participants propelled their wheelchairs for two trials of 2 and 3mph on a

stationary dynamometer, and a trial of 3mph on a flat-tiled surface. The arm-

ergometer exercises included two trials at 60 r.p.m. with 20 and 40W of

resistance and a trial at 90 r.p.m. with 40Wof resistance. During the deskwork

session, the subjects typed on a computer for 4min and read a book for

another 4min.

Instrumentation and data collection
The SW activity monitor was used to collect the average, the mean absolute

difference (variability of upper limb motion) and the number of peaks

(turning points of upper limb) in transverse and longitudinal accelerations

sampled at 32Hz and recorded at 16Hz; and the average galvanic skin

response (skin conductance due to moisture or sweat), skin temperature

and near body temperatures sampled at 32Hz and recorded at 1min. The

multisensor data from the SW was retrieved using the InnerView Research

software 7.0 (Bodymedia Inc., Pittsburgh, PA, USA). In addition, a portable

K4b2 metabolic cart was synchronized with the SW and used to collect the

criterion EE. The EE in terms of kcalmin�1 was retrieved using the Cosmed

K4b2 software (version 9.0). The investigators annotated the start and end of

each activity trial during data collection, which was further used as the

reference for developing and testing of the classification algorithms.

Data analysis
The first step of developing an activity classification algorithm was to separate

the data into a training data set and a validation data set. A stratified approach

with the injury level (paraplegia versus tetraplegia) as the stratified variable was

used to select 80% of the participants into the training data set and 20% into

the validation data set. The total amount of activity time was 1645min (about

27.4 h) including 1319min (about 22.0 h) in the training data set (n¼ 36) and

326min (about 5.4 h) in the validation data set (n¼ 9).

The next step was to extract a set of features, which are statistical measures,

used to distinguish between the four types of activities. The feature data

included characteristic information such as the mean, the mean absolute

difference and the number of peaks per minute that were directly obtained

from various sensors in the SW activity monitor. In addition, linear and

nonlinear features using the multisensor data from SW were calculated on the

basis of statistical characteristics, such as time domain features, biomechanical

and physiological features specific to PAs.15 We chose a 1-min window size

(duration or period) for feature estimation to be consistent with the EE

estimation. The features obtained from the SW and the estimated features

resulted in a feature space of thousands of variables for the PA classification.

We also manually labeled each 1-min activity segment as belonging to one of

the four categories, that is, wheelchair propulsion, arm ergometry, resting and

deskwork based on the annotations, which served as a reference for training

and testing the activity classification algorithms. The data collected from

the SW was processed through data analysis programs written in MATLAB

(The Mathworks, Inc., Natick, MA, USA).

We then developed three activity classification algorithms based on the

training data set using machine learning algorithms including linear discrimi-

nant analysis (LDA), quadratic discriminant analysis (QDA) and NB. For each

classification algorithm, we performed the leave-one-subject-out (LOSO) and

sixfold by-subject cross-validation to select the most appropriate features and

evaluate the classification algorithm’s performance. The LOSO cross-validation

method leaves one subject out and then develops the model on the remaining

subjects. The model developed on these remaining subjects is evaluated by the

left-out subject. This procedure was repeated 36 times, as there were 36

subjects in training group. The sixfold by-subject cross-validation method is

similar to LOSO, except that the subjects are split into six random groups

(or folds), and each time a group is left out and the models are developed on

the remaining five groups. The sixfold cross-validation was repeated six times

as the total participants in the training data set were 36. In addition to cross-

validation, the performance of the three activity classification algorithms was

also evaluated using the validation data set. Several performance measures

were calculated including per-minute precision (true positive/(true positiveþ
false positive)), recall (true positive/(true positiveþ false negative)), specificity

(true negative/(true negativeþ false positive)) and overall accuracy ((true

positiveþ true negative)/(number of the cases)).18 Precision indicates the

proportion with which the detected activity is correct. Recall, also known as

sensitivity, is the proportion of actual activities that are correctly identified.

Specificity is the proportion of activities not performed that are correctly
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identified, or in other words it is the classification algorithm’s ability to

distinguish actual true-negative cases. Overall accuracy is the overall

performance of the algorithm. We also evaluated how the performance of

the activity classification algorithms affected the EE estimation using the

activity-specific EE prediction model that was previously developed.15 In our

previous work, the EE estimation based on the activity-specific prediction

model assumed 100% activity classification accuracy. However, in this study we

evaluated the performance of the activity-specific EE prediction model based

on the actual classification results. Similar to our previous work,15 the

estimated EE was compared with the criterion EE from the metabolic

cart by calculating the minute-by-minute mean absolute error and the

mean-signed error.

RESULTS

The participants included 37 males and 8 females with a m.s.d. age of
40.2 (11.0) years, weight of 78.5 (21.9) kg, height of 178.2 (8.6) cm
and manual wheelchair usage of 13.8 (9.1) years. Thirty-eight
participants had paraplegia (SCI of T4 and below) and seven
participants had tetraplegia (SCI of T3 and above). Detailed demo-
graphics has been discussed in our previous work.15 Table 1 shows the
performance of the LDA, QDA and NB classification algorithms
applied to the training data set (n¼ 36) using the LOSO and sixfold
by-subject cross-validation methods. The results showed that the
classification accuracy was less dependent on the algorithms, but
more dependent on the type and number of features. For the sake of
brevity, we have chosen to present detailed results of the QDA and NB

classification algorithms. Table 2 shows the classification performance
in terms of the precision, recall, sensitivity and overall accuracy of the
QDA and NB classification algorithms using four features in the
validation data set. The overall classification performance was 96.3%
and 94.8% for QDA and NB classification algorithms, respectively.
Table 3 shows the confusion matrix, which is a visual representation
of the actual or true activity and the activity detected by the
classification algorithm. The results from Table 3 indicate that the
misclassification often occurred between wheelchair propulsion and
arm ergometry exercises, which involve repetitive upper extremity
usage. Furthermore, Table 4 shows the EE estimation errors including
the mean absolute error and mean-signed error for the validation data
set (n¼ 9) when the activity-specific EE prediction model was used in
conjunction with the QDA or NB classification algorithms with four
features.

DISCUSSION

Accessible activity monitors in wheelchair users will allow users
themselves, researchers and clinicians to track regular PA, EE
estimation, PA levels in community settings and functional use of
upper limbs, which is related to pain and injury prevalence in
wheelchair users. Results from this study indicate that the SW activity
monitor along with custom machine learning classification
algorithms, such as LDA, QDA and NB can be used to classify
wheelchair-related PAs in MWUs. Compared with the study con-
ducted by Postma et al.11 where six activity monitors were used to
detect wheelchair propulsion episodes from a series of activities, we
used a single SW activity monitor to achieve a higher classification
accuracy (96% for QDA classification algorithm versus 92%) with a
larger number of subjects (n¼ 45 versus n¼ 10). Similarly, the
classification algorithms discussed here outperformed those in the
previous studies by Ding et al.12 and French et al.13, who classified
wheelchair-related PAs by using two devices in smaller number
(n¼ 27) of wheelchair users and three non-wheelchair users,
respectively.
Several strategies were used to reduce overfitting during the

classification algorithm development. As shown in Table 1, the
classification accuracy improved with an increased number of
features, indicating that a reasonable number of features are necessary
to classify multiple PAs. Given the number of participants in the
study, we chose to use a small feature set including four features for
further analysis of the classification algorithms, as we wanted to strike
a balance between accuracy and overfitting of the classification
algorithms to unseen participants. Furthermore, the results showed
that the LOSO cross-validation technique that tends to have higher
variance and lower bias in a small sample had similar performance to

Table 1 Classification performance in terms of the overall accuracy

(%) for the LDA, QDA and NB classification algorithms to detect four

wheelchair-related activities with varied number of features using the

LOSO and sixfold by-subject cross-validation methods in the training

data set

Cross-validation Machine

learning

algorithms

Number of features

1 2 3 4 5 10

LOSO LDA 70.28 82.13 88.64 91.56 92.88 94.67

QDA 74.08 83.77 90.69 93.44 94.39 96.20

NB 74.08 82.76 91.56 93.67 93.95 93.95

Sixfold by-subject LDA 69.95 78.75 84.85 88.84 91.78 94.39

QDA 73.44 82.51 91.12 93.38 94.40 94.66

NB 73.44 82.78 91.99 93.54 94.26 95.47

Abbreviations: LDA, linear discriminant analysis; LOSO, leave-one-subject-out; NB, Naı̈ve
Bayes; QDA, quadratic discriminant analysis.

Table 2 Classification performance in terms of the precision (true-positive rate), recall (sensitivity), specificity (true-negative rate) and overall

accuracy (%) of the QDA and NB classification algorithms using four features to detect the four wheelchair-related activities in the validation

data set

Class % QDA % NB

Precision Recall Specificity Overall Precision Recall Specificity Overall

Resting 100.0 97.1 100.0 99.7 100.0 97.1 100.0 99.7

Propulsion 92.8 98.3 95.7 96.6 94.1 94.1 96.6 95.7

Arm ergometry 99.3 93.7 99.5 96.9 95.0 93.7 96.2 95.1

Deskwork 94.1 100.0 99.3 99.4 91.4 100.0 99.0 99.1

Abbreviations: NB, Naı̈ve Bayes; QDA, quadratic discriminant analysis.
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the sixfold by-subject cross-validation technique. This led us to use
the LOSO cross-validation for classification algorithm development,
which helps improve the generalizability of the classification algo-
rithms to unseen participants. The four features for the QDA
classification algorithm were: the resultant acceleration, and three
other variables derived from the mean absolute difference and
number of peaks of the transverse acceleration. Similarly, the four
features for the NB classification algorithm were: the resultant
acceleration and three other variables derived from the mean absolute
difference of the transverse acceleration, and mean absolute difference
and number of peaks of the longitudinal acceleration. The features
chosen by both the QDA and NB classification algorithms included
directional, total motion and frequency of upper arm movement
information from the SW’s accelerometer, indicating that the classi-
fication algorithms were sensitive to movement-based variables when
classifying the wheelchair-related PAs. Even though the QDA classi-
fication algorithm yielded slightly higher accuracy than NB, the NB
classification algorithm is computationally simpler and has greater
potential for real-time activity classification.
In our previous work,15 we developed an activity-specific EE

prediction model, which involves detecting the type of PA before
applying a specific EE estimation equation for the detected PA.
However, the previous work evaluated the model performance
assuming the types of PAs that can be detected and classified with
100% accuracy. With over 95% classification accuracies yielded by the
QDA and NB classification algorithms, we found that the
performance of the activity-specific EE prediction model was
minimally affected by the actual classification results. The previous
study showed that the mean absolute error and mean-signed error for
all activities were 16.8% and 4.9±20.7%, respectively.15 In this study,
the mean absolute error and mean-signed error for all activities were

17.4% and 5.3±21.5% for the QDA classification algorithm,
respectively, and 18.2% and 4.6±22.8% for the NB classification
algorithms, respectively. The results in Table 3 also showed that the
wheelchair propulsion and arm ergometry activities were occasionally
misclassified by QDA and NB classification algorithms; yet the
misclassification may not significantly affect the EE prediction as
the two activities have similar EE. Further, the activity-specific EE
estimation equations and the classification algorithms share some
common variables including the mean absolute difference of trans-
verse acceleration, and the mean absolute difference and average
number of peaks of longitudinal acceleration.15

One limitation of this study is the small number of PAs tested in
the protocol. In addition, the activities were performed in a controlled
laboratory setting and prescribed in a precise manner such as
propelling a wheelchair and exercising with an arm ergometer at a
certain speed and/or intensity. Future studies should evaluate a larger
number of PAs in the home and community of MWUs. To our
knowledge, there is no device that can be directly used by wheelchair
users to classify PAs and estimate EE. We chose to investigate the
potential of SW activity monitor in this population owing to its ready
availability in the market and multisensor capabilities.

CONCLUSION

Availability of physical activity monitors for MWUs can empower
them to monitor everyday PA participation and EE, and make
informed decisions toward healthier behaviors. The high classification
accuracy of the QDA and NB classification algorithms and the low EE
estimation errors when using the actual classification results suggest
that the SW activity monitor can be used to classify and estimate the
EE for the four activities tested in this study among MWUs with SCI.

Table 3 Confusion matrix for the QDA and NB classification algorithms using four features to classify the four wheelchair-related activities in

the validation data set

Class QDA NB

Resting Propulsion Arm ergometry Deskwork Resting Propulsion Arm ergometry Deskwork

Resting 33 0 0 1 33 0 0 1

Propulsion 0 116 1 1 0 111 7 1

Arm ergometry 0 9 133 0 0 7 133 2

Deskwork 0 0 0 32 0 0 0 32

Abbreviations: NB, Naı̈ve Bayes; QDA, quadratic discriminant analysis.

Table 4 EE estimation error in terms of the mean absolute error and mean-signed error for the validation data set when the activity-specific

EE prediction model was used in conjunction with the QDA or NB classification algorithms with four features

Class

QDA NB

Mean absolute error per minute Mean-signed error per minute (s.d.) Mean absolute error per minute Mean-signed error per minute (s.d.)

kcal % kcal % kcal % kcal %

Resting 0.2 18.2 0.0 (0.3) �4.3 (21.4) 0.2 18.2 0.0 (0.3) �4.3 (21.4)

Propulsion 0.6 16.5 0.2 (0.7) 1.9 (22.4) 0.7 18.7 0.0 (1.0) �0.1 (25.3)

Arm ergometry 0.9 18.8 0.7 (1.0) 11.6 (20.1) 0.9 18.8 0.7 (1.0) 11.8 (20.1)

Deskwork 0.2 13.4 0.0 (0.2) �0.4 (16.1) 0.2 13.4 0.0 (0.2) �0.4 (16.1)

All activities 0.7 17.4 0.4 (0.9) 5.3 (21.5) 0.7 18.2 0.3 (1.0) 4.6 (22.8)

Abbreviations: EE, energy expenditure; NB, Naı̈ve Bayes; QDA, quadratic discriminant analysis.
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