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Neuromorphiccomputingwithspintronics
Check for updates

Christopher H. Marrows1 , Joseph Barker1, Thomas A. Moore1 & Timothy Moorsom1,2

Spintronics and magnetic materials exhibit many physical phenomena that are promising for
implementing neuromorphic computingnatively in hardware.Here,we review the current state-of-the-
art, focusing on the areas of spintronic synapses, neurons, and neural networks. Many current
implementations are based on the paradigm of reservoir computing, where the details of the network
do not need to be known but where significant post-processing is needed. Benchmarks are given
where possible. We discuss the scientific and technological advances needed to bring about
spintronic neuromorphic computing that could be useful to an end-user in the medium term.

Artificial Intelligence (AI) is a 21st-century general purpose technology
(GPT) that will have ramifications for every aspect of society, which will be
as great as those for themost important GPT of the 20th century, the digital
computer. AI can tackle classes of problems that conventional algorithms
find difficult to deal with by using, typically, a brain-inspired form of
algorithm known as a neural network. Nevertheless, most current neural
networks are inefficiently simulated on digital von Neumann computers
resulting in power consumption several orders of magnitude greater than
biological systems of equivalent computing power.We can therefore expect
that dramatic reductions inpower consumption canbe realised if it becomes
possible to build hardware that operates in a neuromorphic manner
natively, at the level of the device physics.

Nanomagnetism and spintronics possess a variety of intrinsic features
that offer promise for this type of neuromorphic computing. These include
non-linearity, hysteresis, phase transitions, collective behaviour, and non-
volatility for compute-in-memory. The field has recently been reviewed by
Grollier et al.1 andZhouandChen2,whilst spintronics hasbeen compared to
other approaches to neuromorphic computing using quantummaterials by
Hoffmann et al.3.

In a neural network, synapses form connections between neurons. The
synaptic weight represents the strength of the connection, neurons sum
the weighted input signals, apply a non-linear transformation, and pass the
result to the output synapses. In the following, we review the current status
of the way that spintronicmaterials and devices have been used to construct
these building blocks, before considering the way that these are just
beginning to be combined to form all-spintronic neural networks. We also
consider the most popular current approach to performing a spintronic
neuromorphic computation, the reservoir computer, before offering some
perspectives on possible future developments.

Current status
Spintronic synapses
Artificial synapses in neural networks not only store analogue information
(i.e., they act as a memory) but also have the ability to update their status

given new information (i.e., a synaptic weight may be modified, and thus
they may be used for learning within the network).

Using the existing technology of the magnetic tunnel junction (MTJ)
memory cell is one route to storing synaptic weights, and can be shown to
have significant advantages for the speed and power requirements of
associative memory devices. For example, Jarollahi et al. fabricated a search
engine using an MTJ-based logic-in-memory architecture4. The chip
reducedmemory requirements by a factor of 13.6 and energy consumption
by 89%, compared with a non-neural hardware-based search architecture.
The number of clock cycles in performing search operations with this chip
was also reduced by a factor of 8.6 compared to content-addressable
memories, and by 5 orders of magnitude compared with a search engine
based on a traditional processor. Meanwhile, Ma et al. fabricated an asso-
ciative processor based on a 4-processor/2-MTJ spin-transfer torque-
magnetic random access memory (STT-MRAM)5. They also drastically
reduced power consumption by up to 90% compared to current associative
memories. As STT-MRAM is already on the market, the first contributions
of spintronics to neuromorphic chips will probably be based on digital
magnetic memories combined with CMOS circuitry.

However, MTJs have two states, while synaptic weights in neural
networks are typically real-valued. This means that many binary MTJs are
needed to store a single synaptic weight, and so in order to reduce device
footprint and power consumption the next step is tofind a suitable analogue
storage element that individually emulates a synapse in a neuromorphic
network. These elements are referred to asmemristors andwere introduced
theoretically by Chua in the 1970s6. Experimentally, the field was revitalised
in 2008 by Strukov et al. who investigated TiO2 nanodevices sandwiched
between Pt electrodes7. Since then, various materials have been used to
develop memristive devices. Magnetic devices can function as memristors
by storing analogue information in magnetic textures. For example, Wang
et al. proposed a spintronic memristor based on the displacement of a
magnetic domain wall in a spin-valve8, giving rise to lower or higher
resistance states depending on the domain wall position. Chanthbouala
et al.9 and Lequeux et al.10 experimentally demonstrated memristive
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functionality through domain wall motion in MTJs (Fig. 1a, b), and an
artificial synapse based on a 3-terminalMTJ was reviewed by Sengupta and
Roy11. Huang et al. simulated another concept for a spintronic memristor,
based on representing analogue information in the number of magnetic
skyrmions (Fig. 1c–e)12.Wadley et al. demonstrated analogue-like operation
in antiferromagnetic CuMnAs spintronic devices13, using current-induced
control of the Néel vector in submicron-scale antiferromagnetic domains.
Fukami et al. used spin-orbit torque switching to control a memristive
element in an antiferromagnet-ferromagnet bilayer system14. The mem-
ristive behaviour comes from the variation in the switching currents among
the small magnetic domains that have varying exchange-bias magnitudes
and directions at the antiferromagnet-ferromagnet interface.

The non-volatility of spintronic memristors allows them to combine
learning and memory—the two key features of neuromorphic computing
synapses. What is more, they have the potential for very high endurance,
allowing many learning cycles. A significant challenge for spintronic
memristors is scaling: that is, maintaining the analogue behaviour with
reduced device dimensions. Temple et al.15 recently made progress in this
direction bydemonstratingmemristor-like behaviour in a 500nm-diameter
FeRh pillar, with the prospect of scaling to smaller diameters accompanied
by improved memristive properties, such as larger read-out signal and
smaller drive current. Progress continues to be made by combining a
magnetic domain wall with an MTJ to form a multi-weight artificial
synapse16.

Spintronic neurons
Spintronic neurons utilise magnetic interactions to create signal processors
that mimic the LIF (Leaky-Integrate-and-Fire) model of the biological
neuron17. A number of nanoscale designs exist which mimic this behaviour

more or less closely and with a range of different advantages. In general,
spintronic neurons store information about the history of current spikes
applied at one or more inputs in the form of a dynamic magnetic state, Fig.
2a. Between these spikes, the system slowly decays back to its initial state. If
enough current spikes are applied to the inputs within a given time frame,
the system overcomes an internal energy barrier and “fires”, undergoing a
transient phase change such as amagnetic reversal and producing an output
signal before returning to its initial state. This behaviour can be understood
as a non-linear oscillator, in which a constant rate of input spikes will
produce periodic output spikes by exploiting the particular dynamic
behaviours in the system18. There are two main approaches to mimicking
this type of oscillator in a magnetic system: magnetisation dynamics and
domain-wall/skyrmion oscillators1.

Magnetisation dynamics-based neurons involve creating a magnetic
state which is metastable and disturbing the state with an input, such as a
current or microwave pulse. With a sufficient number of input spikes, the
magnetic statemay flip into anothermetastable state owing to, for example,
spin-orbit torque acting on a system with weak perpendicular magnetic
anisotropy19,20. Other examples of this approach include the use of spin-
torque nano-oscillators, which can be coupled in large arrays to perform
reservoir computing. Applying a current pulse to one of these oscillators can
cause the periodof its oscillation to change before slowly relaxing back to the
initial state21.

Domain-wall/skyrmion oscillators use a current to push a
domain wall or skyrmion through a nanomagnetic element using
spin-torque effects, in a manner similar to the racetrack memory
concept proposed by Parkin1,22. The artificial neuron can be shaped to
create restrictions and chambers that present barriers to the motion of
magnetic solitons such as the design presented in Fig. 2b. The

Fig. 1 | Spintronic synapses. a Typical resistance
versus voltage cycle characteristic of a memristor.
Inset: a sketch of a biological synapse. b Side view:
Schematic of an MgO-based magnetic tunnel junc-
tion with a domain wall in the FeB free layer.Δ is the
width of the domain wall. Top view: Scanning
electron microscope image of the sample, with a
black dashed line to emphasise its contour. From
ref. 10. c Sketch of a proposed skyrmionic synaptic
device. Tomimic a neuromodulator, as shown ind, a
bidirectional learning stimulus flowing through the
heavy metal from terminal A to terminal B (or vice
versa) drives skyrmions into (or out of) the post-
synapse region to increase (or decrease) the synaptic
weight, as shown in e, mimicking the potentiation/
depression process of a biological synapse.
From ref. 12.
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accumulation of, for example, skyrmions in a magnetic chamber, or
the driving of a skyrmion over a magnetic restriction have been shown
to accurately mimic the LIF model of the biological neuron23. For
example, a skyrmion interacting with the edges of a narrowing
nanowire can experience a force pushing them back against the cur-
rent direction, allowing its position to act as a leaky integral, Fig. 2c23.

The challenge for all-spintronic neuron concepts is an efficient read-
out of the “fire” spike. In most designs, the fire state involves a change in
magnetisation state that can potentially be read using a magnetic tunnel
junction, Fig. 2d, e. Recent designs utilise a simple bar design containing a
single domain wall that can pass under a vertical MTJ24. Such devices are
capable of simulating a spiking neural network (SNN) in a monolithic,
binary device, which significantly reduces the complexity and scale com-
pared to a multi-weighted device.

Spintronic reservoir computing
Magnetic systemspossess all the requirements for reservoir computing (RC)
(Fig. 3a): a system of interacting non-linear entities that are capable of
storing a state.Magnetic systems are inherently non-linear and can easily be
used to store states as has been done for decades for magnetic memories.
Magnetic interactions at different length scales (exchange interaction—
nanometre length scales, dipole interaction—micrometre lengthscale) can
couple magnetic entities into a network. Magnetic systems that have been
suggested for use in spintronic reservoir computing include spin-torque
oscillators, artificial spin ices, spin waves, and spin textures such as sky-
rmions anddomainwalls25. Allwoodet al. provide a very recent reviewof the
underlying principles and implementations in magnetic systems26. They
point out that many of the recent papers are simulations, which has led to a
large diversity of suggested approaches (because almost any magnetic

Fig. 2 | Spintronic neurons. a Schematic of a LIF
model of the neuron adapted from ref. 63, showing
how weighted input signals are integrated into the
neuron until the internal state passes a threshold. In
the biological neuron and most synthetic neuron
designs, this internal state is related to an electrical
potential, but in the spintronic neuron, it is typically
a magnetic state. The output signal comprises a
series of spikes that occur when the internal state
passes its threshold. b Spintronic neuron based on
manipulating skyrmions adapted from ref. 23. The
inset shows the total energy of the skyrmion as a
function of its position in the shaped channel,
showing how it decays back to its initial state if not
driven by a current. c Sketch of the predicted rela-
tionship between current pulses (blue) and the
position of the skyrmion (red) in the device.
dDomainWallMTJ neuron from ref. 24with e SEM
image of a lithographically prepared device, showing
scale and contact layout.
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Fig. 3 | Spintronic reservoir computing. a Reservoir computing takes input sig-
nal(s) and processes them into an encoded signal which can stimulate non-linear
dynamics in the reservoir. Some macroscopic properties of the reservoir are then
measured (without measuring the microscopic dynamics, which are treated as a
black box) and thesemeasurements are weighted to give the final output. bMagnetic

imaging of the changing state of nano-islands in an artificial spin ice due to non-
linear dynamics withmagnetic applied field (reproduced from ref. 64 under Creative
Commons Attribution 4.0 International License). c Simulated spin wave reservoir
forming a perceptron layer of a neural network (reproduced from ref. 33 under
Creative Commons Attribution 4.0 International License).
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system can be a reservoir). However, there are an increasing number of
experimental demonstrations.

The dynamics (either intrinsic or driven) of different spintronics RC
systems enable the creation of systems that can respond to input on dras-
tically different timescales, from megahertz to terahertz. In fact, fast
dynamics is not necessarily desirable when processing analogue data, and
ideally, the RC should respond on a similar timescale as the input
frequencies.

Spin-torque oscillators (STOs) are fundamental spintronic compo-
nents made by exciting the magnetisation dynamics of an MTJ, leading to
oscillations in the resistance. RC can be realised through time multiplexing
on a single STO21 or as arrays of coupled STOs27. STO RC has performed
tasks such as spokendigit recognitionwith recognition rates as high as state-
of-the-art neural networks, benchmarked at 99.6% on the NIST TI-46 data
corpus for the time-multiplexed case21. STOs are naturally sensitive to
external magnetic fields. This can either be seen as a hindrance (device
interference) or a feature, enabling the couplingwithin arrays and the ability
to tune behaviour. As STO RC computing is based on MTJs, the funda-
mental component of magnetic random access memories, it is already
CMOS compatible and could be manufactured on a large scale.

Artificial spin ices (ASIs) are lattices ofmagnetic islands that interact by
themagnetic dipole interaction or exchange interaction. Changing the state
of one island strongly affects the energy landscape of other nearby islands,
leading to a highly degenerate system. It has long been known that spin ices
map directly onto the Little28 or Hopfield29 models of associative memory30;
however, the connectivity of the islands is determined by the geometry, so
training theweights amounts to redefining the physical layout of the islands.
Rather than microscopically tuned Hopfield memories, ASIs have recently
been used to create RCs (Fig. 3b), with the advantage that only the outputs
need to be weighted, which can be done in software. Careful selection of the
island shapes allows for more than two states, providing denser processing
and memory31. The devices work in the frequency domain; an input
microwave signal drives the ASI and the output is read by measuring a
fingerprint of the system’s magnetic resonances32. Again, ASIs are suscep-
tible to external magnetic fields with the same dual nature (tunability/
interference) as STO RCs. Temperature can also affect ASIs and above a
certain threshold will also lead to loss of information.

On nanometre to micrometre scales, spin waves can propagate in a
magnetic material similar to waves on the surface of the water. Their
dynamics are intrinsically non-linear due to the magnetic ‘demagnetising’
field and anisotropic terms, and can be tuned globally or locally using
magnetic fields. RC computing using spin waves has been proposed in
magnetic insulators with an array ofmagnetic islands (likelyMTJs) that can
be altered to adjust the networkweights33 (Fig. 3c). This approach is amix of
RC and more traditional NNs. The system is driven from one side using a
coplanar waveguide, spin waves travel across the magnet, and interact with
one another, and the spinwave amplitude at different regionsof theopposite
side encodes the outputs. Simulations have shown the ability to perform
vowel recognition benchmarked at 90–97.5% accuracy for samples available
in the Wavetorch package34.

Reservoir systems such as spin-torque nano-oscillator arrays can
potentially be read via microwave absorption. The microstate of the total
system leads to characteristic microwave or RF absorption bands, which
evolve based on the input pulses and coupling between elements. This
spectrum can be detected using a coupled waveguide, which can be used for
both input and output for a large array of nanomagnets35.

Spin textures such as skyrmions and domain walls that can be moved
within magnetic materials to store and transport information can also be
used for RC. Particle-like skyrmions36 are a particularly active research field
due to their highmobility at low currentdensities and topological protection
which makes them quite robust against perturbations that could destroy
them. Simulated skyrmion reservoirs using AC electrical current pulses and
electrical anisotropic magnetoresistance have been used for pattern recog-
nition, showing the potential for integration with existing electronic CMOS
devices37–39.Magnetic nanoring arrays drivenby rotatingmagneticfields can

provide non-linear domain wall behaviour and simulations are able to
classify spoken digits benchmarked at close to 100% accuracy40. Skyrmions
have been shown to be superior to magnetic domains for waveform
recognition, owing to the absence of creep effects41. Task-adaptive
approaches to reservoir computing using skyrmions have been demon-
strated by retuning to different points in the phase diagram of a skyrmion-
bearing crystal42. These RCs are similar to ASI concepts and suffer from the
same weakness of requiring magnetic fields to drive the system.

Spintronic neural networks
While an RC is a complete neural network, an important part of it is in the
post-processing software, rather than intrinsically in the hardware. An
important recent breakthrough is to build a complete neural network from
MTJs, in which these devices operate as both synapses and neurons43. The
MTJs operate as spin-torque oscillators and implement many-to-many
connectivity through RF emission and detection. This approach was
benchmarked at 91.52% accuracy on the MNIST image set, but the main
goal was to show the possibility of being able to identify drones based on
their RF transmissions while consuming only mW of power.

Current and future challenges
Large-scale synaptic connectivity is one of the key difficulties in building a
spintronic neuromorphic computer. If the system is built of individual
neuron-like devices then the same issues arise as in as ‘conventional’ silicon-
based neuromorphic computing: neurons must be connected through a
software network or a hardware topology that will be very limited due to the
need to physically wire the neurons together. Microwave connection
between components is the leading solution at the moment35,43.

Spintronic neuromorphic devices built of ferromagnetic materials will
always be sensitive to magnetic fields as these will alter the dynamics and
energy landscape of the device elements. Some paradigms may be more
sensitive thanothers (for exampleASIs canbequite sensitive31) butMTJs are
already used as commercial memory devices in the real world. Anti-
ferromagnetic spintronics may supply a solution. Antiferromagnetic
materials are insensitive to even very large magnetic fields whilst having
many properties suitable for neuromorphic computing44. The newly dis-
covered class of altermagnetic materials45, which combine anti-
ferromagnetic properties in real space with ferromagnetic properties in
electron k-space, may offer ways to circumvent these issues.

All magnetic materials have a critical temperature above which they
become paramagnetic and lose their magnetic order. This means that any
spintronic device will be inoperable above this temperature, however, many
magneticmaterials have critical temperatures well above room temperature
(Fe: 770 °C, Co: 1127 °C, FeRh: 400 °C).More challenging is that at elevated
temperatures magnetic systems have a higher probability of flipping
between bistable states, losing information. Materials can be used that are
more stable against this thermal flipping (higher magnetic anisotropy) but
then the energy needed to manipulate the magnetic elements increases. As
inmagnetic recording, thiswill always be a compromise.On the other hand,
the stochastic thermal switching of MTJs has been used for probabilistic
computing46.

For the foreseeable future, spintronic devices must be coupled with
electronic devices. Ideally, spintronic elements or devices should be inte-
grated directly into the backend of the CMOS fabrication process. This is
now done forMTJs but could require significant efforts for other spintronic
systems. Most experimentally proven spintronic neuromorphic concepts
currently require large peripheral equipment, for example, to generate and
analyse microwaves, since they have taken the form of laboratory demon-
strations. It will be a challenge to miniaturise and implement these
approaches on-chip.

There are competing technologies also trying to implement neuro-
morphic computing which may make progress more quickly than spin-
tronic methods. For example, a group at Tsinghua University has built a
fully integrated reservoir computer from TiOx memristors and shown
improved power efficiency for a range of tasks47. Because the entire system is
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based on electronic components there are no challenges in the integration
and miniaturisation of the concept. However, the oxide memristors will
suffer from the well-known issues with longevity48.

Advances in science and technology needed
One of the primary obstacles to developing viable neuromorphic spintronic
devices is the ability to reliably read-outmagnetic informationon-chip1. The
principal method for measuring a magnetic state is to take advantage of
magnetoresistance, the tendency of magnetic materials to change their
electrical resistance in response to changes in theirmagnetic state. There is a
wide range of magnetoresistive effects that might be used, but those that
produce the largest signal-to-noise ratio are giantmagnetoresistance (GMR)
and tunnelling magnetoresistance (TMR)49. Both of these approaches
involve creating multilayers of magnetic and non-magnetic materials with
thicknesses of the order of a few nm to a few 10s of nm. However, mag-
netoresistance ratios are often in the range of a few 10%. Only MgO-based
MTJs offer ratios of a few hundred%50,51. These comparatively small signals
can lead to a high error rate at high frequencies. An approach to solving this
is to pursue electronic integration, where collections of MTJs are connected
to CMOS transistors that collect an average signal across an array.

In the case of ASI reservoir memories, electrical integration may be
more complicated. The “brute force” solution would be to attach an indi-
vidual sensor to every element in the array. However, this would be chal-
lenging both in terms of lithography and in terms of signal strength. More
realistic architectures involve recording the collective state of the ASI in a
manner that can be integrated on-chip. A common approach is to use spin
wave dynamics, either via an RFwaveguide patterned beneath theASI or by
measuring spin waves in a continuous magnetic layer52.

A further material constraint is the stochastic nature of magnetic
reversals.While this canbe an advantage inusingmagnetic devices inneural
networks, the highly asymmetric and non-linear behaviour of many mag-
netic materials can create problems for certain neuromorphic algorithms,
particularly those that rely on back propagation53. This issue can, to some
extent, be controlled by miniaturising magnetic elements to reduce the
number of, for example, grain boundaries and impurities that might cause
variations across amagnetic element54. Doing so requires shrinking domain
walls and/or skyrmions to a few nm by engineering spin-orbit interactions
in multilayers.

Gaining greater control over spin-orbit interactionswill also be vital for
improved electrical integration. Spin-orbit interactions are also responsible
for spin-transfer-torques which allow electrical currents to drive domain
wall and skyrmion motion and can be used to convert between spin and
electrical currents in magnetic devices55. Integration of materials that have
extremely high spin-orbit coupling or intrinsic spin filtering effects such as
topological insulators may be a route towards energy efficient electrical
integration with spintronics56.

An alternative to electronic integration is to integrate spintronic
devices with photonics. This relies on interactions between polarised light
and spin states in materials such as magnetic ceramics, metallic thin films
and magnetic semiconductors. All optical writing methods use timed
femtosecond pulses to cause spin rotations in magnetic oxide films, while
laser writing of skyrmions or domain walls is possible by creating local
heating in a small ambient field57,58. Emission from magnetic oscillators is
typically in theTHz region.THz emissions canbeused to couple large arrays
of spin-torque nano-oscillators for reservoirmemory applications or can be
used to couple arrays of skymrions21. Using devices that convert between
optical and THz devices, such as plasmonic transducers and nano-cavities,
could offer opportunities to both read and write spintronic memories with
photonic components59.

Conclusions
Spintronics offers immense potential for natively neuromorphic hardware,
given that it relies on magnetic materials that show a variety of relevant
physical phenomena, such as non-volatility, non-linearity, and hysteresis.
Phase transitions between different magnetic phases can also be exploited.

Moreover, magnetic materials are inherently radiation-hard, making them
suitable for a variety of harsh environments.

Neuromorphic spintronics is still at a very low TRL, with most
examples based on laboratory-built setups rather than commercial
hardware. There are many approaches proven in the literature at the
device level such as memristors to store synaptic weights or neuron-
like devices that display LIF behaviour. At the system level, there are
several examples of a system that can be operated as a reservoir
computer to perform pattern recognition tasks, as well as a complete
network based on wireless RF interconnections, as we have described
above. There are also two examples of commercial MRAM chips being
re-purposed to perform compute-in-memory pattern recognition
tasks. We are aware of a report by a US Air Force-sponsored team at
Princeton60 who have demonstrated a chip-generalised one-time
neural-network training algorithm using MRAM-based in-memory-
computing, with CIFAR-10 image-classification accuracy bench-
marked at 90.1%. There is also a report of a joint Samsung/Harvard
team61 who have re-purposed advanced-node 22nm fully depleted-
silicon on insulator MRAM arrays from GlobalFoundries to perform
MNIST image recognition by using current summation for analogue
multiply-accumulate operations in 64 × 64 crossbar array based on
MRAM cells, benchmarked at 98.86% accuracy at recognising MNIST
images when emulating an eight-layer Visual Geometry Group-8
neural network.

Otherwise, work is still far from the marketplace. Nevertheless, there
are huge advantages for native neuromorphic computing for neural
network-type algorithms in AI, in terms energy-efficiency, speed, and
deployability in small off-network edge devices, over continuing to simulate
these networks in silico. Spintronics possesses clear strengths in write
energy, write speed, endurance, and stochasticity over other resistive
switching materials platforms for information processing62. Moreover,
spintronics is proven in themarketplace tobe compatiblewithCMOS, in the
formofMTJ-basedMRAM, giving a clear pathway tomanufacturability for
spintronic concepts in neuromorphic computing. These considerations are
driving the upsurge in research amongst spintronics researchers that we
have reviewed here, and will continue to propel this field forward in the
future.

Data availability
No datasets were generated or analysed during the current study.
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