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Study design: Literature review.
Objectives: To present a comprehensive overview of autonomic assessment in experimental spinal
cord injury (SCI).
Methods: A systematic literature review was conducted using PubMed to extract studies that
incorporated functional motor, sensory or autonomic assessment after experimental SCI.
Results: While the total number of studies assessing functional outcomes of experimental SCI
increased dramatically over the past 27 years, studies with motor outcomes dramatically outnumber
those with autonomic outcomes. Within the areas of autonomic dysfunction (cardiovascular,
respiratory, gastrointestinal, lower urinary tract, sexual function and thermoregulation), not all aspects
have been characterized to the same extent. Studies focusing on bladder and cardiovascular function
greatly outnumber those on sexual function, gastrointestinal function and thermoregulation. This
review addresses the disparity between well-established motor-sensory testing presently used in
experimental animals and the lack of standardized autonomic testing following experimental SCI.
Throughout the review, we provide information on the correlation between existing experimental and
clinically used autonomic tests. Finally, the review contains a comprehensive set of tables and
illustrations to guide the reader through the complexity of autonomic assessment and dysfunctions
observed following SCI.
Conclusions: A wide variety of techniques exist to evaluate autonomic function in experimental
animals with SCI. The incorporation of autonomic assessment as outcome measures in experiments
testing treatments or interventions for SCI should be considered a high, clinically relevant priority.
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Introduction

Although it is generally appreciated that spinal cord injury

(SCI) disrupts all types of communication between the brain

and periphery below the lesion, the outcome of SCI is still

commonly described in terms of motor function. The

pervasive mental association between SCI and paralysis is

reflected in recent headlines announcing a study on

experimental SCI published in Nature Medicine.1 The

headlines read ‘Scientists move toward helping paralysis

patients’2 and ‘paralysis cure’.3

In keeping with this perspective, an overwhelming

number of clinical studies have focused on the effects of

SCI on voluntary movement and the role of the somatic

nervous system. Despite the widespread effects of SCI on

autonomic control, it is only recently that autonomic

function following SCI has received significant attention in

clinical research.4–6 The delay in addressing the autonomic

effects of SCI has not only limited their appreciation among

basic scientists and clinicians, but also efforts to develop new

treatments or rehabilitation strategies targeting autonomic

function following SCI. These shortcomings are not insig-

nificant, as autonomic dysfunctions represent the primary

causes of morbidity and mortality following SCI.7,8 In

addition, individuals with SCI have identified recovery of

autonomic functions as a high priority for improving their

quality of life.9 Recent data demonstrate that autonomic

function is not reliably predicted by the degree of residual

motor or sensory function.10,11 Together these results suggest

that there is an imbalance between clinical priorities and the

general focus of SCI research.

A similar imbalance exists in animal research. This is

highlighted by a systematic review of the animal SCI
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literature (Figure 1; see ‘Methods’). We reviewed published

studies of animals with experimental SCI, and identified

studies with functional outcomes designed to evaluate

motor, sensory or autonomic function. While the total

number of studies increased dramatically over the past 27

years, published studies with motor outcomes dramatically

outnumber those with sensory or autonomic outcomes. The

disproportionate number of studies focusing on motor

recovery after experimental SCI represents a significant

mismatch between the clinical priorities of improved

autonomic function and the direction of SCI research in

animals.

When the functional autonomic outcomes are separated

according to organ system dysfunction, it is immediately

apparent that not all aspects of SCI-induced autonomic

dysfunction have been examined to the same extent. The

available data characterize mainly bladder and cardiovascu-

lar functions in SCI animals, whereas sexual function,

gastrointestinal (GI) function and thermoregulation remain

essentially uninvestigated. These findings are particularly

alarming, as recovery of sexual function in particular has

been identified by both paraplegics and quadriplegics as an

urgent priority.9

There are several likely reasons for the paucity of research

addressing autonomic dysfunctions following SCI. The

complex organization of the autonomic nervous system,

and its involvement in the control of almost every system in

the body, makes it difficult to select appropriate functional

tests. There is also some confusion surrounding the opera-

tional definitions of autonomic dysfunctions that are

present in animals following SCI. Finally, there may be a

lack of agreement on (and awareness of) well-designed,

clinically relevant tests that have been validated to evaluate

autonomic functions in animals with SCI.

The main goal of this review is to provide the scientific

community with an overview of the current methods used to

assess the autonomic function of animals with SCI. For six

aspects of autonomic functionFcardiovascular function,

respiratory function, GI function, lower urinary tract (LUT)

function, sexual function and thermoregulationFwe review

the innervation of the system in humans and rats, the

clinical implications of dysfunction following SCI and the

tests or techniques that are currently available to evaluate

function after experimental SCI. We also include functional

tests that have been developed in other animal models, but

that appear to be applicable to animals with SCI. Each test is

reviewed in terms of its methodology, the type of informa-

tion that it provides and the available data in animals with

SCI. We hope to improve the understanding of functional

tests used to evaluate autonomic function and to increase

their incorporation in SCI experiments, particularly those

studies testing potential therapeutic agents (see Table 9). We

also hope that this review will be useful to veterinarians in

clinical practice, to add to their arsenal of assessments of

animals with naturally occurring SCI. Throughout the review

we also highlight clinical assessments that are similar to the

experimental methods we describe. The use of similar tests in

the clinic and the laboratory is valuable because it facilitates

Figure 1 Autonomic dysfunction remains underrepresented in experimental spinal cord injury (SCI). (a) The total number of publications
reporting the functional outcome in animal models of SCI has increased steadily since 1980. However, the rate of increase is dramatically
different between studies characterizing function/dysfunction of different divisions of the nervous system. At every time period examined,
published studies with motor outcomes far outnumber published studies investigating autonomic or sensory function. The disparity is
particularly pronounced in the past 7 years, when studies incorporating a motor outcome outnumber publications with any autonomic
outcome by more than four times. (b) When published data on autonomic function are categorized according to organ system dysfunction
after SCI, it is clear that not every area is equally represented. Lower urinary tract (LUT) function/dysfunction is the best-characterized
component of experimental SCI, whereas experiments studying sexual, gastrointestinal and thermoregulatory function remain comparatively
scant. However, when we compare the number of published studies characterizing motor outcome in the past 7 years (554) with the number
of published studies characterizing LUT function in the same period (60), it is obvious that every aspect of SCI-related autonomic dysfunction
should be considered a priority in animal research.
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the translation of our knowledge about autonomic function

and dysfunction following SCI between the bench and the

bedside.

Methods: literature review

A systematic literature review was conducted using PubMed

to identify studies that incorporated functional assessment

after experimental SCI. Each search was limited to animal

studies published in English, and to specified publication

date ranges. Search terms were always used in combination

with ‘spinal cord injury’. A separate search was performed

using each of the terms listed in Table 1. The abstracts

returned by each search were reviewed to identify studies

with relevant functional outcomes; inclusion and exclusion

criteria are listed in Table 2. If the outcome measure(s) used

in the study were not evident from reading the abstract, the

‘Methods’ section of the paper was reviewed.

Publications were not counted twice in the same section

(that is, no paper was counted as both locomotor and

movement), but some were considered as spanning two

sections (that is, some papers contained both motor and

sensory functional assessments). All studies incorporating

the functional outcome of interest were included, regardless

of the objective of the study. For example, studies aimed at

characterizing the effects of a treatment on pain after SCI

that also included motor testing were counted as both motor

and sensory. Finally, publications were categorized according

to the intent of the outcome measure. For example, if

authors used a ladder-walking test to assess locomotor

function, the study was counted as motor (even though

there are presumably proprioceptive components to the

performance).

Cardiovascular function

Autonomic innervation of the cardiovascular system

In humans and animals with an intact neuraxis, both tonic

neurogenic and reflex autonomic control of the cardiovas-

cular system ensure adequate regional blood supply under a

wide range of physiological conditions. The autonomic

innervation of the cardiovascular system has important

ramifications for the pattern of cardiovascular dysfunction

that emerges after SCI. Here we review the most relevant

features of cardiovascular innervation (Figure 2), the details

of which have been extensively reviewed elsewhere.12,13

Clinical implications of cardiovascular dysfunction following SCI

Unlike dysfunction of the LUT, which can be described in

general terms for suprasacral SCI, cardiovascular dysfunction

varies dramatically with level of injury,14,15 its severity

determined by the relative loss of supraspinal control over

spinal sympathetic outflow.16 Cervical SCI disrupts suprasp-

inal connections to preganglionic sympathetic innervation

of the heart and blood vessels, eliminating tonic excitatory

input to these organs. If the injury occurs at T5 or above,

Table 1 Search terms used to identify studies of motor, sensory and autonomic outcome of experimental SCI

Motor Sensory Autonomic

Autonomic; sympathetic; parasympathetic

Lower urinary tract Cardiovascular Respiratory Sexual Gastrointestinal Thermoregulation

Motor Sensory Urinary Cardiovascular Respiratory Sexual Gastrointestinal Thermoregulation
Movement Sensation Bladder Blood pressure Breathing Uterus Bowel Sweating
Walking Touch Micturition Hypertension Lung Vagina Colon Piloerection
Stepping Proprioception Renal Hypotension Menstruation
Locomotor Pain Dysreflexia Menstrual
Locomotion Allodynia Heart Penis
Postural Hyperalgesia Arrhythmia Erection
Spasticity Dysaesthesia Ejaculation

Paresthesia

Each search term was used in combination with ‘spinal cord injury’. Searches were limited to animal studies published in English within specified date ranges (Figure 1).

Abstracts and manuscripts were reviewed to obtain the final publication count in each area: see Methods for details and Table 2 for inclusion/exclusion criteria.

Table 2 Criteria used to identify studies with relevant functional
assessment after experimental SCI

Included Excluded

All experimental models of SCI
(for example, traumatic,
ischemic) in all species

K Clinical (veterinary) SCI
K In vitro and ex vivo preparations
K Review articles

Studies incorporating functional
assessments of SCI, including
those that:
K Characterize an outcome

measure
K Characterize function/

dysfunction
K Use functional outcome to

assess manipulation or
treatment

K Studies detected by the search
criteria that contained no
functional assessments (For
example, motor neuron atrophy
after SCI)

K Studies that only monitored
vital signs during surgery or
treatment

K Electrophysiological studies of
individual neuron properties
(versus neurological function)

K Studies of spinal cord blood
flow/lesion perfusion or
microperfusion (versus systemic
cardiovascular function)

K Studies testing the effects of
vasopressor therapy as a
treatment for SCI

Abstracts returned by literature searches were reviewed; if necessary, manu-

scripts were also reviewed to determine what outcome measures were included

in the study. Studies were included/excluded according to the listed criteria.
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supraspinal control over sympathetic innervation of the

splanchnic vascular bed is lost, jeopardizing blood pressure

control. For this reason, injuries at and above T5–T6 are most

likely to precipitate severe cardiovascular dysfunction.14,17

The acute phase of clinical SCI is marked by neurogenic

shock, a period of profoundly altered cardiovascular con-

trol.18 This phenomenon is particularly pronounced follow-

ing cervical SCI, which frequently induces severe

hypotension and bradycardia.14,17 After neurogenic shock

resolves, basal cardiovascular parameters remain altered in

people with cervical and high-thoracic SCI.19 People with

mid-thoracic SCI typically have elevated heart rates,20

whereas people with higher injuries often present with low

heart rate and resting blood pressure.21 Cervical SCI also

abolishes circadian blood pressure rhythms 22–24 and blunts

the cardiovascular responses to exercise.25 In addition to low

resting blood pressure, many people with high SCI experi-

ence orthostatic hypotension (OH), a decrease in blood

pressure that occurs with assumption of a sitting position.26

These individuals are also prone to autonomic dysreflexia

(AD), episodes of paroxysmal hypertension, often accom-

panied by baroreflex-mediated bradycardia, induced by

sensory stimulation below the level of the injury.17 As a

group, cardiovascular disorders are the most common

underlying or contributing causes of death in people

with SCI.8,27

Figure 2 Autonomic innervation of the cardiovascular system. The major organs of the cardiovascular system are the heart and the blood
vessels. The heart receives both parasympathetic and sympathetic innervation. Parasympathetic efferents travel to the heart in the vagus nerve,
which exits the central nervous system (CNS) at the level of the medulla. The vagus nerve innervates the atria, nodes and Purkinje fibers via
local cardiac ganglia, and vagal activity decreases heart rate, contractility and conduction velocity. Sympathetic activity has an opposite,
stimulatory effect on the heart. All tissues of the heart receive sympathetic input from the upper thoracic (T1–T5) cord. Blood vessels are under
sympathetic control, and vessels supplying the splanchnic regionFthe liver, spleen and intestinesFare most important in cardiovascular
control. The splanchnic bed is densely innervated, highly compliant and contains approximately one-fourth of the total blood volume in
humans at rest.403 As such, it is the primary capacitance bed in the body. Sympathetic outflow to the splanchnic bed exits the thoracolumbar
cord (T5–L2) and provides tonic vasoconstriction. The relative amount of sympathetic and parasympathetic activity governing cardiovascular
control is determined (in part) by information from two types of afferents: baroreceptors and chemoreceptors. Baroreceptors in the aortic arch,
carotid sinus and coronary arteries detect changes in arterial pressure, and chemoreceptors in the carotid bodies respond to changes in partial
pressures of oxygen and carbon dioxide in the blood. Baroreceptor activity is the primary drive for rapid blood pressure adjustment.
Baroreceptor afferents travel primarily in the vagus nerve and the glossopharyngeal nerve to reach the medulla. Abbreviations: AR, adrenergic
receptors; CVLM, caudal ventrolateral medulla; DMNX, dorsal vagal motor nerve; g, ganglion; mAChR, muscarinic cholinergic receptors; NA,
nucleus ambiguous; n, nerve; NTS, nucleus of the solitary tract; P2X, purinergic receptors; RVLM, rostral ventrolateral medulla; (þ ) denotes
excitatory synapses; (�) denotes inhibitory synapses.
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Assessment of cardiovascular function following experimental SCI

SCI alters the connectivity of autonomic circuits between the

brainstem and spinal cord that governs cardiovascular

control and modifies sympathetic intraspinal and neurovas-

cular transmission resulting in altered vascular smooth

muscle responses.28–34 These phenomena (as well as others)

are likely to contribute to SCI-induced cardiovascular

dysfunction. Here we focus on the systemic cardiovascular

outcome of experimental SCI. Several aspects of SCI-induced

cardiovascular dysfunction have been successfully modeled

in experimental animals. Cardiovascular parameters of

animals with SCI are monitored from direct arterial blood

pressure measurements: indirect measurements of blood

pressure (collected using a tail cuff, for example) have never

been used in animals with SCI. Arterial blood pressure is

taken either directly from a fluid-filled cannula or via

radiotelemetric monitoring of animals with chronically

implanted cannulae.

Short-term cardiovascular assessment using fluid-filled cannulae

The bulk of available cardiovascular data from animals with

SCI has been collected using arterial cannulae implanted

acutely prior to data collection. Typically, the cannula is

placed in one carotid or femoral artery hours or days before

data collection, although it is possible to maintain cannulae

for at least 1 week with daily flushing. Cannulae are filled

with heparin solution to preserve patency and tunneled

subcutaneously for externalization. After arterial cannulae

are implanted, animals are housed singly to protect cannulae

from cage-mate chewing. Cardiovascular parameters can be

monitored directly in conscious animals in their home cage

by connecting the cannulae to a pressure transducer: this

method has been used frequently to study many types of

cardiovascular dysfunction in animals with SCI.

The aspect of cardiovascular dysfunction that has been

best characterized in rodent models of SCI is AD, episodic

hypertension that has been described in both rats and mice,

and is induced by visceral and somatic stimuli (see Table 3

for detailed references). The nature of rodent AD and its

inciting stimuli is very similar to that described in humans.

Rats, like humans, typically experience AD when SCI occurs

at or above T5–T6. In one study, bladder filling induced AD

in rats with severe contusion SCI at T4, but not in rats with

severe T10 contusion.68 The most common experimental

stimulus for AD is colorectal distension (CRD), in which a

balloon catheter is inserted into the colon through the anus

in the conscious animal.28 Air is infused into the balloon to

mimic the pressure of several fecal boli in the colon.

Distension is typically maintained for 1 min, and arterial

pressure is monitored before, during and after CRD.

Formerly considered to be associated with chronic SCI, AD

may also emerge during the acute stages in both animals and

humans.74 Rats with complete transection of the spinal cord

at T5 develop AD in response to CRD as early as 24 h after

injury.28 The severity of AD subsequently decreases during

the first post-injury week, and AD is relatively mild at 7 days

following T5 SCI.28,38 Thereafter, the severity of AD in-

creases. Although the actual rise in blood pressure varies

with the level and severity of injury, as well as the

experimental conditions, the majority of experiments are

conducted at least 2 weeks after SCI when AD is pronounced.

This well-characterized model has been used extensively to

identify mechanisms contributing to the development of

AD; still, only a few studies have examined the severity of AD

as an outcome measure when testing therapies for SCI

(Table 9).

Compared to its hypertensive counterpart, OH has

received little attention in experimental SCI. Some clues to

mechanisms of OH are provided by animal models of

microgravity-induced cardiovascular deconditioning, in

which microgravity is simulated by hindlimb unloading

(HU).75–77 Animals exposed to HU experience a pronounced

drop in blood pressure when subjected to head-up tilt.78

Considering this, we are currently developing an animal

model of OH after SCI. We have recently observed OH in rats

with complete transection injury at T3–T4 (JAI, LMR and

AVK, unpublished observations). When these unanesthe-

tized rats are subjected to passive head-up tilt 1 month after

injury, they experience a pronounced drop in blood pressure

(Figure 3); uninjured rats subjected to the same maneuver

exhibit either a rise in blood pressure or very little change.

Blood pressure data collected directly from arterial cannu-

lae have also been used to monitor animals in the early

phases of recovery from SCI. Neurogenic shock is generally

considered to be less pronounced in experimental animals

than in human SCI. This notion might stem from the fact

that the overwhelming majority of experiments are per-

formed in animals with thoracic SCI. Animals with cervical

SCI may experience neurogenic shock that is more compar-

able to the clinical situation. Rats with complete transection

between C7 and T1 developed both hypotension and

bradycardia.79 Mean arterial pressure fell precipitously (by

approximately 30 mm Hg) in the first 24 h after injury, and

slowly recovered to preinjury levels (around 100 mm Hg) by

9 days after injury. Heart rate also decreased dramatically

(from about 360 b.p.m. to about 300 b.p.m.) and remained

significantly lower than preinjury heart rate for 9 days (the

duration of the study). Owing to the challenges involved in

animal care, there are very few data on animals with high,

severe SCI. These animal models are currently being devel-

oped (for example Pearse et al.80) and should facilitate

our understanding of cardiovascular control following

cervical SCI.

Cardiovascular data collected from animals with acutely

implanted arterial cannulae have also been subjected to

spectral analysis. This type of analysis exploits the relation-

ship between frequency of spontaneous fluctuations in

cardiovascular parameters and the activity of systems (local,

sympathetic and parasympathetic) governing cardiovascular

control. Spectral analysis has been validated in humans,81,82

dogs82–84 and rats,85 and provides indices of autonomic

nervous system activity from relatively short segments of

continuous recordings of blood pressure (and in humans,

electrocardiogram signals). Spectral analysis has been ap-

plied to examine blood pressure variation in rats with acute

SCI.70 At 1 and 6 days after complete transection at T4–T5,

rats exhibited reduced power in the low-frequency range,
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indicative of reduced sympathetic tone (or increased para-

sympathetic tone85) that affects blood pressure control.

There are currently no data applying spectral analysis to

more chronic experimental SCI. However, as this analysis is

related to clinical measures of autonomic control following

human SCI,86 it represents a readily translatable tool for

autonomic assessment in experimental animals and humans

with SCI.

Advantages/disadvantages. Blood pressure measurements

collected directly from fluid-filled cannulae provide high-

resolution cardiovascular data with a relatively modest

investment in equipment. However, preserving catheter

patency for repeated measurements in the same animals

can present a challenge. For this reason, this method

typically only provides a snapshot of information about

cardiovascular function in each animal (that is, taken at a

single time point). The presence of investigators at the time

of data collection, as well as possible effects of recent surgery

for cannula implantation, may contribute to stress in the

animals during data collection.

Telemetric monitoring of cardiovascular parameters

Telemetric monitoring provides continuous physiological

information about the cardiovascular function of conscious,

freely moving animals over a long time course. This

technique was first applied to animals with SCI in our

laboratory (Figure 4),38 and allowed us to characterize

changes in resting blood pressure and heart rate in rats

during recovery from high-thoracic SCI. Rats were instru-

mented with a telemetric transducer (catheter implanted

into the descending aorta) 1 month prior to SCI, and arterial

pressure data were transmitted as a radiofrequency signal to a

receiver under the cage. The recovery time after transducer

implantation was critical, as the effects of simultaneous

Table 3 Overview of studies characterizing or targeting cardiovascular dysfunction after experimental SCI

Technique used Species Injury model Time range post-injury References

Acute arterial cannulation
Basal cardiovascular parameters Rat T1–T4 clip compression o4 h 35–37

1.5 months 38

C6/7 Tx; T2 Tx; T9 Tx 4 h 38

p1 week 39

T4–T7 Tx 0 h–6 weeks 40

p1 week 41

T5–T8 contusion o1 h 42–44

T9 clip compression 1, 2 h 45

Rat, cat C7 Tx (ligature crush) o1 h 46

Cat T6 contusion p24 h 47

Dog C4 Tx o1 h 48

Monkey T5 balloon compression 49

Autonomic dysreflexia
Colorectal distension Mouse T2 clip compression 2 weeks 50

T2 Tx 2 weeks 50–52

Rat C7–T1; C8 Tx 3 days 53,54

2–3 months 55

T4–T5 clip compression p1 week 38,56

2–4 weeks 38,57–59

4–6 weeks 38,59

T3–T5 Tx p24 h 40,60,61

p1 week 28,40,60

2–4 weeks 28,34,40,60–65

2–3 months 55

Bladder distension Rat C7–T1 Tx 24 h 66

p1 week 67

T4 contusion 4 weeks 68

T5 Tx p1 week 28

Somatic stim. Mouse T2 clip compression 2 weeks 50

T2 Tx 50–52

Rat T4 clip compression 2–6 weeks 59

Vag.-cerv. stim. Rat T7 Tx 1–3 weeks 69

Spectral analysis Rat T1–T5 Tx p1 week 70,71

Telemetric monitoring Rat C7–T1 Tx 2–3 months 55

T4–5 Tx p24 h, p1 week 40

4–6 weeks 40,72

2–3 months 73

T4 clip compression 1.5 months 38

Abbreviations: stim., stimulation; Tx, transection; vag.-cerv., vaginocervical.

Studies have been classified by the technique used to assess cardiovascular function. Studies employing a combination of techniques are referenced under both

headings. Studies using similar experimental animals, injury models and time range of study post-injury are grouped together.
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transducer implantation and SCI can impede blood supply to

the hindlimbs.38

Telemetric monitoring of animals with SCI suggests that

SCI-induced alterations in basal cardiovascular control are

similar between rats and humans. Rats with T5 clip

compression SCI experience transient hypotension and

persistent tachycardia following injury.38,87 Telemetric mon-

itoring revealed that blood pressure recovered to preinjury

levels by 48 h after SCI, and remained equivalent to preinjury

levels for at least 6 weeks following injury. Heart rate was

increased relative to preinjury levels by 3 days after SCI, and

remained elevated for at least 6 weeks. Diurnal fluctuations

in blood pressure and heart rate returned approximately 5

days after injury.38 Interestingly, recent telemetric data

demonstrate that rats with more rostral injuries (complete

T4 transection) experience persistent hypotension and

tachycardia, with altered basal blood pressure and heart rate

for at least 6 weeks following SCI.40 Thus, it seems that in

rats, as in humans, severity of cardiovascular dysfunction

varies with both level and severity of SCI. Radiotelemetry has

also been used to investigate AD induced by CRD, which is

similar in progression between rats with T5 clip compression

and rats with T4 complete transection (Figure 4).38,40

Advantages/disadvantages. As data collection is continuous,

telemetric monitoring is extremely informative. Since it

avoids the potential stressors of intra-arterial catheterization,

catheter maintenance, or restraint for catheter connection,

telemetry can be considered the gold standard for cardio-

vascular assessment in conscious experimental animals. It

does not eliminate stress due to handling when animals

must be loosely restrained for cardiovascular measurements

(such as during CRD to induce AD), so this remains a

consideration in telemetric studies. Most significantly,

adopting telemetric monitoring entails considerable invest-

ment in equipment. Perhaps for this reason, data in animals

with SCI remain scant (Table 3).

Respiratory function

Innervation of the respiratory system

Coordinated activity of somatic (diaphragm and accessory

respiratory skeletal muscles) and autonomic (smooth mus-

cles of the bronchial tree) nervous systems is crucial for

normal respiration. Here we review efferent and afferent

innervation as it pertains to respiratory dysfunction that

emerges following SCI (Figure 5). For simplicity, we omit

many important aspects, and the interested reader is directed

to comprehensive reviews on the subject (for example, see

Brading12 and Canning and Fischer88).

Clinical implications of respiratory dysfunction following SCI

Respiratory dysfunction after SCI is determined by relative

loss of descending autonomic innervation to the respiratory

Figure 3 Representative tracings using fluid-filled cannulae to assess blood pressure during head-up tilt. One month after complete T3–T4
transection injury, conscious rats with a left carotid artery cannulation subjected to a passive 901 head-up tilt experienced a pronounced drop in
blood pressure. Uninjured rats subjected to the same maneuver exhibited either a rise in blood pressure or very little change (JAI, LMR and AVK,
unpublished observations).
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muscles. Injuries above C3 paralyze the diaphragm, and

ventilatory support is typically required to sustain life. After

C3–C5 SCI, the diaphragm is partially denervated, and

inspiration is compromised; still, most individuals with

C4–C5 SCI do not require artificial ventilation (or can be

weaned during recovery89). In lower cervical SCI, innerva-

tion of the primary (and some accessory) inspiratory muscles

is preserved, but ventilation is still impaired, because

denervated intercostal muscles do not coordinate chest

expansion with diaphragm descent.90 Finally, any SCI above

L1–L2 denervates abdominal muscles, reducing the effec-

tiveness of coughing.

The clinical ramifications of respiratory dysfunctions

following SCI are severe, and encompass pneumonia,

atelectasis, bronchitis, reduced lung volumes and compli-

ance, sleep apnea and respiratory insufficiency or dyspnea,

particularly during exercise.91–95 The incidence and severity

of respiratory dysfunction increases with the level of SCI.

Respiratory complications are the leading cause of death in

acute SCI.96 In chronic SCI, respiratory dysfunction con-

tributes significantly to mortality,8 and is associated with

reduced quality of life.97

Assessment of respiratory function following experimental SCI

The most common experimental model used to study SCI-

induced respiratory dysfunction is rat cervical hemisection.

This injury reliably disrupts innervation to one-half of the

diaphragm. Recently, cervical hemicontusion models have

been developed that also induce respiratory deficits due to

hemidiaphragm paralysis.98,99 Data from both injury models

have increased our understanding of endogenous plastic

processes that might improve respiratory function following

SCI (Table 4; reviewed in Zimmer et al.134). A few studies have

also examined the potential for regenerative therapies to

restore diaphragm function (Table 9). The obvious limitation

of these models is that they are incomplete injuries, and thus

do not model all aspects of clinical SCI. As more models of

severe cervical SCI are developed, our understanding of

respiratory dysfunction after SCI is likely to improve.

Fortunately, outcome measures used to assess respiratory

function are similar between experimental and clinical SCI,

facilitating translation of these data.

Phrenic nerve conduction

Phrenic nerve conduction testing is used clinically for

planning phrenic nerve or diaphragmatic pacing for assisted

activation of the diaphragm.135–137 In animals, phrenic

nerve responses during spontaneous breathing or spinal

cord stimulation are examined in anesthetized, paralyzed

(mechanically ventilated) animals.101–103,121,122 These data

have been used extensively to characterize respiratory

Figure 4 Use of telemetric monitoring to assess basal cardiovascular parameters (a, b) and autonomic dysreflexia (c, d) after experimental
spinal cord injury (SCI). Rats were instrumented with radiotelemetric pressure transducers and cannulae were implanted into the descending
aorta 1 month prior to T5 clip compression SCI. (a, b) Telemetric monitoring permitted data collection in freely moving rats for 3 days prior to
SCI (to establish reliable uninjured baseline responses) and for the first 10 days following SCI. Mean values (±s.e.m.) of 3 h intervals for five rats
are shown, and light and dark periods are indicated on the x axes. (c, d) Autonomic dysreflexia (AD) was examined at 7 and 28 days following
SCI. Average responses (±s.e.m.) to colorectal distension in five rats are shown. This figure is reprinted from Mayorov et al.38
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plasticity after SCI, particularly during the crossed phrenic

phenomenon (CPP).134,138

The CPP relies on a functionally latent bulbospinal

pathway that innervates the diaphragm bilaterally. When

the hemidiaphragm is paralyzed by C2 hemisection, hypoxia

induced by contralateral phrenic nerve section activates the

latent pathway to restore diaphragmatic function. This

pathway also becomes spontaneously active over time

following SCI, but this spontaneous return of activity may

not be sufficient to restore diaphragmatic function.104 A

series of phrenic nerve function studies has revealed

that systemic delivery of xanthines (adenosine receptor

Figure 5 Innervation of the respiratory system. The main respiratory muscles are the diaphragm, intercostals and abdominals. The diaphragm
is the major inspiratory muscle and is innervated by phrenic motor neurons that lie in the cervical spinal cord (C3–C5 in humans; C3–C6 in
rats404). Innervation of respiratory intercostal and abdominal muscles exits the thoracolumbar spinal cord, from T1–T11 and T7–L2,
respectively. Activity of these muscles (as well as that of accessory muscles) is modulated by autonomic premotor neurons in the VLM, which
project to motor neurons in the spinal cord. The airways receive both parasympathetic and sympathetic inputs. The parasympathetic nervous
system provides the most important innervation to the smooth muscle of the airways, and is thus most important in controlling its diameter.
Preganglionic parasympathetic neurons originate in the NA, and innervate the trachea and the bronchi via the laryngeal and vagus nerves
(respectively). Parasympathetic innervation is predominately cholinergic and its action is excitatory, reducing airway diameter (via mAChR).
Sympathetic innervation of smooth muscle is comparatively scant. Preganglionic sympathetic axons exit at T4 and travel to paravertebral
ganglia, and post-ganglionic adrenergic fibers elicit bronchodilation, acting through b-AR. The airways also have extensive afferent innervation.
The most important afferents regulating respiration are vagal Ad, with cell bodies in the nodose ganglia and central axons projecting to the
NTS. Abbreviations: Ad, mechanoreceptors; b-AR, b-adrenergic receptors; C, cervical spinal cord; g, ganglion; L, lumbar spinal cord; mAChR,
muscarinic cholinergic receptors; NA, nucleus ambiguous; nAChR, nicotinic cholinergic receptors; NE, norepinephrine; n, nerve; NTS, nucleus
of the solitary tract; T, thoracic spinal cord; VLM, ventrolateral medulla; (þ ) denotes excitatory synapses; (�) denotes inhibitory synapses.
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antagonists) can activate this pathway without phrenic

nerve section, to restore respiratory drive to phrenic motor

neurons following SCI.105–107,123,126 These data, and pre-

liminary clinical experience, suggest that xanthine treat-

ment may represent a viable therapeutic option in weaning

individuals with SCI from ventilatory support.139

Phrenic nerve recording has also been used to test the

efficacy of olfactory ensheathing cell (OEC) transplantation

in improving the respiratory outcome of experimental

SCI140,141 (Table 9). In these experiments, rats with high

cervical hemisection (that abolished ipsilateral phrenic nerve

activity) received OEC transplantation at the time and site of

injury. In one study, rats that received OECs recovered

spontaneous respiratory rhythm in the ipsilateral phrenic

nerve by 2 months after SCI.140 In another set of experi-

ments, ipsilateral phrenic nerve activity recovered to

approximately 80% of contralateral nerve activity by 3–6

months post-SCI.141 In the latter set of experiments, the

authors transected the contralateral spinal cord to demon-

strate that a significant proportion of this recovery was due

to ipsilateral projections. However, the underlying mechan-

ism of recovery is not known.

Pneumotachometry

Pneumotachometry is the evaluation of the respiratory

volumes and rate that can be readily applied in conjunction

with phrenic nerve recording. This type of assessment was

important in identifying altered breathing patterns in rats

with unilateral cervical SCI.127 Rats with C2 hemisection

exhibit a reduced expiratory volume and an increased

respiratory rate to preserve total (minute) ventilation.127

Pneumotachography was also applied to verify the func-

tional significance of crossed phrenic pathways.128

Diaphragmatic electromyography

Similar to clinical practice, electromyography (EMG) of the

diaphragm can be performed in conjunction with phrenic

nerve conduction studies in animals with SCI. For example,

rats that received OECs at the time of C2 hemisection

recovered both ipsilateral phrenic nerve activity and ipsilat-

eral diaphragm activity 3–6 months after treatment and

injury.141 A recent study used diaphragmatic EMG to test the

effect of administering a N-methyl-D-aspartic acid (NMDA)

receptor antagonist (MK-801) in acute cervical SCI.131 In

these experiments, i.p. MK-801 administration after C2

hemisection was associated with both recovery of ipsilateral

diaphragm function and upregulation of NMDA receptor

subunit NR2A.

Advantages/disadvantages (phrenic nerve conduction, pneumota-

chometry and diaphragmatic EMG). Although diaphragmatic

EMG, phrenic nerve recordings and pneumotachometric

evaluations have clinical correlates, they are much more

invasive procedures in the experimental laboratory than in

the clinical setting. These experiments are technically

demanding and terminal preparations. Although they

provide a quantitative and informative index of diaphrag-

matic function, other outcome measures may be more

suitable when respiratory function is not the sole or primary

focus of an experiment.

Table 4 Overview of studies characterizing or targeting respiratory dysfunction after experimental SCI

Technique used Species Injury model Time range post-injury References

Phrenic nerve conduction Rat C2 hemicontusion 1 week 99

4–6 weeks 99,100

C2 hemisection p24 h 101–118

p1 week 104,116,117,119,120

2–4 weeks 103,119,121–124

4–8 weeks 121,125

2–4 months 116,117,126

C4/5 contusion 2–11 weeks 100

Pneumotachometry Rat C2 hemisection 1–2 months 127,128

Dog T2, T4, T8 (seg. epid.) Immediate 129

Turtle D8–D10 Tx 4, 8 weeks 130

Diaphragm EMG Rat C2 hemisection p24 h 105,117,131

p1 week 119

2–4 weeks 119

90 days 117

C2 hemicontusion 7 days, 1 month 99

Dog T2, T4, T8 (seg. epid.) Immediate 129

Mouse C2 hemisection 1–48 h 132

Plethysmography Rat C2 hemisection 2, 3, 5 weeks 122

C4/5 hemicontusion 24 h, 1, 2, 4, 6 weeks 98

T8 contusion 24 h, 7 days 133

Abbreviations: EMG, electromyography; seg. epi., segmental epidural; Tx, transection.

Studies have been classified by the technique used to assess respiratory function. Studies employing a combination of techniques are referenced under both

headings. Studies using similar experimental animals, injury models and time range of study post-injury are grouped together.
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Plethysmography

An alternative outcome measure for assessing respiratory

function in experimental SCI is whole-body plethysmogra-

phy (WBP), in which respiratory function is determined in

conscious animals, without invasive instrumentation. Prior

to experimentation, rats are typically trained to become

acclimated to the plethysmography chamber to prevent

confounds of stress. In a recent study, WBP was used to

characterize respiratory function in rats with a C5 hemi-

contusion SCI.98 These rats exhibited respiratory deficits that

are reminiscent of clinical SCI:142 specifically, their ability to

augment tidal volume in response to hypercapnic challenge

was impaired 4 weeks after severe SCI. This technique has

also been used to verify the altered breathing pattern

induced by C2 hemisection previously reported in anesthe-

tized rats.122 Although spirometry is more commonly used in

the clinic, WBP has recently been validated for respiratory

evaluation of people with SCI.143,144

Advantages/disadvantages. The most obvious advantage of

WBP is that it is not a terminal experiment. Rather,

respiratory data can be collected in the same animals at

different time points following SCI. It does not provide a

direct index of diaphragm function, but does provide

clinically relevant indices of respiratory function in experi-

mental animals. As it also requires less technical expertise

than other methods, WBP may represent an attractive

method for many laboratories investigating respiratory

dysfunction after experimental SCI.

Gastrointestinal function

Innervation of the gastrointestinal system

The GI system control involves a complex interaction

between the somatic nervous system (anal sphincters), both

divisions of the autonomic nervous system, and the unique

intrinsic enteric nervous system (ENS). The ENS controls the

secretion, motility, blood flow, storage and evacuation of the

GI tract, and its basic organization and function is similar

across species. The autonomic nervous system modulates the

intrinsic activity of the ENS, and is especially important at

the proximal and distal ends of the GI tract (Figure 6). More

detailed information about the interactions between the

autonomic nervous system and ENS can be found in recent

reviews.145–147

Clinical impact of gastrointestinal dysfunctions following SCI

Although the ENS does have some intrinsic functional

capacity, this is significantly impaired when it loses central

coordination following SCI. The disruption of autonomic

innervation to the GI tract is primarily revealed by abnormal

motor function as opposed to changes in secretory or

absorptive function.148 GI problems are prevalent in both

the acute and chronic periods following SCI, and are a

significant cause of rehospitalization and morbidity.149–153

Although there is some controversy over the effect of SCI on

the upper GI tract, there is evidence of gastric dilation,

delayed gastric emptying (GE), gastric ulceration and

prolonged orocecal transit time (OCTT) following

SCI.154–157 The most common complications are lower GI

tract dysfunctions and most research has focused on their

identification and resolution. These typically present as

constipation, compaction and fecal incontinence, and can

trigger both physical and psychological problems that

restrict lifestyle choices and disrupt rehabilitation and

overall quality of life of individuals with SCI.158,159

The term ‘neurogenic bowel’ describes the loss of neuronal

control to the colon, and resulting dysfunction.160 The

neurogenic bowel can be divided into two main types, each

with characteristic colonic dysfunctions; supraconal lesions

result in damage to descending supraspinal pathways (upper

motor neuron bowel syndrome) and infraconal (cauda

equina or pelvic nerve lesions) damage to motor and

parasympathetic innervation to the colon (lower motor

neuron bowel syndrome).160 The upper motor neuron

bowel, or hyperreflexive bowel, is associated with spastic

activity in the colon and external anal sphincter (EAS),

which interferes with the voluntary ability to defecate but

leaves the bowel reflex intactFthe basis for bowel emptying

using chemical or mechanical stimuli. The lower motor

neuron, or areflexive, bowel is associated with a relaxed

colon, perturbed peristalsis, slow stool propulsion and

constipation.160

Assessment of gastrointestinal function following experimental

SCI

Given that SCI primarily affects GI motor control, the

majority of GI assessments following SCI consist of tests of

functional motility or contractile activity. This section

focuses on functional GI assessments used in experimental

animal models (Table 5), some of which have been used as

outcome measures for assessing autonomic function of the

GI tract in humans following SCI and for testing clinically

relevant therapies for restoring GI function.

Gastrointestinal transit with oral markers

GI transit can be assessed in experimental animals by

segmental dye recovery along the GI tract following oral

marker delivery.170,171 In the experimental animal, a non-

toxic, nonabsorbable dye is administered by gavage feeding

to the stomach. After the desired time interval, animals are

euthanized, clamps are secured between each GI segment

and marker recovery is detected by spectrophotometry to

quantify the amount of dye in each segment, an indicator of

movement through the GI tract.170

Dye recovery has been used as an outcome measure in rats

with SCI at various levels.161,172 Rats with cervical or thoracic

spinal cord transection showed increased dye recovery in the

stomach and decreased recovery in the small intestine

throughout the first week after injury, indicating decreased

GE and overall GI transit.161 However, after 10 days post-SCI,

there were no differences in dye recovery between the

stomach and intestine, indicating that there is a recovery of

GE and overall GI transit.164 Unlike humans, these rats also

showed concurrent spontaneous recovery of bowel func-

tion.172 A follow-up study revealed that large bowel empty-
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Figure 6 Innervation of the distal gastrointestinal (GI) tract. The ENS is composed of two main ganglionated plexuses that lie between the
longitudinal and circular muscle layers (myenteric or Auerbach’s plexus) and within the submucosal layer of the GI tract (submucosal or
Meissner’s plexus). The myenteric plexus is continuous throughout the entire length of the GI tract, and is primarily involved in the
coordination of smooth muscle activity, whereas the submucosal plexus is present primarily in the small and large intestines, where it controls
secretion and absorption.145 Autonomic innervation of the GI tract is required to modulate the intrinsic activity of the enteric nervous system
(ENS). This modulation is especially important in the distal GI tract (illustrated here), where the ANS coordinates storage and evacuation by
regulating colon motility and resting anal sphincter tone.405,406 Parasympathetic innervation of the distal colon and rectum originates in the
sacral cord (S2–S4), whereas the upper GI tract (to the level of the splenic flexure) is innervated by the vagus nerve (not illustrated here).
Preganglionic parasympathetic neurons synapse directly on Auerbach’s plexus that enhances smooth muscle activity (via mAChR).
Sympathetic innervation is mainly postganglionic, and arises from paravertebral and prevertebral ganglia of the abdominal and pelvic
cavitiesFceliac, superior and inferior mesenteric and pelvic ganglia. Sympathetic neurons in prevertebral ganglia inhibit muscle and secretory
activity indirectly, by noradrenergic modulation of activity in both the Meissner and Auerbach’s plexuses. The IAS receives both sympathetic
and parasympathetic innervation, whereas the EAS is innervated by somatic fibers traveling in the pudendal nerve (S2–S4 in humans, L6–S1 in
rats). Afferent information from this area travels in both the pelvic and pudendal nerves. Abbreviations: Ad, C, mechanosensitive primary
afferents; aAR, a-adrenergic receptors; DR g, dorsal root ganglion; EAS, external anal sphincter; g, ganglion; IAS, internal anal sphincter; IM g,
inferior mesenteric ganglion; mAChR, muscarinic cholinergic receptors; n, nerve; nAChR, nicotinic cholinergic receptors; NO, nitric oxide; (þ )
denotes excitatory synapses; (�) denotes inhibitory synapses.
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ing prevented the development of delayed GE and GI transit

following SCI.162 Although the effects of SCI on the upper GI

tract are clinically still somewhat controversial, with some

groups reporting GE delays and others demonstrating

normal GE,155–157,173 these results suggest that delayed GE

is in fact secondary to lower GI delayed motility.162 This

corroborates previous research showing that the GE reflex is

mediated by vagovagal reflexes and is not disrupted by

sympathetic denervation of the upper GI tract.174,175

Visualization techniques, similar to orally administered

radionucleotides used to assess GI motility clini-

cally,156,176,177 can also be applied in the experimental

setting. Video fluoroscopy has been recently used to assess

the functional benefits of colonic electrical stimulation as a

treatment to improve colonic transit in rats178,179 and SCI

cats.165 These results suggest that colonic transit times are

improved with the use of colonic electrical stimulation.180

Magnetic resonance imaging (MRI) has also been used to

visualize GI motility by detection of solid food labeled with

trace amounts of nontoxic iron oxide particles in rats.181

Advantages/disadvantages. Oral marker delivery for evalua-

tion of GI transit can require training and animal habitua-

tion, particularly if gavage feeding is required. The detection

of the markers can be performed as a terminal preparation, or

by indirect visualization. The latter type of detection

techniques (MRI or X ray) are attractive as they could be

easily combined with sensory or motor outcomes; however,

these techniques are more expensive and technically

demanding.

Electromyography

EMG recording of EAS activity has been used as a tool to

investigate the physiology and pathophysiology of the EAS

in rats with SCI.168 This preparation allows for the measure-

ment of both baseline EMG activity in the EAS and the

contractions stimulated by EAS distension.168 Animals are

restrained in a supine position using a loose-fitting cylinder,

or masking tape, to secure their torso, hind limbs and

tail.168,169 Temporary bipolar EMG electrodes are implanted

in the EAS, with the external wire attached to the tail and

connected to a preamplifier. After recording baseline EAS

EMG activity, EAS distension is initiated with a plastic probe

(used to mimic fecal bolus), and the resultant EAS contrac-

tions are recorded.168 Anesthetics are not normally used in

this assessment, as they significantly attenuate EAS hyper-

reflexia.

This technique has also been used to assess functional

recovery of autonomic reflexes after the period of spinal

shock, and the development of hyperreactive autonomic

reflexes.169 EAS hyperreflexia, reflected in prolonged burst

duration of EAS activity, developed 2 days post-contusion at

T9–T10 and resolved to preoperative levels, not significantly

different from controls, by 6 weeks post-injury. In contrast,

spinally transected animals developed EAS hyperreflexia 7

days post-injury and did not demonstrate any EAS reflex

recovery.169 This research demonstrates the sensitivity of EAS

EMG recording and its potential as an objective assessment

of pelvic autonomic reflexes.

EMG recording from the jejunum has been recently

adapted for use with telemetry, allowing for recording in

awake and mobile rats.182 In this technique, an EMG

transmitter is implanted dorsally between the shoulder

blades and connected to the electrodes in the jejunum.182

Advantages/disadvantages. EMG is technically demanding,

usually terminal, and requires both training and specialized

equipment. However, it represents the most sensitive and

direct evaluation of the activity in the GI tract.

Manometry

Manometry, the measurement of pressure changes within

different parts of the GI tract, has also been used to assess

colonic motility in rats following SCI.166 Similar to the

clinical technique183–185 a fluid-filled catheter is inserted

into the colon and is attached to recording probes at

different regions along the colon; however, in the rat these

probes are secured with ligatures to allow for chronic

Table 5 Overview of studies characterizing or targeting gastrointestinal dysfunction after experimental SCI

Technique used Species Injury model Time range post-injury References

GI transit with oral markers Rat T4–T5 Tx 30 min–7 days 161

1 day 162,163

1–30 days 164

C7–T1 Tx 30 min; 6 h; 1, 3, 7 days 161

Cat T4 hemostat clamp 1–2 weeks 165

Manometry Rat T4 Tx 1 day–2 weeks 166

Cat T4 hemostat clamp 1–2 weeks 165

Dog T10 Tx 2–6 weeks 167

EMG Rat T9–T10 Tx p24 h 168

2 days–6 weeks 168,169

T9–T10 contusion 2 days–6 weeks 169

Abbreviations: EMG, electromyography; GI, gastrointestinal; Tx, transection.

Studies have been classified by the technique used to assess gastrointestinal function. Studies employing a combination of techniques are referenced under both

headings. Studies using similar experimental animals, injury models and time range of study post-injury are grouped together.
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recording.166 To quantify motor activity, a motility index can

be calculated that incorporates the amplitude, duration,

frequency and number of contractions. Using this techni-

que, spinally transected rats showed a reduction of distal

colonic motility acutely after injury, which returned to

preoperative values after 7 days.186 Unfortunately, the

combined motility index does not provide an indication of

the functional motility in the colonFan important con-

sideration given that one of the main problems following

SCI is the lack of coordinated peristalsis rather than lack of

overall contractile activity.155 However, when used in

combination with oral marker delivery, the effects of reduced

motility can be more clearly assessed.165,179,187

Strain gauge transducers

Strain gauge transducers have also been used to continuously

record gastric, small intestinal and colonic motility in awake

rats.188 In contrast to manometry, this technique measures

the pressure changes on the extraluminal surface of the GI

tract.189–191 Although each transducer has only uniaxial

sensitivity, by placing transducers at right angles to each

other in the same segment, both longitudinal and circular

contractile muscle activities can be recordedFa good

indicator of coordinated motility.189 This technique has

been used to model postoperative GI tract paresis,188 assess

neurochemical effects on GI motility192 and examine the

functional effects of altered pacemaker activity in the gut.193

Although this technique has not yet been used in experi-

mental SCI, its relative noninvasiveness and capacity for

chronic use makes it a promising way to measure functional

GI motility.

Advantages/disadvantages (manometry and strain gauge

transducers). Both manometry and strain gauge techniques

require a fairly significant investment in training and

equipment. Manometry is ideal for acute measurements,

but its use is restricted to the colon. The use of strain

gauges is surgically demanding, but does not interfere with

normal GI motility, and is therefore preferable for chronic

recording.194

Hydrogen breath test

Hydrogen breath tests are commonly used to assess the

pathophysiology of clinical GI disorders. As there is no

bodily source of hydrogen other than that produced by

bacterial metabolism in the cecum, an increase in hydrogen

expiration following carbohydrate administration indicates

the arrival of the nutrient bolus in the cecum, and can be

used as a measure of OCTT.195–197 Using this test, individuals

with SCI show significantly delayed OCTT compared to

controlsFan effect that is more pronounced in quadriplegic

than paraplegic patients.198 Although this technique has also

been validated in feline, canine and rodent models,195,199,200

it has not yet been used in experimental SCI. However, it

may prove to be a useful outcome measure to assess GI

function following SCIFat both the bench and the bedside.

Advantages/disadvantages. The hydrogen breath test is mini-

mally invasive and could easily be used in conjunction with

other assessments in SCI animals. It can be used at repeated

intervals in the same animals. However, specialized equip-

ment is necessary for detection of hydrogen in the breath.

Urinary bladder function

Innervation of the lower urinary tract

Although interspecies differences exist, the basic organiza-

tion and innervation of the LUT is similar among common

experimental species and humans (Figure 7). In general

terms, storage of urine is sympathetically mediated, whereas

micturition is elicited by parasympathetic activation: how-

ever, normal LUT function requires the coordinated activity

of the sympathetic, parasympathetic and somatic nervous

systems. Here we provide only the basic scheme of LUT

innervation, as neural control of the LUT and associated

reflexes are comprehensively reviewed elsewhere.201–207

Clinical implications of lower urinary tract dysfunction

following SCI

The manifestation of LUT dysfunction after SCI is

similar in experimental animals,67,208 (Table 6) and

humans,205,206,268–270 and is broadly termed neurogenic

bladder. The initial period following SCI is marked by

bladder areflexia and urinary retention. When SCI occurs

at or below the sacral level (that is, infraconal; a lower

motoneuron injury) bladder areflexia persists. If the lesion

extends rostrally to the thoracolumbar region to involve

sympathetic preganglionic neurons, the bladder neck may

also become hypoactive. Suprasacral (supraconal) SCI (an

upper motor neuron lesion) typically produces hyperreflexia

of the smooth (detrusor) muscle of the bladder and tonic

activation of the striated urethral sphincter. Therefore,

sphincter contractions are dyssynergic with detrusor con-

tractions. Detrusor hyperreflexia and detrusor–sphincter

dyssynergia result from both a loss of tonic supraspinal

inhibition and the emergence of aberrant spinal reflexes. The

clinical profile of LUT dysfunction is highly variable between

individuals with SCI, but can be generally described in terms

of impaired continence (most common in supraconal SCI),

impaired emptying (most severe in infraconal SCI) and

impaired sensation of bladder filling (a component of

dysfunction for most people with SCI). Clinically, complica-

tions of LUT dysfunction remain the leading cause of

rehospitalization among people with SCI.271

Assessment of lower urinary tract function following

experimental SCI

SCI induces profound changes in bladder innervation, parti-

cularly afferent, circuitry,206,217,272,273 morphology209,213,274

and structure,275–278 all of which likely contribute to neuro-

genic bladder. We limit this discussion to functional assess-

ments only, with an emphasis on tests used in clinical SCI.

Although an animal model of cauda equina/conus medullaris

injury (lumbosacral ventral root avulsion in rat) has been

recently developed,279,280 available experimental data describe
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bladder dysfunction following supraconal (not infraconal) SCI.

Although SCI-induced LUT dysfunction has been well-char-

acterized in experimental animals, few studies have included

LUT assessment as an outcome measure in testing therapies for

SCI (Table 9).

Cystometric urodynamic analysis

The most common method for assessing LUT function in

experimental animals is cystometric urodynamic analysis.

Cystometry can be performed using a urethral or transvesical

catheter implanted into the bladder dome: although the

latter method is more invasive, it does not partially obstruct

the urethra and permits EMG of the external urethral

sphincter (see ‘External urinary sphincter electromyogra-

phy’) to be performed concurrently. Cystometry is routinely

conducted in both conscious and anesthetized animals, with

the caveat that anesthesia does affect micturition reflexes,281

particularly in animals with chronic SCI.235,236,257 This

undesirable effect may be partially addressed by reducing

the dose of anesthetic.236 Whether transvesical or transure-

thral, conscious or unconscious, cystometry in experimental

animals is essentially similar to clinical cystometry: the

bladder is filled with saline while recording intravesical

pressure to examine the relationship between bladder

volume and pressure during filling and micturition.

Detrusor hyperreflexia and detrusor–sphincter dyssynergia

create a similar urodynamic pattern in rats209,237,218 and

humans206,269,282,283 with suprasacral SCI. Post-injury cysto-

metrograms are characterized by increases in volume thresh-

old for inducing micturition, pressure during micturition,

volume expelled during micturition and residual volume

after micturition. In addition, spinal-cord-injured rats and

humans often exhibit nonvoiding detrusor contractions

during bladder filling, a hallmark of detrusor hyperreflexia.

Rats assessed via conscious transvesical cystometry 2–3

weeks after complete thoracic (T8–T10) spinal transection

had larger volume thresholds for micturition (1.43 versus

0.34 ml), larger micturition pressures (48 versus 26 mm Hg),

increased voided volumes (0.72 versus 0.31 ml) and in-

creased residual volumes (0.71 versus 0.03 ml) compared to

uninjured controls.218

Figure 7 Innervation of the lower urinary tract (LUT). The LUT is comprised of the bladder, urethral sphincter and urethra. The LUT receives
the bulk of its innervation from three nerves. The hypogastric nerve carries sympathetic innervation to the LUT; contributing spinal nerves exit
the spinal cord (SC) between L1 and L2. Muscle activity for storage is mediated by a-AR expressed in the trigone, bladder neck and urethra
(excitatory), and by b-AR expressed in the bladder dome (inhibitory). The pelvic nerve contains parasympathetic input originating in the sacral
cord (L6–S1 in rat407) and controls micturition via cholinergic muscarinic receptors (mAChR) expressed throughout the LUT. The human
pudendal nerve exits the sacral SC, and provides somatic innervation to the striated muscles of the external urethral sphincter; in rats, the
pudendal nerve originates in the L6–S1 cord. In addition to their efferent function, each of these nerves carries afferent input from the LUT.
Information about bladder distension is carried by mechanosensitive afferents (Ad, C) found primarily in the pelvic nerve. These afferents signal
the coordinated switch between storage and micturition. The pudendal and hypogastric nerves mostly contain nociceptive afferents, which are
not depicted here. Abbreviations: AR, adrenergic receptors; DR g, dorsal root ganglion; EUS, external urinary sphincter; g, ganglion; IM g,
inferior mesenteric ganglion; L, lumbar spinal cord; mAChR, muscarinic cholinergic receptors; n, nerve; nAChR, nicotinic cholinergic receptors;
NO, nitric oxide; P2X, purinergic receptor; S, sacral spinal cord; (þ ) denotes excitatory synapses; (�) denotes inhibitory synapses.
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Preclinical urodynamic analysis has been used extensively

to characterize mechanisms of and identify therapeutic

candidates for bladder dysfunction following SCI (Table 6).

Such experiments continue to be informative even after

treatments enter clinical practice: for example, rats were

recently treated with botulinum-A to examine the effects of

acute versus delayed therapy following SCI.238 To date, only

a few experimental studies testing regenerative, plasticity-

promoting or protective treatments for SCI have incorpo-

rated urodynamic analysis as an outcome measure (Table 9).

In one such study, rats that received transplants of

immortalized neural stem cells at the site of thoracic SCI

(T8 contusion) exhibited reduced micturition pressure and

reduced residual urine compared to untreated controls.284

Table 6 Overview of studies characterizing or targeting lower urinary tract dysfunction after experimental SCI

Technique used Species Injury model Time range post-injury References

Cystometry Rat T8–T10 contusion p1 week 209–211

2–4 weeks 209,211,212

8 weeks 210,213

T8–T11 Tx Immediate 214

24 h 215,216

p1 week 217

2–4 weeks 209,214,216–234

4–8 weeks 225,231,235–245

8–12 weeks 232,246,247

T12 heat injury 1 month 248

L3/4; L6/S1 Tx Immediate; 2–5 weeks 214

Rabbit T10 Tx 1, 2, 7–21 days 249

Cat C6–T1 Tx 10 weeks 250

T1 clip compression 2–3, 5–7 weeks 251

T8 Tx; T8 contusion 3 weeks 252

T10 d. fun. Tx Immediate 253

T10–T12 Tx p24 h 254

2–4 weeks 255,256

4–8 weeks 255–261

6–12 months 257,260

Dog T8–T11 Tx 1–8 weeks 262

1–8 months 263,264

External urinary sphincter EMG Rat T8 contusion p1 week 209,213

2 weeks 209

6–8 weeks 210,213

T8–T9 Tx Immediate 214

2–4 weeks 209,214

4–6 weeks 214,241,243

T8–T11 Tx 2–4 weeks 219

4–8 weeks 236,237,239,240

8–12 weeks 246

L3/4; L6/S1 Tx Immediate; 2–5 weeks 214

Rabbit T10 Tx 1, 2, 7–21 days 249

Cat C6–T1 Tx 10 weeks 250

T1 clip compression 2–3, 5–7 weeks 251

T9–T12 Tx 2–4 weeks 256

6–8 weeks 253,258,261

Dog T8–T10 Tx 1–8 weeks 251

1–8 months 264

Bladder volume Rat T8; T9/10 contusion p1 week 213,265,266

2–4 weeks 265–267

4–6 weeks 265,266

T10 Tx 0–20 days 217

Cat T8 Tx; T8 contusion 2 weeks 252

Videofluoroscopy Cat C6–T1 Tx 10 weeks 250

T1 clip compression 2–7 weeks 251

Dog T8–T9 Tx 1–8 weeks 262

Pressure recording (c. spongiosus) Rat T9/10 contusion p1 week; 2–4 weeks 266

Abbreviations: compr., compression; c. spongiosus, corpus spongiosus; d. fun., dorsolateral funiculus; EMG, electromyography; Tx, transection.

Studies have been classified by the technique used to assess lower urinary tract (LUT) function. Studies employing a combination of techniques are referenced

under both headings. Studies using similar experimental animals, injury models and time range of study post-injury are grouped together.
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Two subsequent studies in the same injury model demon-

strated that transplantation of neural precursor cells285 or

genetically modified fibroblasts286 accelerated recovery from

bladder areflexia and reduced micturition pressure and the

number of nonvoiding detrusor contractions.

External urinary sphincter electromyography

In both clinical and experimental assessment of SCI, external

urethral sphincter EMG (EUS EMG) can be performed in

conjunction with cystometry to provide a direct measure-

ment of detrusor–sphincter dyssynergia. Wire electrodes are

inserted into the muscle of the EUS, and EUS activity during

bladder filling and micturition is recorded. The data are

typically expressed as mean EMG activity, mean EMG power

frequency, mean EMG-spiking activity (ESA) and durations

of activity or contractions.213,236 Also, the relationship

between EUS EMG amplitude and detrusor contractions is

examined to determine the extent of coordination between

detrusor and sphincter activities. Changes in EUS EMG

throughout the micturition cycle can be examined by power

spectrum analysis using the fast Fourier transform algo-

rithm.213

In rats209,213,237 and humans206,269,287,288 with suprasacral

SCI, EUS EMG reveals sphincter activity that is not associated

with detrusor contraction or micturition. In rats, the

micturition-induced increase in external sphincter activity

(dESA) is lost following thoracic SCI: as dESA is negatively

correlated with SCI severity, it can be used as an index of

detrusor–sphincter dyssynergia.213 Other intriguing indices

of bladder-sphincter synergy have been identified by analyz-

ing fractal dimensions and power spectra of EUS EMG and

cystometrograms.239,240 Akin to urodynamic analysis, EUS

EMG has been used as an outcome measure in mechanistic

studies of LUT dysfunction in experimental SCI (Table 6).

However, this technique is rarely included in preclinical

studies that assess the functional benefits of therapies for SCI

(Table 9).

Advantages/disadvantages (Cystometric urodynamic analysis and

External urinary sphincter electromyography). Cystometry and

EUS EMG applied in combination definitely represent the

most informative and clinically relevant assessment of LUT

function following SCI. However, these are invasive, techni-

cally demanding procedures that can only be performed at a

single time point (that is, at the end of the experiment).

Laboratories that lack expertise in these techniques may

wish to adopt another method of monitoring bladder

function after SCI.

Functional bladder volume

In rats, increases in bladder volume are proportional to

severity of SCI.213,274 Bladder volume is estimated by

measuring the volume of urine expressed at micturition,

either by using a metabolic cage267,284–286 or by measuring

the volume of urine that can be manually expressed.289

Bladder volume has been used as an outcome measure in

experiments testing chondroitinase (a bacterial enzyme) as a

regenerative therapy for SCI.289 In these experiments,

intrathecal chondroitinase treatment reduced the volume

of urine that could be manually expressed in rats with

moderate thoracic SCI.

An attractive alternative to estimating bladder function by

expressed urine is transabdominal ultrasound, which has

been recently used in rat SCI.265 In this study, a handheld

digital ultrasound imaging system was used to measure

bladder volume following severe thoracic (T10) contusion.

Bladder volume was 3.51±0.47 ml (compared to

0.089±0.04 ml in uninjured rats) on day 4 post-injury and

decreased to 1.83±0.50 ml by day 8; it did not change

significantly for the duration of the experiment (46 days).

The authors found that ultrasonic measurements of bladder

volume were comparable to estimates based on manual

expression of urine.

Advantages/disadvantages. Measurements of volume of ur-

ine per micturition represent a cost-saving alternative for

monitoring bladder function, but are tedious and lack

precision. Transabdominal ultrasound is noninvasive, less

stressful than other methods, does not disrupt concomitant

motor and sensory testing and permits assessment in the

same animals throughout the recovery period. As this is a

common clinically used test, it could be recommended for

more frequent use in animal experiments. This method will

require some investment in technology and training.

Videofluoroscopy

In videofluoroscopy, the bladder is filled with radio-opaque

medium and imaged by X-ray video recording. This

approach is commonly used to evaluate a variety of organ

functions in the clinical setting. Fluoroscopy has been used

in preclinical investigations of electrical stimulation to

improve bladder function following SCI (Table 6). These

studies characterize the effects of sacral spinal stimula-

tion,262 direct bladder stimulation,251,290 and more recently,

neuroprosthetic microstimulators targeting the bladder wall

and plexus291,292 in dogs and cats with SCI.

Advantages/disadvantages. Videofluoroscopy is a clinically

relevant technique and provides useful information for

specific applications (those mentioned above) in larger

species; however, it has never been used in rodent SCI. It

also requires specialized equipment and expertise that is not

likely to be available to most investigators.

Corpus spongiosum pressure recording

Another method of examining LUT function that has been

recently developed involves telemetric monitoring of pres-

sure within the corpus spongiosum of the penis (CSP).266,293

Traditionally used to study sexual function in experimental

animals294–296 (see ‘Sexual function’), CSP pressure has been

recently validated for assessing LUT function in spinal-cord-

injured rats.293 In this study, the authors found that volume

of urine expelled per micturition was highly correlated with

micturition duration recorded by CSP pressure: thus, tele-

metric CSP pressure monitoring can provide information

about voiding volume and frequency of micturition in freely
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moving, conscious animals throughout their recovery from

SCI. At 21 days after thoracic (T10) contusion, rats with

telemetric pressure monitoring had micturition CSP pressure

waveforms that were increased in duration, mean pressure

and peak frequency compared to those observed before

SCI.266

Advantages/disadvantages. Pressure recording from erectile

tissue is technically challenging, but has the benefits of

being able to be used chronically and in unanesthetized,

freely moving animals. It is of particular interest for outcome

assessment post-SCI because it allows for simultaneous

recording of micturition and erection eventsFboth of which

are perturbed following SCI.

Sexual function

Innervation of the pelvic organs and genitalia

The autonomic innervation of the pelvic organs is essentially

similar across mammalian species, and generally similar

between males and females.297 Here we review only the most

pertinent features of tissue innervation in the pelvic organs

and genitalia (Figure 8). More detailed reviews can be found

elsewhere.298–300

The role of the autonomic nervous system in sexual function

Normal sexual function requires a combination of local

spinal reflexes and descending cortical control.300,301 Genital

arousal is a combined neurovascular and neuromuscular

response that can be initiated reflexively or psychogenically.

In both sexes, reflex sexual arousal results from increased

parasympathetic activity, which causes nitric-oxide-

mediated vasodilation,302–304 accompanied by inhibition of

sympathetic adrenergic activity. Together these two changes

lead to an increase in genital blood flow, engorgement of

erectile tissues and intracavernous pressure increase and,

in women, lubrication of the vaginal surface. Unlike

reflex arousal, psychogenic arousal appears to be facilitated

by the sympathetic nervous system.305–308 In the male

rat, and probably also in humans, the contraction of the

somatic striated perineal muscles (bulbospogiosus and

ichiocavernosus) also contributes to penile rigidity during

erection.309–312

Sexual climax appears to be mediated by a spinal reflex:313

in response to genital stimulation, anesthetized, acutely

spinalized rats show a urethrogenital response similar to that

seen in human sexual climax.307,314–316 This reflex includes

clonic contractions of the perineal muscles, rhythmic firing

of the cavernous nerve, penile erections and ejaculation in

the male, and rhythmic vaginal and uterine contractions in

the female.316 This response is mediated by efferent output

from hypogastric and pelvic nerves, suggesting that both

parasympathetic and sympathetic nervous systems are

involved.317 With regards to the autonomic nervous system,

ejaculation itself is considered to be a sympathetically

mediated event;318 however, normal anterograde ejaculation

requires the coordination of both the somatic and sympa-

thetic nervous systems.

The autonomic nervous system also has a role in the

maintenance of reproductive capacity, although there is

comparatively little research in this area.319 The activity of

the epidydimis, whose main functions include sperm

transport320,321 and fluid resorption,319 is primarily regulated

by the sympathetic nervous system, with particularly

important innervation arising from the inferior mesenteric

ganglion.320,321

Clinical impact of sexual dysfunctions following SCI

Low sexual satisfaction and sexual dysfunction are both well

documented after SCI, and the resolution of these problems

has been identified as a high priority.9,322 The disruption to

autonomic circuits following SCI can result in a number of

different sexual changes and the sexual function subgroup of

the ASIA/ISCOS working group is currently developing

international autonomic standards for documenting these

changes.323 Here we focus primarily on changes in sexual

function rather than reproductive function. The effect of SCI

on sexual function is highly dependent on injury level and

the most commonly affected sexual responses are arousal

and orgasm.

Individuals with upper motor neuron lesions, and pre-

served S2–S5 roots, generally have preserved reflex genital

arousal, as the reflexes mediating erection are located in the

spinal cord. However, these individuals generally are unable

to initiate genital arousal psychogenically. On the other

hand, lower level SCI (infraconal or cauda equina) tends to

disrupt reflex vasocongestion, but can leave sympathetically

mediated psychogenic arousal intact.306,307 These psycho-

genic erections are comparable in duration, rigidity and

tumescence to the preserved reflex erections in men with

higher lesions.306

Many women with SCI maintain the ability to reach

orgasm. However, men often have difficulty maintaining

erection, ejaculating and sensing orgasm. As a result, male

reproductive function is significantly affected by SCI. Penile

vibratory stimulation and electroejaculation have been used

to successfully manage infertility in many cases.324–326 Most

women maintain reproductive capacity, and are able to

become pregnant and undergo normal pregnancy after a

short period of amenorrhea acutely after SCI.327,328

AD must also be included in the discussion of sexual

function, as it can be triggered by sexual activity and sperm

retrieval in those with injuries above T5.329–334 During

periods of AD, blood pressure can reach levels that are

potentially life threatening. However, despite these extreme

blood pressure levels, the symptoms of AD are not always

subjectively detected by the individual (termed silent AD).335

Therefore, it is imperative that blood pressure be assessed in

both private sexual activity and during sperm retrieval

procedures to assure that patients are not at risk.335

Interestingly, although AD interferes with sexual activity

for some individuals, the symptoms of AD during

sexual activity can also be perceived as pleasurable or

arousing.333,336
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Assessment of sexual response and reproductive function following

experimental SCI

Although the subjective responses from human studies are

indispensable to fully elucidate sexual functioning following

SCI,337 physiological data can be obtained from experimen-

tal animal models regarding normal sexual function338 and

recovery of autonomic circuits after injury.266 Spinal transec-

tion models have been used to study the neurophysiology of

spinal sex reflexes in the absence of supraspinal control,316

and to study infertility post-SCI.339–341 However, sexual

function has been rarely used as an outcome measure in

testing therapies for SCI (Table 7). Like human research,

Figure 8 Innervation of the pelvic organs and genitalia. In the pelvic organs and genitalia there are three main tissue types: secretory, erectile
and striated muscle. The majority of the autonomic innervation to these tissues comes from the bilateral pelvic ganglia (PG), which contains
both sympathetic and parasympathetic neurons. Parasympathetic preganglionic neurons originate in the sacral cord (S2–S4 in humans; L6–S1
in rodents) and travel in the pelvic nerve to the PG. Sympathetic innervation originates in the lumbar cord (L1–L2) and travels via the
hypogastic nerves to innervate the PGFin rodents, sympathetic nerves also travel to the PG via the pelvic nerve, which is mixed sympathetic
and parasympathetic. Unlike human PG, which form a diffuse plexus on either side of the prostate (men) or cervix (women), rat PG are more
condensed, and form two true ganglia. In both sexes, the largest nerve exiting from the PG is the cavernous nerve (also called penile nerve in
males). In humans, somatic innervation of the striated perineal muscles, which include the ischiocavernosus, bulbocavernosus and levator ani,
originates in the sacral cord (S2–4), whereas in the rats, this is shifted rostrally (L6–S1). Afferent information from the pelvic organs is relayed to
the spinal cord via the ‘genitospinal’ nerves (pelvic, hypogastric and pudendal; for simplicity, only the pelvic nerve is illustrated here) and
sensory pathways ascend bilaterally in the dorsal quadrant of the spinal cord.408 Abbreviations: AChR, cholinergic receptors; DR g, dorsal root
ganglion; g, ganglion; IM g, inferior mesenteric ganglion; n, nerve; nAChR, nicotinic cholinergic receptors; NE, norepinephrine; NO, nitric
oxide; NPY, neuropeptide Y; (þ ) denotes excitatory synapses; (�) denotes inhibitory synapses.
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experimental animal research has been dominated by the

study of male sexual function, and there are comparably few

validated experimental animal models of female sexual

function.348 This section focuses on functional assessments

of autonomically mediated components of sexual and

reproductive function, with a focus on those that have been

used in experimental SCI.

Ex copula visual scoring

Visual scoring has long been used to assess sexual function in

experimental animals. This semi-quantitative technique

includes observation, grading and quantification of sexual

arousal and copulatory events (mounts, intromissions and

ejaculations in the male; lordosis in the female animals).349

Ex copula tests have been primarily used in experimental SCI

models, as functional copulatory behavior is unrealistic

given the associated motor deficits. Animals are generally

tested in a supine position with their legs and torso

restrained by straps.350

To test reflex sexual function, penile reflexes are elicited by

the retraction of the penile sheath and light pressure on the

base of the penis,351 mechanical stimulation of the ure-

thra316,352 or by electrical stimulation of the dorsal penile

nerve.343 The stereotyped responses occur in clusters and

include erections (reddening of the glans), cups (flaring of

the glans into a trumpet shape) and flips (anteroflexions of

the glans of varying lengths).351,353,344 After SCI, these reflex

erections occur more quickly and more frequently than in

uninjured animals.342

Visual scoring can also be used to investigate psychogenic

erectile function. Penile reflexes triggered by central stimula-

tion of the medial preoptic area (a brain region with a well-

established role in the facilitation of sexual behavior)

revealed that the capacity for centrally mediated erections

is preserved in a rat model of cauda equina injury.350 As

erectile function has been traditionally associated with

parasympathetic activation, this research revealed that the

presence of thoracolumbar sympathetic activity is sufficient

to mediate erection, and likely forms a component of normal

erectile function.350 Similar results have also been found

clinically.354

Like many of the other assessment methods described

herein, visual scoring is most valuable when used in

conjunction with other physiological measures, such as

EMG recording. Together, these two techniques have been

recently used as outcome measures for assessing the effects of

pharmacological manipulation to facilitate penile reflexes

and ejaculation after experimental SCI.344 Similarly, the

combination of visual scoring and blood pressure recording

following penile reflex stimulation in a rodent model of SCI

could be used to address the important clinical issue of

vibrostimulation-triggered AD in men undergoing fertility

treatment (JAI, LMR and AVK, unpublished observations).

Corpus spongiosum and cavernosus pressure recording

During erection, dilation of arteries and erectile tissue

relaxation increase blood flow and result in increased

intrapenile pressure. Pressure recording of the corpus

cavernosum (CC) or corpus spongiosum (CSP) has been used

to study sexual function and erectile function in intact

rats,294,355,356 and is the most common assessment of erectile

function used in preclinical trials.356 In this technique, the

CC or CSP is catheterized using a polyethylene tubing, or a

hypodermic needle attached to tubing, connected to a

pressure transducer.345 The parameters that are commonly

measured include the baseline, peak and plateau pressures,

total area under the curve, as well as erection latency and

total number of erections.356 These outcome measures have

been used to characterize the sexual response changes that

occur after SCI and the effectiveness of drugs in restoring

normal responses.

Recent validation in rats with SCI showed that CSP

pressure recording is a reliable method to evaluate erectile

function over extended periods of time in conscious and

freely moving animals as well as in restrained animals.266,293

Akin to previous reports using reflex erection tests on SCI

rats,311,351 SCI rats exhibited shorter time to first observed

erectile event compared to baseline values.266 CSP pressure

recording was sensitive to early changes in SCI rats: the

number of CSP pressure peaks increased in SCI rats as early as

1 day post-injury, even though at this time the total number

of erectile events was not different from baseline values.266

Furthermore, SCI rats had many more CSP pressure peaks per

erectile event, revealing that although erections may be

qualitatively similar after SCI, their physiology may be

significantly altered.266 Pressure recording has been recently

Table 7 Overview of studies characterizing or targeting sexual dysfunction after experimental SCI

Technique used Species Sex Injury model Time range post-injury References

Behavioral scoring Rat M Mid-T Tx 28–52 days 342

T8–T9 Tx 1–7 days 343

T6 Tx 3, 4 weeks 344

Pressure recording
c. cavernosus M T8–T9 Tx 2 weeks 345

c. spongiosus M T10 contusion p1 week, 2–4 weeks 266

Doppler flowmetry F T10 Tx 6–8 weeks 346

Epididymal sperm transport M T9 contusion 10 days 347

Abbreviations: c. cavernosus, corpus cavernosus; c. spongiosus, corpus spongiosus; Tx, transection.

Studies have been classified by the technique used to assess sexual function. Studies using similar experimental animals, injury models and time range of study

post-injury are grouped together.
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used as an outcome measure for evaluating the effectiveness

of pharmacological manipulation to restore erectile capacity

after SCI.345

Advantages/disadvantages. Described above; see Urinary

bladder function (‘Assessment of lower urinary tract function

following experimental SCI’ and ‘Corpus spongiosum pres-

sure recording’).

Perineal muscle electromyography

Physiological responses and the role of perineal muscles can

be measured during sexual behavior using EMG recording.

This technique was used in the discovery of the urethrogen-

ital reflex, a model used to study human sexual climax.316 In

the men, wire electrodes are placed in the bulbospongiosus

muscle, which is attached to the CSP; in women, this

recording is usually taken from the smooth muscle of the

vagina.316 In both sexes, mechanical stimulation of the

urethra elicits clonic contractions of the perineal muscles

and rhythmic cavernous muscle activity, with expulsion of

the urethral contents in the men.316 This technique has been

validated in uninjured rats as well as spinalized, anesthetized

animals.316,357

Advantages/disadvantages. Like EMG in other systems,

perineal EMG is generally a terminal preparation and is

conducted on anesthetized animals. However, it offers a

readily quantifiable measure of the sexual response.

Flowmetry

As signs of female genital arousal are quite subtle, experi-

mental research in this area relies heavily on physiological

recording. Vaginal photoplethysmography offers a reliable

clinical measurement of vaginal blood volume and pulse

amplitude.307,358–360 Experimentally, vaginal blood flow

recording by laser Doppler flowmetry has been recently

established as a method to investigate sexual arousal in

rats.348,361,362 In this technique, capillary blood flow is

measured by a surface probe, placed on the ventral surface

of the vagina or clitoral glans, which is connected to a

flowmeter.346,348,361 Using a bipolar hook electrode, electro-

stimulation is applied to the clitoral nerve or pelvic plexus to

elicit a vascular response.361

After suprasacral SCI, unlike male rats, female rats

exhibited decreased response to electrostimulation; only

50% of animals showed increased clitoral blood flow, and

even then, the increase was weak and nonsustained.346 In

contrast, uninjured female rats showed immediate and

sustained increases in both clitoral and vaginal capillary

blood flow.361 Recently, this technique has been used as a

functional outcome to evaluate the effectiveness of pharma-

cological agents to restore sexual arousal following experi-

mental SCI.346

Advantages/disadvantages. This technique offers a new way

to investigate the underrepresented issue of female sexual

dysfunction following SCI. Flowmetry itself is noninvasive,

but it is often used in combination with nerve stimulation,

in invasive and terminal preparations. It is conducted in

anesthetized animals, as the recording is very sensitive to

movement.

Epididymal sperm transport assay

Unlike the techniques described above, which assess sexual

function, this assay is utilized to assess reproductive function

following SCI. Epididymal sperm transport is assessed by

labeling of spermatozoa followed by quantification of

labeled sperm throughout the length of the epididymis.347

This technique offers an indirect way to assess the preserva-

tion of sympathetic innervation to the epididymis, as sperm

transport through the epididymis is sympathetically

mediated.320,321 Following SCI, rats show decreased epididy-

mal sperm transport.347

Advantages/disadvantages. This assay is a terminal prepara-

tion that demands some level of technical skillFfor both the

injection of the label and the epididymal dissection.

Thermoregulatory function

Autonomic control of thermoregulatory effectors

The thermoregulatory role of the autonomic nervous system

is primarily mediated by the sympathetic nervous system

and its vasomotor, sudomotor and pilomotor effectors.

Although each of these effectors can also be activated by

emotional stimuli, for the purposes of this review, we focus

only on their thermoregulatory function. The preganglionic

neurons of these effectors are cholinergic, and lie in the

thoracolumbar cord (T1–L2); the ganglionic neurons are also

cholinergic, and lie in the paravertebral ganglia.

Vasomotor efferents that innervate cutaneous vascular

beds regulate the amount of heat that is dissipated to the

surrounding environment. Unlike the visceral vasoconstric-

tors, cutaneous vasoconstrictors are not under strong

baroreflex control, but are strongly affected by core tem-

perature changes. Some areas of the skin are more specialized

to perform thermoregulatory roles; areas with arteriovenous

anastamoses allow for quick transfer of blood from the

arteries to veins. Although the location of anastamoses varies

from species to species, their function is similar.

In contrast to most sympathetic efferents, sudomotor

efferents are cholinergic. When activated, these neurons act

via muscarinic receptors to increase sweat gland secretion. In

humans, there are two types of sudomotor neurons, apocrine

or eccrine. Eccrine glands (present over the entire skin

surface, with especially high levels on the palms, soles, face

and axillae) are primarily used for diffuse thermoregulatory

sweating; apocrine glands are associated with hair follicles,

and are present in the genital, axillary and mammary

regions. Unlike humans, rats only have apocrine glands,

present on the plantar and palmar paw surfaces. These

glands are activated by psychogenic rather than thermal

stimuli, and do not have a role in thermoregulation.363

Pilomotor neurons are noradrenergic, and innervate

piloerector muscles, which are found throughout the hairy

skin of experimental animals and skin of humans. When
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these muscles contract, they raise their associated hairs and

ultimately augment insulation. The rostrocaudal innerva-

tion pattern of piloerector muscles is similar to that of the

sensory dermatomes.

Clinical implications of thermoregulatory dysfunction after SCI

SCI can disrupt the descending sympathetic input, leaving

large areas of skin and associated blood vessels, sweat glands

and hair follicles disconnected from supraspinal sympathetic

control.364 As a result, sympathetic mechanisms do not

respond adequately to adjust core temperature and maintain

equilibrium. The resulting thermoregulatory instability in

both the acute and chronic periods can be severely

debilitating.

Clinically, there are three main phenomena associated

with temperature dysregulation reported following SCI:

poikilothermia, acute hyperthermia and exercise-induced

hyperthermia.5 Poikilothermia is also called ‘environmental

fever’, but can refer to both the hypo- and hyperthermia

experienced by individuals with SCI as a result of the

ambient environment that they are exposed to. ‘Quad fever’

is used to refer to hyperthermia present in the first few weeks

or months after SCI that is unrelated to infection or other

identifiable causes.

In general, individuals with high injuries are predisposed

to more severe temperature dysregulation than those with

lower injuries.365,366 However, even individuals with low-

level SCI can exhibit up to a 50% reduction in whole-body

sweating capacity compared to able-bodied controlsFa

reduction that correlates with their reduced skin surface

area for sweating.367,368 Although there is some evidence of

increased productivity of sweat glands above the injury as a

mechanism of compensation for decreased sweating below

the injury,369 individuals with SCI remain at a significant risk

for heat illness due to increased heat storage.370 Heat storage

is particularly problematic in wheelchair athletes,371 but

recent evidence suggests that precooling or cooling during

exercise can reduce the development of a high core

temperature.372,373

As well as being at increased risk for thermoregulatory

dysfunction, individuals with high-thoracic and cervical

injuries are also at risk for AD. During periods of AD, when

reflex sympathetic adrenergic vasoconstriction below the

level of injury elevates systemic blood pressure, reflex

sympathetic cholinergic activity can also cause excessive

sweating. In combination with thermoregulatory dysfunc-

tion, profuse sweating can contribute to a lowering of body

temperature, which can result in hypothermia.374

Assessment of thermoregulatory function following

experimental SCI

In this section we focus primarily on functional tests of

thermoregulatory control that are currently employed in

experimental SCI research. These studies most commonly

aim to characterize the thermoregulatory changes that occur

after SCI, and a small number of them test approaches to

mitigate these dysfunctions (Table 8). Molecular approaches

to thermoregulation are beyond the scope of this review and

have been recently reviewed elsewhere.377,378

Core temperature recording

Core temperature recording provides a rough indication of

the thermoregulatory capacity. Clinically, this type of

information is easy to obtain, as it is part of routine care of

individuals following SCI. In animals, core temperature is

also quite easily obtained using a rectal thermometer.

Acutely after cervical and high-thoracic SCI, rat core

temperatures decline significantly and are vulnerable to

changes in ambient environmental temperatures.40,379

Although the use of heating mats and raised environmental

temperatures can be used to maintain body temperature in

the acute setting,379 at 6 weeks post-injury core temperatures

remained significantly lower in SCI rats compared to

preoperative levels.40

Advantages/disadvantages. Core temperature recording is

minimally stressful for SCI animals with limited colorectal

sensation. The tools are easily available and the technique

itself requires minimal training. However, investigators must

be aware that rectal probe insertion could induce AD, which

can alter core temperature.40,374

Cutaneous temperature recording

Cutaneous temperature recording provides a simple indirect

way to investigate cutaneous vasoconstrictor activity. De-

spite the fact that skin blood flow is important in heat loss

during exercise in individuals with SCI,380 there has been

little research investigating cutaneous blood flow after

experimental animal SCI.40 The skin of the tail is the most

important thermoregulatory organ in the rodent, and has

been targeted in many investigations of thermoregulatory

function.381,382 Infrared thermography can be used to record

the surface temperature of the rat tail and hindlimb.40,383,384

Table 8 Overview of studies characterizing or targeting thermoregulatory dysfunction after experimental SCI

Technique used Species Injury model Time range post-injury References

Core temperature recording Rats C6/7 Tx 6 h 375

Infrared thermography T4 Tx 1 day–6 weeks 40

Flowmetry T2; T9 Tx 1 h–7 days 39

Microneurography T12–T13 Tx 0–72 h 376

Abbreviation: Tx, transection.

Studies have been classified by the technique used to assess thermoregulatory function. Studies employing a combination of techniques are referenced under both

headings. Studies using similar experimental animals, injury models and time range of study post-injury are grouped together.
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Following SCI, the skin temperature of the mid-tail and the

hindpaw increased. These changes correlated with the

decrease in core temperature, suggesting that the two are

potentially related.40

Advantages/disadvantages. Cutaneous temperature record-

ing is noninvasive, causes no stress to the animals and can

be used chronically. However, specialized equipment is

required for both the data acquisition and analysis.

Flowmetry

Blood flow recording provides a noninvasive way to assess

sympathetic vasomotor pathways following SCI. Clinically,

this method has been used to show that individuals with

high SCI have reduced skin vasoconstriction in response to

cutaneous cold compared to controls, and reduced vasodila-

tion in response to local heating below the injury.385,386 This

method is also used in experimental animal research, where

ultrasound flow probes are surgically implanted around the

artery, tissue or organ of interest, and flow is recorded using a

flowmeter.39,382 Hong and colleagues have recently looked at

organ system microcirculation, including the skin in the

forepaw and hindpaw, after acute SCI at high and low

thoracic levels.39 In the acute period, there was a significant

decrease in forepaw blood flow, which may be related to

changes in regional peripheral vascular resistance.39

Advantages/disadvantages. Flowmetry can be minimally in-

vasive (when recording from the skin surface), but requires a

significant investment in equipment. Although the equip-

ment is quite sensitive to movements, caused by breathing

for example, there are ways to reduce these artifacts.39

Microneurography

In vivo microneurography allows for the direct intraneural

recording of sympathetic neuronal activity.387 Changes in

sudomotor and vasoconstrictor activity can be recorded in

response to thermoregulatory stimuli, or nerve activity can

be evoked to investigate the function of the peripheral

effectors. Microneurography has been recently used to assess

whether therapeutic electrical stimulation can facilitate skin

sympathetic nerve activity following SCI in rats.376

Advantages/disadvantages. Microneurography is both inva-

sive and technically challenging. However, it provides a

sensitive and direct measurement of sympathetic nerve

activity.

Sympathetic skin response

Clinical sudomotor tests have proven successful in the

identification and localization of autonomic nervous system

lesions.388 The sympathetic skin response (SSR) is a widely

used clinical technique that assesses the integrity of

sympathetic cholinergic pathways. In humans, it is typically

recorded from the palmar and plantar surfaces, areas rich in

eccrine glands, and measures changes in skin conductance in

response to electrical nerve stimulation.389 SSR has been

suggested as one way to assess autonomic completeness of

SCI clinically, as it requires supraspinal input.390 However,

no animal studies of SCI have included assessment of

sudomotor function as an outcome measure of autonomic

nervous system function.

Advantages/disadvantages. SSR is a noninvasive technique,

but it has not yet been developed for use in animals.

Visualization of sudomotor function

The visualization of sudomotor function is used in both

clinical and in experimental research. Thermoregulatory

sweat testing with alizarin red has been used to define the

extent of peripheral neuropathies.391,392 Preliminary results

show that this technique can also be used as a tool to map

the preserved function of cholinergic sympathetic pathways

in individuals with SCI.393 The starch iodine technique is an

analogous assessment that is used in rats to visualize sweat

gland function.394,395

Advantages/disadvantages. This technique is minimally in-

vasive and the results could be easily translated between the

clinic and the experimental laboratory. However, in rodents,

it can only inform about the presence or absence of

sympathetic innervation of the palmar and plantar surfaces.

Furthermore, it does not reveal any information about the

thermoregulatory response.

Conclusion

Historically, SCI was synonymous with paralysis, and the

ultimate goal of therapy was recovery of movement. Today,

SCI is more correctly recognized as a potential disruption of

all nervous system functions, including motor, sensory and

autonomic. Although motor impairments are the most

obvious manifestation of disability, they may not be the

most catastrophic: injury to the spinal autonomic pathways

results in functional deficits of the major organ systems,

manifesting as bladder, gastrointestinal and sexual dysfunc-

tions, and disordered cardiovascular function, thermoregu-

lation and respiration. These aspects of autonomic

dysfunction are fast emerging as priorities in clinical

management of SCI.5,323

To address these priorities, discovery scientists must

incorporate autonomic assessments as outcome measures

in their experimental SCI research. Here we have reviewed a

wide variety of techniques that are available to evaluate

autonomic function in experimental animals, including

some that have not yet been used in experimental SCI, but

appear to be feasible. For some laboratories, incorporating

autonomic assessment may involve adding new techniques

to their existing battery of outcome measures. For others,

collaboration may be required to attain the necessary

expertise. In some cases, it might be necessary to add

additional groups of animals to maintain scientific rigor.

Whatever the practical considerations of incorporating

autonomic assessment, the gainFan improved understand-

ing of autonomic dysfunction after SCIFis indisputably

worth the effort. There is an urgent need to include
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autonomic evaluations in experiments testing therapeutic

(that is, regenerative or protective) agents after SCI, as there

are very few experiments currently doing so (see Table 9).

At present, treatments are moving to clinical trial without

any animal data that might predict their effects on

autonomic function.402 If we continue to neglect autonomic

function after SCI in the laboratory, the consequences for

people with SCI could be disastrous.
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