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Intelligent assessmentofbuildingdamage
of 2023 Turkey-Syria Earthquake by
multiple remote sensing approaches
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Xiao Yu1,2, Xie Hu1 , Yuqi Song1, Susu Xu3, Xuechun Li3, Xiaodong Song4, Xuanmei Fan5 & FangWang6

A catastrophic Mw7.8 earthquake hit southeast Turkey and northwest Syria on February 6th, 2023,
leading to more than 44 k deaths and 160 k building collapses. The interpretation of earthquake-
triggered building damage is usually subjective, labor intensive, and limited by accessibility to the sites
and the availability of instant, high-resolution images. Here we propose a multi-class damage
detection (MCDD) model enlightened by artificial intelligence to synergize four variables, i.e.,
amplitude dispersion index (ADI) and damage proxy (DP) map derived from Synthetic Aperture Radar
(SAR) images, the change of the normalized difference built-up index (NDBI) derived from optical
remote sensing images, as well as peak ground acceleration (PGA). This approach allows us to
characterize damageona large, tectonic scale anda small, individual-buildingscale. The integrationof
multiple variables in classifying damage levels into no damage, slight damage, and serious damage
(including partial or complete collapses) excels the traditional practice of solely use ofDPby 11.25% in
performance. Our proposed approach can quantitatively and automatically sort out different building
damage levels from publicly available satellite observations, which helps prioritize the rescue mission
in response to emergent disasters.

Turkey-Syria region lies on the junction of three tectonic plates – the
African, Anatolian, and Arabian plates1. Turkey-Syria area encom-
passes the Alpine-Himalayan seismic belt, which is one of the most
tectonically active regions on our planet2,3. The buried NE-SW-
trending East Anatolian Fault (EAF) is characterized by a left-lateral
strike-slip transform fault, which spreads over 580 km along the
Arabian Plate moving northeastwards and the Anatolian Plate
moving southwestwards4,5. Geographically, Turkey is a critical
transcontinental country at the boundary of Western Asia and
Southeastern Europe (Fig. 1a), bordering the Black Sea to the north,
Syria, and Iraq to the southeast, and the Mediterranean Sea to the
southwest.

The Mw7.8 earthquake (strike 228°, dip 89°, and rake -1°) (Event 1)
occurred 30 km to the northwest of Gaziantep in southeast Turkey and
northwest Syria on February 6th, 2023. It nucleated at a focal depth of
~10 km and ruptured a distance of ~350 km in the southeast of the EAF. As

of February 27th, 2023,more than 7500aftershocks occurred subsequently6.
Another earthquake (Event 2), the Mw7.5 earthquake (strike 277°, dip 78°,
and rake 4°), occurred nine hours after the mainshock to ~100 km north of
themainshock epicenter. It has a focal depth of ~10 kmand a rupture length
of ~160 km around the Cardak fault. Both events originated from the left-
lateral strike-slip seismogenic structures7,8. Turkey is subject to frequent
large earthquakes with more than 20 Mw7.0 events occurring at its epi-
center, to form perhaps the largest earthquake doublet on land9. The
earthquakes caused great casualties and damage, affecting more than 44 k
people and resulting in a loss of 34 billionUSD10.More than 160 k buildings
including 520 k apartments in Turkey collapsed partially or entirely11. The
damage levels can be classified as “no damage”, “slight damage”, and “ser-
ious damage” (including heavily damaged, to be demolished, and collapsed
buildings). Peak ground acceleration (PGA) is the zero-period maximum
ground acceleration at a given location during an earthquake. PGA is an
essential parameter that quantifies the ground shaking andbuilding damage
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associated with a given earthquake12 (Fig. 1d). But it’s far enough to locate
the damaged buildings. A timely positioning of the building damage in high
severity can help prioritize the rescue mission and save lives.

The intense shaking from large quakes may lead to significant damage
to human habitats and environment13–16. Remote sensing has become a
technical routine to evaluate earthquake damage and the induced dis-
turbances taking advantage of full and wide coverage17–19. Various remote
sensing techniques, e.g., unmanned aerial vehicles (UAVs)20, Light Detec-
tion and Ranging (LiDAR)21, Synthetic Aperture Radar (SAR)22, and optical
images23, have been applied to identify the earthquake damage and the
associated surface disturbances.

Optical images (e.g., Sentinel-2 and Landsat) use electromagnetic
radiation to capture surface changes ondifferent objects (e.g., vegetation and
buildings). The normalized difference built-up index (NDBI) highlights the
spectrum characteristics of impervious surfaces such as man-made struc-
tures. Yet, optical images are readily contaminated by the clouds and rains.
Synthetic Aperture Radar (SAR) can effectively transmit microwave elec-
tromagnetic waves to the ground and receive backscatterers in inclement
weather conditions24,25. Interferometric Synthetic Aperture Radar (InSAR),
utilizing two SAR images from different dates, has been frequently applied
in earthquake damage detection and characterization due to its large cov-
erage and high accuracy26–28. The damage proxy (DP) and amplitude dis-
persion index (ADI), two variables derived from SAR images, are effective
indicators for emergent land surface changes29–31.

Artificial intelligence (AI), as a potent empiricalmethod for automated
decision-making, has beenwidely applied in Earth and atmospheric science,
e.g., winter storm32, landslides33, urban flooding34, land cover change35,
hurricanes36, and land subsidence37. In the realm of AI, machine learning
(ML) is a pivotal subset and enables autonomous learning and analyzing.
ML can be broadly categorized into supervisedmethods (e.g., random forest
regression/classification), unsupervisedmethods (e.g., K-means clustering),
and reinforcement methods (e.g., Sarsa lambda). A joint use of remote
sensing and machine learning can improve our ability in the earthquake
damage assessment38–40.

However, we still lack critical information about the different damage
severity levels of individual buildings tomaximize our disaster response and

recovery efforts in the aftermath of catastrophic natural hazards. In this
study, we proposed a multi-class damage detection (MCDD) model based
on a supervised machine learning classification approach to quantitatively
assess the surface damage of the 2023 Turkey-Syria earthquake. The algo-
rithm synergizes multiple satellite remote sensing data and products
including Sentinel-1, ALOS-2 PALSAR-2, Sentinel-2 images to derive three
critical indices, i.e., damage proxy (DP), amplitude dispersion index (ADI),
and the differential normalized differential built-up index (NDBI) (post-
seismicminus pre-seismic), together with peak ground acceleration (PGA).
TheMCDDmodel effectively sorts the different damage levels and is much
more effective than approaches with one single individual index. Details
about our methods including remote sensing data processing, index
extraction, and model establishment are available inMethods section at the
end of the paper.

Results
Derived DP and ADI from SAR images
We first examined individual indices of DP and ADI. We mosaiced SAR
coherence and amplitude from independent frames in different paths to
generate the difference between pre- and co-seismic SAR coherence, i.e., DP
(Fig. 2a), and the temporal variance in SAR amplitude, i.e., ADI (Fig. 2b)
across the Turkey-Syria borders. Our DP map results are consistent with
those from the Earth Observatory of Singapore and have been ingested in
the earthquake damage deep learning. Satellite images from the ascending
and descending paths help cross-validate the results in the overlapped area
(Fig. 2). In general, SAR coherence decreases, and SAR amplitude fluctuates
abnormally due to abrupt land surface changes from shaking. Some dis-
continuities are visible across the boundary between consecutive satellite
paths, likely due to variant acquisition time and incidence angles (Fig. 2).

The DP map highlights the damage zones in high severity in central
Kahramanmaraş, western Gaziantep, northern Adana, southern Kayseri,
Hatay Antakya, and northern Aleppo (Fig. 2a). The damage zones are
spatially confined by tectonic faults. For example, Site I in Gaziantep is
within the southeastern side of the longest East Anatolian Fault (EAF) zone;
Site II in Kahramanmaraş is bounded by three fault segments, i.e.,
Toprakkale fault, Savrun fault, and Engizek fault; Site III is to the
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Fig. 1 | The tectonic background and Peak round acceleration (PGA) of 2023
Turkey-Syria earthquake. a The solid-line boxes show the footprints of Sentinel-1
images (ascending Path 14 and 116, descending Path 21 and 123) and ALOS-2
PALSAR-2 (Path 78) images. The dashed-line ones show the footprints of Sentinel-2

images (37SCB). The beachballs show the focal mechanisms of the two events. The
red squares incidate the two main cities damaged in the earthquake, i.e., Kahra-
manmaraş andGaziantep. b–d The distribution of peak ground acceleration (PGA)
at different damage levels, i.e., no damage, slight damage, and serious damage.
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southwestern end of EAF inHatay; Site IV in the northernKahramanmaraş
bounds the northwest of Cardak fault; Site V and SiteVI on the boundary of
Adana and Kayseri overlap with Sariz fault and Central Anatolian
Fault Zone.

The 10m-resolution ADI results clearly highlight the distribution of
man-made structures in damage such as in Kahramanmaraş, Gaziantep,
Kayseri, and Aleppo (Fig. 2b). Watercourses, e.g., the Euphrates River in
Syria, also present highADI.Here we focused on the highADI inwater-free
regions for earthquake damage assessment.

Land surface disturbance from optical images
Furthermore, another important metric applied to manifest the land
surface disturbance is NDBI. We calculated the differential NDBI
between February 9th and January 20th, 2023, and between February
14th and January 20th, 2023. The latter pair is used to validate the
former. The northern and central-southern part of Kahramanmaraş

shows a significant change in NDBI including some large building
structures in the southeastern part (Fig. 3). The differential NDBI is
also validated by another image pair (Fig. S1). The mountainous areas
around the built-up regions were exposed to larger-scale snow cover
after the earthquake compared to the conditions before the earth-
quake. Uncertainties may lie in the snow mask data of Sentinel-2.
Outstanding signals to the northwestern part of the differential NDBI
map of Gaziantep between February 9th and January 20th coincide
with the edge of snow cover, which might be the source of surface
changes, yet the actual damage is minor (Fig. S2).

Building damage in one high priority site
To systematically investigate the performance of different remote sensing
tools in earthquake damage assessment, we selected one high priority site
beside Highway 835 in the EAF zone in the city of Kahramanmaraş. Please
refer to the supplementary materials for other sites’ comparison
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Fig. 2 | Landdisturbance indices derived fromSentinel-1 scenes. aThenormalized damage proxy (DP). Sites I–VI are damaged zones in the order of the distance to the East
Anatolian Fault. b The amplitude dispersion index (ADI). The red squares show two most damaged cities—Kahramanmaraş and Gaziantep.

Fig. 3 | The differential NDBI in the city of Kahramanmaraş.TheNDBI is derived from Sentinel-2 products between February 9th (after the earthquake) and January 20th
(before the earthquake), 2023. The inset shows enlarged view of northern damaged area close to Alpaslan Karabulut Blv.
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(Figs. S3–S5). Google Earth images depict partial or entire collapse of the
building structures, including the deformed roofs (Fig. 4a).

ADI pinpoints the damaged block of the man-made structure taking
advantage of its 10m resolution among these products (Fig. 4b–e). TheADI
on the collapsed eastern part of the building (Fig. 4d) exhibits remarkably
higher values than the surroundings. In particular, the western part of the
building remained standing with a low ADI, while the eastern part was
destroyed with a peak ADI in this area. The DPmap from 10m-resolution
ALOS-2 also outperforms that from 20m-resolution Sentinel-1 in building
collapse and deformation identification (Fig. 4b, c). The damage area
indicated by the Sentinel-1 DPmap includes both the building collapse and
the deformed roof but without a clear boundary. Differential NDBI can also
pick up the deformed roofs in the southern part of this building cluster
which is indistinguishable from the other derived indices (Fig. 4e). Unfor-
tunately, optical images can be easily contaminated by clouds (e.g., Fig. S6).
On the other hand, SAR images effectively reflect the backscattering signals
from the land surface after penetrating through clouds.

Correlation betweenbuildingdamage, DP, ADI, and peakground
acceleration (PGA)
PGA is an independent indicator to quantify ground shaking and the
consequent damage41,42. High PGA usually correlates with high earthquake
potentials. For example, in the tectonically activeNorthernAlgeria inAfrica,
Tell Atlas is in the eastern active collision section of the Rif–Tell system, and
the area with high seismic hazard potentials, e.g., 1954 and 1980 El Asnam
earthquakes43, corresponds to a high PGA of 0.41 g. Iraq in southwestern
Asia is exposed to active movements of the Bitlis–Zagros Fold and Thrust
Belt. The PGApeaks at the plate boundary where the 2017Mw7.3 Iran-Iraq
earthquake nucleated44, and decays gradually southwesterly45. In summary,
the active tectonics, PGA, and seismic hazard potential are positively
correlated.

To characterize the long-term seismic hazards, we relied on the pub-
lished PGA results of this earthquake resolved by USGS7 (Fig. 5a). The high
PGA zone overlaps with the EAF zone where the 2023 Turkey-Syria
earthquake nucleated (Fig. 5a), and it also coincides with the primary
damage districts (i.e., Site I and II in Kahramanmaraş, Gaziantep, Hatay,
Adana, Kayseri in Turkey, and Aleppo in Syria).

At the occurrence of different building damage levels, we extracted and
visualized their PGA frequency in histogram, respectively. The cumulative
sumof all bins in each histogramamounts to 100%.Notably, the histograms
of “no damage”, “slight damage”, and “serious damage” reached the peak

when the PGA is 26%g, 0.29%g, and 0.34%g, respectively, i.e., the PGA is
higher where the damage is more severe (Fig. 1b–d). The ADI frequency
histograms peak at the normalized ADI values of 0.14, 0.17, and 0.20,
respectively, similar to the correlation between PGA and damage levels

Fig. 4 | Comparison of derived indices in a high priority site. The site is in Kahramanmaraş (city), Kahramanmaraş Province (Lon. 36.979°, Lat. 37.534°). aGoogle Earth
image of the priority site. b DP map from ALOS-2. c DP map from Sentinel-1. d ADI from Sentinel-1. e Differential NDBI from Sentinel-2.

Fig. 5 | Correlation between peak ground acceleration (PGA), damage proxy
(DP), and amplitudedispersion index (ADI). aEvent 1PGAcontours.The graybelt
shows a cross-section profile AA’ used in (b). b The DP (circles) and ADI (triangles)
alongprofileAA’. The color representsPGA.The graybars show the intersectionof the
profile and Engizek Fault Zone and East Anatolian Fault Zone, respectively. The
squares and black dashed lines show the locations of Kahramanmaraş and Gaziantep.
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(Fig. S7). To further investigate the spatial characteristics and correlation
among DP, ADI, and PGA, we extracted these features crossing two pri-
marily damaged cities: Kahramanmaraş around Event 1 and Gaziantep
aroundEvent 2 (Fig. 5). Site I betweenKahramanmaraş andGaziantephosts
the EAF Zone, exhibiting the largest DP (circles in Fig. 5b) and PGA (dark
red color), and amoderate ADI (triangles in Fig. 5b). Engizek Fault Zone to
the northwest of theKahramanmaraş (Site II)witnessedmoderateDP,ADI,
and PGA. To the southeast of Gaziantep, PGA and ADI are consistently
decaying with the distance to the EAF Zone.

Discussion
In light of the divergent contributions from remote sensing indices and their
correlation with PGA, we delve into an intelligent assessment of building
damages using a machine learing model. To determine different levels of
building damage, we synergized the ADI and DP from Sentinel-1, DP from
ALOS-2, differential NDBI from Sentinel-2, and PGA of this earthquake in
the architectureofmachine learning.Themodel shows reliableperformance
with a promising ROC-AUC (the evaluation metrics for classification
models, see Methods for details) of 0.7 (ranging from 0-1 and 1 means a
perfectprediction) (Fig. 6a, b). Themisclassification of building damage and
low probability of classification mostly happens in the slight damage level
(Fig. 6b, c). For example, seriously damaged building around Alpaslan
Karabulut Blv. is underestimated to be at the slight damage level (Fig. 6a, b).
We noted that the official statistics provide four different levels of damage,

including ‘slight damage’, ‘heavy damage’, ‘to be demolished’, and ‘collapse’.
Here we lack information about the classification criterion. It is unclear
which levels of damage it should be if the building remains standing while
the building integrity has been altered. The occurrence of ‘to be demolished’
is the least among these levels. The decision for to be demolished can be
subjective. The geographic and cultural significance of thedamagedbuilding
might be taken into consideration. Some buildings show evident damage
according to optical images; however, they are in the list of no damage in the
official dataset, such as the exemplified site in Fig. 4 and its surroundings
(Fig. S3) in Karacasu Karaziyaret, Kahramanmaraş. Our model reports
slight to heavy damage at these sites. The ground truth of building damage
levels used in this study may be biased. Our study can help refine the
inventory and improve the accuracy of building damage classification.

The features applied in theMCDDmodel have different importance in
sorting out the building damage levels (Fig. 7a). PGA directly relates to the
earthquake shaking and correlates with the fault zone spatially. PGA
represents the highest importance in differentiating building damage on a
regional scale (Fig. 5). The importance of the other four features derived
from remote sensing images is alike withmerely a 3%difference in between,
suggesting commensurate importance in the model performance impor-
tance of all features in the model performance. This similarity may result
from the co-located pixel spacing of 30m after spatial resampling. As a
result, the advantage of the original 10-m-spacing Sentinel-1 ADI and
ALOS-2 DP has been suppressed.

Fig. 6 | MCDD model results of building damage in Kahramanmaraş. a Building damage levels from the ground truth (https://hasar.6subatdepremi.org/)63. b Building
damage levels from our model. c The probability of model results.
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To quantitatively evaluate the effectiveness of our model considering
multiple remote sensing indices (i.e., DP, NDBI, and ADI) against the
traditional practice considering DP alone, we conduct an additional 100
experiments. ROC-AUC peaks at 0.69 in our model, exceeding that of the
model considering only DP by 11.25% (Fig. 7b). It demonstrates that the
joint use of remote sensing-derived indices can effectively enhance the
accuracy of building damage assessment.

Our results have shown a correlation between the earthquake damage
levels and the distance to the faults. In general, the closer the distance to the
faults, the greater the damage, which has been observed in most historical
big quakes in our study region (Figs. 2 and5).However, the relationbetween
the shaking intensity and the distance to the epicenter/faults cannot be
simply concluded.Wirth et al.46 performed a series of simulations about the
Mw9 Cascadia earthquake in 1700 to examine the shaking intensity with
changing epicenter. The epicenter of the actual earthquake in 1700 was in
theCascadia subduction zone (CSZ) off thePacificNorthwest coast, 354 km
away from Seattle in the southwest direction. This epicenter was at the edge
of Seattle Basin, while the city of Seattle was in the basin center. Seattle Basin
caused the amplification of the generated seismic waves, which converted
the incident S waves to basin surface waves at the edge of the basin47.
Therefore, Seattle in the basin center, suffered from the amplified seismic
waves and serious damage. However, the experiments simulated the
changing epicenter and reported completely different results. If the epi-
centerwere located exactly beneath Seattle, the earthquakewouldnot trigger
these amplified basin-edge-generated waves, thus causing less damage than
the truth in 170046,47. This indicates the effect of the topography on the
seismic waves and shaking intensity48, e.g., basins can trigger basin-edge-
generated waves at the edge and cause stronger effect to the basin center47,
and large mountains can serve as a natural seismic insulator by dispersing
the surface waves generated by earthquakes49. Therefore, an accurate
assessment of seismic risks requires a comprehensive understanding of the
geological, geophysical, and engineering environments relating to the
shaking intensity and the potential damage.

The shaking intensity is a direct parameter to assess the potential
damage50. Besides the distance to the earthquake epicenter, the actual
shaking intensity at a given building is subject to the magnitude, duration,
and depth of the earthquake, fault kinematics, geological conditions, as well
as the building construction code (USGS Earthquake Hazards Program,
https://www.usgs.gov/programs/earthquake-hazards/earthquake-
magnitude-energy-release-and-shaking-intensity). The earthquake magni-
tude, characterizing the amount of energy released by an earthquake, always
plays a primary role51,52. An increase in magnitude of one unit corresponds
to a tenfold increase in the energy released. Given the same environment,
earthquakes in greater magnitude are associated with stronger shaking.
Similarly, longer duration of shaking tends to producemore intense shaking
than shorter ones. Shallow earthquakes, generally nucleate at a depth of less
than 70 km (USGS Earthquake Hazards Program, https://www.usgs.gov/
programs/earthquake-hazards/determining-depth-earthquake), are more
destructive than deeper ones due to the closer proximity to Earth’s surface.
The relationship between the attenuation of shaking and depth will also be
affected by the stiffness and density of the crust and the propagation
pathway of seismic waves through stratified layers. Given the same envir-
onment, a larger area is exposed to damage when the fault slips by a longer
distance47. The relative orientations and distance to the triggered faults, and
the distance and the direction of fault slip affect the shaking intensity.

Additionally, soft soils, such as clay or sand, may amplify the shaking
intensity while the hard rocks dampen it53,54. The shear wave velocity and
dampening effect of soft soils are lower compared to those of hard rock,
leading to a slower seismic wave propagation and shaking amplification as
the waves travel through the soil. The peak slip in the Mw7.8 Turkey-Syria
earthquake and the Mw7.6 aftershock both exceeded 8m, and the slip rate
washigh at~1.5 m/s8. The rupture speedofMw7.8mainshock (Event 1)was
close to the sub-shear to super-shear condition, and thewestward rupture of
Mw7.6 aftershock (Event 2) was also believed to be a super-shear8. Super-
shear events may cause widespread liquefaction, i.e., saturated soils lose

rigidity due to shaking and become fluidlike55,56. Super-shear-induced flow-
like slides and widespread destructions were observed in 2018Mw7.5 Palu,
earthquake in Indonesia57,58. Beyond that, the designs and construction of
buildings may resist or aggregate the building damage. Construction ele-
ments such as seismic bracing, dampers, and base isolation can help reduce
the internal building shaking intensity.

Here we relied on Sentinel-1 SAR-derived ADI and DP map to
evaluate the earthquake damage (Fig. 2). The biggest advantage of SAR
remote sensing is the penetration capability ofmicrowave electromagnetic
energy in inclement weather conditions. SAR backscattering signals
effectively represent land surface characteristics. The typical resolution of
the publicly free SAR images (e.g., Sentinel-1) is 10-20 meters. The revisit
time of the twin-satellite Sentinel-1 constellation is 12 days for one single
satellite, which can be shortened to 6 days with both satellites. For large-
scale damage assessment crossing the plate boundary, 20-m-resolution
DP map products seem to be sufficient for rescue task prioritization, e.g.,
Site I-VI in this study (Fig. 2a). For building-extent damage assessment,
10-m-resolution ADI can effectively locate the partial collapse of man-
made structures (e.g., Fig. 4d).

Here we also used Sentinel-2 optical spectra to extract the impervious,
building features. Sentinel-2 has a revisit cycle of 5 days around the equator
and a spatial resolution of 10m. High resolution is critical for the detailed
assessment of man-made structures in small dimensions. One apparent
advantage of optical images is the rich spectral information compared with
SAR images. Sentinel-2 products include bands from visible to infrared
spectrum, offering the opportunity to extract the variation of ground albedo
features before and after the earthquake. In addition to spectral index cal-
culation and comparison, optical images are intuitive for visual inter-
pretation with little or less requirement about the prior-known information
or professional training59. However, optical images can be contaminated by
thick clouds and their shadows, such as what is shown in the post-seismic
images taken soon after the Turkey-Syria earthquake (Fig. S3). Limited by
the nadir observationmode, the structural damage cast under the roof (e.g.,
pancake collapse) is not identifiable60.

The National Aeronautics and Space Administration (NASA), in
collaborationwith the Indian Space ResearchOrganization (ISRO), is going
to launch the NASA-ISRO Synthetic Aperture Radar (NISAR) mission in
202461. It aims to empower the free use of state-of-the-art SAR satellite
images for a better understanding of the cause and effect of the dynamic
Earth system due to various surface and interior processes including
earthquakes. The image resolution is 3–10m depending on image modes61.
NISAR’s repeat cycle of 12 days improves the overall temporal resolution of
remote sensing image collection, in linewith other publicly freeSAR satellite
missions such as Sentinel-1. The enhanced spatial and temporal resolution,
the employment of electromagnetic waves at distinct L and S dual-band
frequencies, as well as the additional look directions from the left-hand side
will help improve our ability tomeasure Earth’s surface deformation, detect
man-made structures, and monitor natural hazards, and thus can better
satisfy high socioeconomic demand in prompt earthquake emergency
response.

In addition to the improvement in spatial resolution, the NASA’s
Goddard Space Flight Center also developed extension research to increase
the acquisition frequency, i.e., Harmonized Landsat Sentinel-2 (HLS) pro-
ject. This project aimed to integrate the Landsat 8 and Landsat 9 satellites
fromNASA/USGSand the Sentinel-2AandSentinel-2B satellites fromESA.
The land surface observation products fromHLS cover near-global scale at
an unprecedented resolution of 30m every two to three days (see HLS
product user guide, https://lpdaac.usgs.gov/documents/1326/HLS_User_
Guide_V2.pdf). All data are publicly free and can be accessed through
NASA’s Land Process Distributed Active Archive Center (https://search.
earthdata.nasa.gov/search). HLS products will significantly improve the
abilities of current remote sensing landmonitoring techniques in acquiring
cloud-free land surface observations more frequently through time. The
notably improved temporal resolution of data acquisitions will enhance the
response efficiency to emergent disasters such as earthquakes.
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The development of remote sensing with improved spatial and
temporal resolution avails hybrid approaches for post-disaster assess-
ment. It is optimistic to rely on building shadows revealed by ultra-high-
resolution (sub-meter level) optical images to identify the changes of the
building height and thus the collapse or damage condition62. Shadow
detection and monitoring can be more feasible for high-rise buildings
with sufficient distances between them for distinct shadows. It also
requires the same observation conditions such as the same local time and
position of the satellite sensor. Besides the pixel-based change detection
which only utilizes the spectral information, object-based change
detection combining both spectral and spatial features can achieve
higher accuracy62. Other remote sensing and geodetic datasets, e.g.,
LiDAR point clouds and the derived highly accurate digital surface
model, can be incorporated to map the building damage with sufficient
height changes60. A joint analysis of multiple data sources and methods
will promote the completeness and accuracy of earthquake damage
assessment.

Methods
SAR and optical data
The Copernicus Sentinel-1A/B twin-satellite constellation from the
European Space Agency (ESA) provides the open-access C-band SAR
scenes. Our analysis applies 3 frames of 21 scenes associated with 2
ascending Sentinel-1 paths (Frame 114& 119 in Path 14 and Frame 114
in Path 116), and 4 frames of 12 scenes associated with 2 descending
Sentinel-1 paths (Frame 465 & 471 in Path 21 and Frame 466 & 471 in
Path 123). Here these 7 frames fully cover the Mw7.8 and Mw7.5
epicenters (Fig. 1). The temporal intervals for respective frames are
12 days. Three SAR scenes were processed in each frame, i.e., two
before and one shortly after the mainshock during February 9th–17th,
2023 (Fig. 1).

The Japan Aerospace Exploration Agency launched ALOS-2
(Advanced Land Observing Satellite 2) in May 2014. ALOS-2 satellite car-
ries L-band PALSAR-2 (Phased-Array L-band Synthetic Aperture Radar 2)
sensor. We applied three SAR images from the descending path (Path 78,
Row 2860) acquired on 04/07/2021,04/06/2022, and 02/08/2023 with a fine
resolution of 10m.

The Copernicus Sentinel-2A/B twin-satellite constellation from
ESA provides open-access and multi-spectral optical images. Sentinel-
2 mission aims to monitor the land surfaces including the vegetation,
soil, and coastlines. Sentinel-2 has a revisit cycle of 5 days around the
equator and a spatial resolution of 10 m, which allows us to extract the
earthquake-induced impervious surface changes from the Earth’s
shaking event.We applied 1 frame (37SCB) of 3 Sentinel-2 images over
the example city, i.e., Kahramanmaraş acquired on 1/20/2023, 2/9/
2023, and 2/14/2023. The most recent image with low cloud cover
before the earthquake was acquired on 1/25/2023, but it was con-
taminated by strip noise, so we opted to use an earlier acquisition on 1/
20/2023.

Damage severity data
The reported damage severity from the Ministry of Environment and
UrbanizationofTurkey as the ground truth63,64wasusedas the ground truth,
including no damage, slight damage, heavily damage, to be demolished, and
collapse.We simplified the damage into three categories: (i) no damage, (ii)
slight damage, and (iii) serious damage (including heavily damaged, to be
demolished, and collapsed buildings). The “no damage” means the build-
ingswere not affected, “slight damage” indicates the damageswere generally
repairable, and “serious damage” indicates that the buildings were heavily
damaged (concrete construction and structure destroyed), to be demolished
(partially collapsed buildings, e.g., those standing still with the first floor
collapsing and disappearing) or collapsed (buildings in ruins)64. We noted
that the damage extent from field surveys or residents’ reports might not be
always consistent (e.g., Fig. S8). Kahramanmaraş is covered by SAR and

optical satellites in the given time frames and imagemodes and was used as
the high priority site in this study.

SAR coherence and damage proxy (DP)
Coherence is a byproduct of interferogram generation, which represents the
quality of the interferometry by comparing the similarity of two repeat-pass
SAR signals (s1 and s2) in the complex format. The precise definition of SAR
coherence is given by65,

γ ¼ jE s1s2
�� �jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð s1
�� ��2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð s2
�� ��2Þ

q ð1Þ

Strictly speaking, SAR coherence of each pixel is the expectation from
manySAR images acquired simultaneously, which is impractical for satellite
missions. Alternatively, the ensemble averages can be replaced by the spatial
averages over a small window.Amovingwindowof 3× 3 pixels was applied
to acquire the spatially averaging coherence. Correspondingly, the max-
imum likelihood coherence (γMLC) is given by66,

γMLC ¼
PM

m¼1

PN
n¼1s1 m; nð Þs2�ðm; nÞ

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼1

PN
n¼1 s1 m; nð Þ

�� ��2 PM
m¼1

PN
n¼1 s2 m; nð Þ

�� ��2q ð2Þ

whereM andN are the dimensions of themoving window, andm and n are
the two-dimensional image coordinates.

The coherence is determined by four primary contributors. γgeometric
relates to the spatial baseline, γthermal considers the signal-to-noise ratio,
γvolume results from the volumetric scattering, and γtemporal is usually asso-
ciated with the physical changes of land surfaces spanning the image
acquisitions67–69.

γ ¼ γgeometric:γthermal:γtemporal:γvolume ð3Þ

SAR coherence has been frequently used in change detection70,71. We
used the open-source software GMTSAR to extract coherence72. The
minimum multi-looks of 4 by 1 in the range and azimuth directions were
applied to achieve ~20m pixel spacing in SAR coherence products. We
considered the differential coherence as the damage proxy (DP) map30,32.
Different spatial baselines andweather conditions result in a systematic bias
in coherence estimates. To minimize the bias, we applied histogram
matching (‘imhistmatch’ in Matlab) to calibrate the post-seismic coherence
map based on the probability density function (PDF) of the pre-seismic
coherence map. The cumulative distribution function (CDF) curves
demonstrate the inconsistency between the pre-seismic and co-seismic
distributions before histogram matching (Fig. S9). Here cdf 1 and cdf 2
correspond to the pre-seismic and co-seismic coherence, respectively. For a
given coherence value s in the secondary, co-seismic coherence,we extracted
its correspondingCDF as cdf 2ðsÞ. Thenwemapped it to r on the reference,
pre-seismic cdf 1ðrÞ, where cdf 1ðrÞ ¼ cdf 2ðsÞ. We adjusted s in the co-
seismic coherence to r. The consequent PDF of co-seismic coherence pixel
values (Fig. S10c, f) resembles that of the pre-seismic condition
(Fig. S10a, d). Theoretically, histogram matching seeks a monotonic func-
tion to map the PDF of the secondary image to the PDF of the reference
image73–75. As a result, the deployment of histogram matching largely sup-
presses bias and discontinuities in DP map at consecutive frame margins.

Phase decorrelation, i.e., reduction of SAR coherence, is expected
from the land surface disturbance due to quakes. To enhance the signal-
to-noise ratio, we applied a causality constraint to adjust the negative
values to zeros, which has been proven effective in other sources of dec-
orrelation mapping, e.g., snow cover and wildfire burn scars. The indi-
vidual coherence ranges between 0 and 1, and thus the differential
coherence ranges between−1 and 1. We finally normalized the DPmaps
from both Sentinel-1 and ALOS-2 images.
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SAR amplitude dispersion index (ADI)
SARamplitude represents the amount of the backscattering signals from the
ground target. Amplitude dispersion index (ADI) suggests the phase sta-
bility in scatterers from a stack of SAR images76,77.

DA ¼ σa
�a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ð sij j� �sj jÞ2
N

r

1
N

Pn
i¼1 si

�� �� ð4Þ

whereN is the total number of SAR images, i is the random one among
these SAR images, σa is the standard deviation of the amplitude, s is the
complex value of a pixel on the SAR image, si

�� �� is the SAR amplitude of
the pixel on the ith image, and �a indicates the mean amplitude of the
pixel in N images.

We applied the Alaska Satellite Facility’s Hybrid Pluggable
Processing Pipeline (HyP3) products of Sentinel-1 Radiometrically
Terrain Corrected (RTC) SAR amplitude at 10-m resolution. The
Shuttle Radar Topography Mission (STRM) DEM was used for ter-
rain corrections. DEM matching and speckle filters were applied to
achieve accurate radiometrically calibrated images. We considered
sigma-nought (σ0) to represent the amplitude scale. σ0 is dimen-
sionless and a normalized measurement referring to the nominally
horizontal plane. The values of σ0 depend on the local incidence
angle, wavelength, polarization, and physical properties of the scat-
tering surfaces. We calculated the ADI from six amplitude images
(five images before the mainshock and one after the mainshock)
processed by the HyP3. The pixel spacing of the ADI map is the same
as the original HyP3 SAR amplitude products (10 m). Similar to the
DP map, larger ADI values suggest greater land surface disturbance
as a consequence of earthquake damage.

Optical derivable - normalized difference built-up index (NDBI)
The spectrum characteristics of impervious surfaces (i.e., the man-made
structures) and the normalized difference built-up index (NDBI) were
extracted from Sentinel-2 images using SNAP, MATLAB, and ArcGIS.
Sentinel-2Level 2 Aproductsprovide the surface reflectance of each spectral
band and the auxiliary data (e.g., snow and ice cover, cloud cover, and
shadowmasks).Wefirst resampled all bands to 10mpixel spacing, and then
transferred the digital number of each pixel to reflectance between 0 and 1
using a given scaling factor fromtheparameterfile.Wemodified theoutliers
to fit into the regular limits. NDBI was calculated using the short-wave
infrared (SWIR) and the near-infrared (NIR) bands78.

NDBI ¼ SWIR � NIR
SWIR þ NIR

ð5Þ

In most impervious surfaces, the reflectance of the SWIR band is
usually higher than that of the NIR band. Hence, NDBI over the
urbanized environments is greater than 0. The snow and ice areas have
been masked out before calculating the NDBI difference between the
pre- and post-seismic scenarios. To ensure the reliability of NDBI
changes, two post-seismic image products were respectively applied to
calculate the difference with the pre-seismic one.We further extracted
the DP, ADI, and differential NDBI for individual buildings using
Zonal Statistics built in ArcGIS.

Damage assessment using MCDDmodel
We applied the MCDD model to examine the performance of the para-
meters from SAR and optical images in estimating earthquake damage on a
regional scale. Machine learning algorithms can be generalized into three
categories, e.g., supervised models (regression and classification), unsu-
pervised models, and reinforcement methods. We considered the levels of
earthquake damage severity as the response target in the supervised clas-
sification models.

The application ofmachine learning in damage evolution can be either
image-oriented79,80 or pixel-oriented. Our pixel-oriented analysis is less
time-consuming considering the emergency response scenario, yet our
approach can still differentiate damage levels. The input features, including
ADI from Sentinel-1, DP from Sentinel-1 and ALOS-2, the differential
NDBI from Sentinel-2, and peak ground acceleration (PGA) from the
interpolation of the reported PGA contours by USGS, were resampled into
0.00027° by 0.00027° (~30m) using the nearest neighbor approach,
resulting in a total of 24,352 pixels. The ground truth of damage was sorted
out into five levels: 0 for no damage, 1 for slight damage, 2 for serious
damage (including heavily damaged, to be demolished, and collapsed
buildings). Here our problem setting is different from the merely true or
false classification.We applied themulticlass classificationmodel to identify
different damage levels using theOneVsRestClassifiermodule in the Sklearn
library of Python. As we havemulticlasses (0, 1, 2) in this study, theMCDD
model fits one classifier for each damage level, i.e., 3 classifiers in total. The
class is fitted again with all others in each classifier (e.g., damage level 0 v.s.
not 0). Any classifier used in regular binary classification (e.g., Random
Forest Classifier) can be implemented to fit the model. We finally chose
Random Forest Classifier in this study and passed a random state value in
order to reproduce the results.

The Ministry of Environment and Urbanization of Turkey63 reported
that there are 64%of pixelswithnodamage, 24%pixels in slight damage, 8%
pixels with heavy damage, 2% pixels to be demolished, and 2% pixels col-
lapsed in all building pixels (24,352) from Kahramanmaraş. The classifi-
cation might be subjective. Therefore, we simplified the classification into
three levels to avoid confusion, i.e., no damage, slight damage, and serious
damage (including pixels with heavy damage, to be demolished, and col-
lapse). We observe an evident imbalance in percentile among these three
levels of damage (Fig. S11). This unbalanced dataset will inevitably lead to
bias in the subsequent modeling. Therefore, we applied the imblearn
module from Sklearn to undersample themajority, i.e., not damaged pixels.
We randomly selected 80% of the input as the training dataset and used the
remaining 20% as the testing dataset.

The ROC (receiver operating characteristic)-AUC (area under the
ROCcurve)was selected as the evaluationmetrics todetermine anoptimum
classificationmodel considering bothmodel sensitivity and specificity81. The
ROC-AUC has been widely applied in the classification models as perfor-
mance evaluation metrics in remote sensing and natural hazard
monitoring82,83. TheROC-AUCmeans the areaunder theROCcurve,which
is computed from the True Positive Rate (TPR) and False Positive Rate
(FPR). In a regular binary (0 or 1) classification model, the ROC-AUC is
calculated by the numerical integration in the coordinate system of the TPR
against the FPR. A higher ROC-AUC value indicates better performance84.

Data availability
We thank the European Space Agency for collecting the Copernicus
Sentinel-1 data (https://scihub.copernicus.eu/), Alaska Satellite Facility’s
Hybrid Pluggable Processing Pipeline (HyP3) service for providing SAR
amplitude. ALOS-2 PALSAR-2 satellite scenes were obtained via the 3rd
ResearchAnnouncement on theEarthObservationsCollaborativeResearch
Agreement (Non-Funded) (ER3A2N042). SAR data processing was per-
formedusingGMTSAR software (https://topex.ucsd.edu/gmtsar/; Sandwell
et al., 2011). Figures were generated using GMT software (https://www.
generic-mapping-tools.org/; Wessel et al., 2013) and ArcGIS. The machine
learning data is available at https://doi.org/10.5281/zenodo.10995299.
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