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Reimagining plastics waste as energy
solutions: challenges and opportunities

Check for updates
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Recent statistics portray a stark reality, particularly highlighting the inadequate recycling measures
and the consequent environmental threats, most notably in developing nations. The global
ramifications of plastic pollution are elucidated, specifically focusing on the alarming accumulation in
regions such as the “Great Pacific Garbage Patch” and evolving waste management practices in
Southeast Asian countries. We emphasize the significance of Waste-to-Energy (W2E) and Waste-to-
Fuel (W2F) technologies, e.g., pyrolysis and gasification, for converting difficult-to-recycle plastic
waste into a dense-energy source. However, we identify a critical gap in current research: the emission
of CO2 during these processes. This perspective spotlights emergent CO2 capture and utilization
technologies, underscoring their role as a robust turnkey solution in making W2E and W2F methods
more sustainable and unleashing the huge potential of usingwaste plastics as a dense-energy source.
The scientific community is urged to develop tailored solutions for reducing CO2 emissions in plastic
waste conversion processes. This approach promotes circular resource utilization and realizes the
socio-economic and environmental advantages of plastic waste utilization technologies, advocating
their implementation in economically disadvantaged regions.

Borrowing a scene from “The Fabelmans”1, the culture of single-use plastics
in the United States can be traced back to the late 1950s, a time when their
usage and disposal were already rampant in average homes. For decades,
consumers have followed a restricted narrative that begins with purchasing
off-the-shelf products and endswithdiscarding them in thefirst binwithout
much thought of the aftermath. Fast forward to the present, despite society
being a lot more environmentally conscious about waste plastics, especially
with the growing concern overmicroplastics (tinyplastic particles <5mm in
size), there has been little significant change to our diehard habits2. The
COVID-19 pandemic highlighted and simultaneously exacerbated this
issue as our reliance on single-use plastics surged3. From the convenient
packaging of food deliveries to the necessary use of personal protective
equipment and medical supplies like masks, gloves, syringes, and blood
bags, our consumption of plastics has increased, driven by both choice and
necessity. The most pressing problem, we argue, is not with plastic as a
material but insteadwith its lifecyclemanagement anddisposal, suggesting a
critical re-evaluation of such practices. As a point of reference, the pro-
duction of plastics in 1950 amounted to 2million tonnes (Mt)4. By 2019, on
the cusp of the COVID-19 pandemic, that number skyrocketed to 460Mt.

According to projections by theOrganisation for EconomicCo-operation
and Development (OECD), global plastic use is expected to more than
triple by 2060, reaching an astounding 1231Mt (Fig. 1)5,6. Overall, the
generated plastics waste per capita correlates well with gross domestic
product (GDP); however, the precise magnitude of this correlation varies
significantly across different regions, particularly with consumption
habits (Fig. 2). For that reason, the level of waste per capita varies widely
among high-income nations; One that is characterized by excessive
consumptions (e.g., the United States) at the upper end, and one that is
marked by environmentally conscious needs for recycling (e.g., Norway)
at the lower end. Major contributors to plastics waste in 2016 include the
United States, generating 34.0Mt, India with 26.3Mt, and China with
21.6Mt7. While it is expected that most countries will see an increase in
plastic consumption alongside GDP growth, we have not seen an overall
bucking of the trend in terms of plastic waste generation. It suggests that
plastic recycling is still insufficient, even among high-income nations.
Most of these nations are net exporters of plastic waste. For example, the
US exported~5%of its plasticwaste in 2010; France exported 11%, and the
Netherlands exported 14%8.
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The Sankey diagram (Fig. 3), illustrating the production, end-of-life,
and recycling of packaging plastics, offers an overviewof the present state of
plastics management. Two critical observations emerge: (1) the low rate of
plastic recycling, and (2) the dominant disposal practices via landfilling and
dumping lack effective means for plastics decomposition at the end of their
lifecycle. Other disposal methods, such as incineration and unregulated
dumping—leading to ocean pollution, raise immediate environmental
concerns due to excessive CO2 emissions and marine litter, respectively. A
relatively recent study discloses an alarming 11.6–21.1Mt of microplastics
are suspended in the upper 200 meters of the Atlantic Ocean as of 20209.
These microplastics, composed primarily of polyethylene (PE), poly-
propylene (PP), and polystyrene (PS), pose a dire threat to marine life and
have the potential to enter the food chain, endangering both marine and
human health.

As a matter of fact, land waste plastics are easily strayed into
waterways and ultimately carried by ocean currents. A sea area of ~1.6
million km2 between Hawaii and California earned the moniker the
“Great Pacific Garbage Patch” for trapping ~1.8 trillion pieces (or
80,000 tonnes) of plastics in the swirling ocean current10. Similar

patches exist in every ocean around the world. The positively buoyant
and float plastics represent just the tip of the iceberg, comprising ~1%
of the total plastic waste entering the oceans11,12. The rest, including
those that break down into microplastics, are found (1) among the
sediment layers on the seafloor, (2) sinking, and (3) trapped or drifting
near shorelines13. The presence of microplastics, whether in their ori-
ginal form or as fragments from larger pieces, has raised significant
environmental and health concerns. Nations surrounded by vast water
bodies, which act as conduits for drifting plastics, are particularly
vulnerable to microplastic pollution. They include, for example,
members of the Association of Southeast Asian Nations (ASEAN),
India, Central and South America, New Zealand, the Pacific Islands,
and the Mediterranean. While most plastics in their pristine states are
inert and a nuisance in larger pieces, like any solid materials, they can
adsorb potentially harmful chemicals and microbes. The sheer mac-
rosize of these waste plastics limited the extent of our interactions with
them. However, when these plastics break down into micron-sized
fragments, they become small enough to be ingested by marine life,
thereby entering the human food chain14,15. As these plastics further
degrade into nanoparticles, there is a potential risk that these nano-
plastics could penetrate the blood-brain barrier in humans16,17.

Recycling challenges and transboundary disposal
Forecasts by the United Nations indicate that by 2040, greenhouse gas
(GHG) emissions stemming from the complete lifecycle of traditional, fossil
fuel-based plastics are poised to contribute a significant 19% of the global
carbon budget or ~2.1 gigatonnes of CO2 equivalent (GtCO2e)

18. The figure
is based on the current scenario where 98% of plastics are derived from
virgin feedstocksor fossil fuels. Recycling remains themost environmentally
friendly option, in the long run, to cope with the rising plastic demand and
yet limit emissions.

Despite a global increase in recycling efforts, it may not yet be a
comprehensive solution. The focus has been primarily on three types of
high-demand plastics: rigid polyethylene terephthalate (PET), high-density
polyethylene (HDPE), and polypropylene (PP) containers, which are
plastics of categories 1, 2, and 5, respectively19,20. They resist natural
degradation and accumulate in the soil and water bodies. In addition, most
consumers are unaware of other plastic types that may end up in the
recycling stream but are considered contaminants, for example, vinyl pipes
and polystyrene cups. The issue arises due to specific recycling design and
structural requirements needed for processing machinery. Ideally, the
energy input for the recycling system requires using renewable energy

Fig. 1 | Global Plastics Production Trends. The figure illustrates the exponential
growth in plastics production in the next four decades on OECD forecasts5,6.

Fig. 2 | Correlation of plastics waste generation
and GDP per capita in different countries. The
symbol shape and size correspond to the year of the
data and the country’s population, respectively; the
scale of the x-axis is not linear7,8,66–78.
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coupled with energy storage to achieve carbon neutrality or negative at
different times of the day. Effective recycling demands substantial materials
recovery and sorting infrastructure, typically found in wealthier regions.
This infrastructure, including roads and trucks necessary for expanding
scalability, is often unavailable in poorer areas already burdenedwith plastic
waste.Concurrently, althoughnot the focus of this article, bioplastics are not
yet fully proven to be a foolproof solution to the issues posed by waste
plastics21,22.

Plastic waste distribution is a global issue that varies widely across
socio-economic profiles, population density, and geographic locations.
There have been instances where waste plastics are exported from one
country to another, often to less developed economies. Policy decisions
of the exporting countries significantly influence the movement of
these waste plastics. For example, in 2017, when China implemented a
ban on importing 24 types of plastic waste to prevent it from becoming
the world’s dumping ground, there was an immediate surge in the
importation of waste plastics from neighboring countries (Fig. 4)23,24.
The Basel Convention, designed to regulate the movement of hazar-
dous wastes, including waste plastics, is the primary international
treaty overseeing such transboundary practices25. Despite this,

“strategic” importation of plastics, often labeled for recycling, still
occurs in countries with poor policies on waste management26.
Malaysia and the Philippines have recently taken a stand against plastic
waste imports. In 2019, they returned 5400 tonnes of waste plastics to
their countries of origin, which included the United States, Canada,
Australia, and the United Kingdom27–29.

Navigating beyond conventional waste plastics
management
Despite the challenge of the rapid accumulation of waste plastics, age-old
landfilling, and incineration remain the most prevalent disposal methods.
One preference over the other is essentially critical decision-making
between the “lesser of two evils,” which in turn hinges on prioritizing key
environmental and, to some extent, economic goals. Landfilling, while
widespread, leads to long-term environmental contamination and space
constraints. Incineration, while efficiently eliminating solid wastes, adds to
direct CO2 emissions and is disastrous if adopted as theworld’s sole disposal
method. Conversion of plastics waste to textiles, building materials and 3D
printing filaments are innovative solutions to circumvent the accumulation
of waste plastics or direct emission of CO2. However, adoptions may be
limited at the current trial stages.

As far as waste plastics incineration is concerned, direct CO2 genera-
tion is inevitable, although some degree of offsets in carbon emission can be
madepossible through theW2Econversion.Here, the exothermicheat from
the combustion of plastics-containing trash is used to produce hot water for
various domestic and industrial applications or to superheated steam to
power turbines for electricity generation. Such processes have been suc-
cessfully implemented in Germany, Sweden, Denmark, Norway, The
Netherlands, Belgium, Singapore and Japan.Others, includingChina, India,
Thailand, Turkey, and Mexico, are beginning to explore similar avenues.
Nevertheless, the process is not without controversies due to excessive
dioxin30 and CO2 emissions. Stringent exhaust treatment and CO2 capture
and storage (CCS) are necessary to curb these emissions. To the best of our
knowledge,W2E plant with coupled CCS remains unprecedented. This can
be attributed to the limited accessibility to CO2 reservoirs at this early stage
of development. Fly ashes recovered from incineration are valuable mate-
rials for CO2 adsorption and for creating geopolymers (i.e., green concrete),
thereby further offsetting the GHG emissions from waste plastics
incineration31,32.

When heated under restricted oxygen content, combustion of
waste plastics or, for that matter, harnessing exothermic heat is not
possible. Instead, the waste plastics undergo W2F conversion via

Fig. 3 | Sankey diagram of the production, end-of-
life, and recycling of packaging plastics. 98% of
packaging plastics originate from fossil fuels, of
which 32% of these plastics are mismanaged, with
2–5% of this mismanaged waste entering the oceans
via rivers79.

Fig. 4 | Plastics waste import in Asian countries in 2017 and 2018. The figure
shows a noticeable rise in plastics waste import in some Asian countries following
China’s ban on 24 types of solid waste from abroad8.
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pyrolysis or gasification. Pyrolysis is particularly effective for handling
packaging films, pouch bags, and multi-layered materials, which most
mechanical recycling methods struggle to process. Compared to
incineration, pyrolysis decomposes plastics at lower temperatures,
typically between 350 and 900 °C, in an oxygen-deficient environment
or, in specific cases, with a very low oxygen concentration to increase
the heating rate and resulting in a higher yield of product gas33,34. High
temperatures lead to dehydration, depolymerization, and fragmenta-
tion of the plastics to produce volatile components. This process
effectively breaks down the plastics into shorter-chain hydrocarbons.
Notably, pyrolysis of mixed plastic waste emits 50% less CO2 than
incineration, i.e., ~1 tonne less CO2 than incineration per 1 tonne of
mixed plastic waste35. The pyrolysis product can be refined into diesel
and other petrochemical materials. Selectivity control can be achieved
through the addition of catalysts, e.g., silica-alumina and proton-
exchanged zeolites like protonated Zeolite Socony Mobil–5, to obtain
olefins that can, in turn, be repolymerized as virgin plastics thus
facilitating the closed-loop recycling36.

Compared with pyrolysis, gasification is typically carried out at higher
temperatures between 700 to 1500 °C, has a longer residence time, andmay
include the addition of steam. This results in simple molecules, primarily
syngas (hydrogen and carbon monoxide), that can be further combusted
to generate electricity or conversion to synthetic fuels, through
water-gas shift reaction (CO+H2O→CO2+H2), methanation
(CO+ 3H2→CH4+H2O), and Fischer-Tropsch synthesis (for example,
paraffin synthesis: nCO+ (2n+1)H2→CnH2n+2+ nH2O)

37,38.
Depending on the reaction temperature and, hence, the residue

char/coke quality from W2E or W2F, they can be used as reinforcing
agents in tyres, construction materials, soil conditioners, metallurgical
coke, and adsorbents39–42. Such valorizations offset the carbon footprints
of the W2E and W2F conversions. A point to practice with caution:
despite the derived char/coke being considered a green fuel because it is
converted from waste plastics, the emitted CO2 from its combustion to
generate heat/electricity is ultimately traced to the original feedstock of
the plastics, i.e., fossil fuels.

It is increasingly clear that fully realizing the benefits of waste plastic
conversion necessitates, in one way or another, the management of direct
CO2 emissions. In this context, carbon capture and storage (CCS) or utili-
zation (CCU) is an essential downstream process and among the most
urgently anticipated carbon mitigation technologies. There are two critical
steps inCCU: firstly, the sequestration of CO2 fromflue gas or other sources
of mixed gases, and secondly, the conversion of concentrated CO2 into
higher-value products. The former step is crucial for enhancing the reaction
kinetics and, to some extent, the selectivity of CO2 conversion, leading to a
higher yield per unit of energy input.

Pressure swing adsorption is the industry’s most widely adopted
technology for gas separation. Its working principle is analogous to gas
chromatography, where the gas of interest, CO2, is separated from others
based on their adsorption affinity and elution time through a packed
column filled with adsorbents. Once the CO2 is eluted, the column is
evacuated to remove the remaining adsorbed gases for a new cycle of
adsorption43. Given the cyclic pressure swings that are costly to operate,
current research is focused on developing cost-effective and less energy-
demanding CO2 adsorbents. Materials such as zeolites andmetal-organic
frameworks (MOFs) are chosen for their porous structure, facilitating
effective CO2 retention44. Robust CO2-binding sites in MOFs like Al-
PMOF andAl-PyrMOF show exceptional carbon capture capacity even in
wet flue gas, which is a major challenge in realistic carbon capture
processes45. Low-energy separation processes are favored for their clear
environmental andprocess economics benefits46,47.Membrane separation,
utilizing microporous zeolitic materials, is particularly noteworthy as
these membranes are semi-permeable to CO2 and do not necessitate the
ultra-high pressurization of flue gas48,49. Of special mention is ZIF-62,
which exhibits high CO2 selectivity and permeability, making it suitable
for industrial applications50.

Once CO2 is recovered in sufficiently high concentrations, it can
be further converted into fuels (i.e., CCU) through chemical, photo(-
electro)chemical, and electrochemical methods51–53. The Sabatier or
methanation reaction is particularly noteworthy for its ability to
convert CO2 with high efficiency54, and can be readily injectable into
existing natural gas pipelines. The catalytic conversion of CO2 to
methanol is highly sought-after because methanol is the simplest form
of liquid hydrocarbon at ambient conditions (thereby being highly
transportable) and a versatile chemical intermediate55–59. Recent stu-
dies have been delving into the synergistic effects of multicomponent
catalysts, such as Cu-ZnO-ZrO2 (CZZ), which show high CO2 con-
version and methanol selectivity60. Additionally, there is increasing
interest in non-Cu-based catalysts, as evidenced by the creation of
palladium-promoted In2O3 sites that exhibit high methanol selectivity
and stability61. Further, conversion from methanol to higher hydro-
carbons can be carried out via themethanol-to-X (X = olefins, dimethyl
ether, formaldehyde, hydrocarbons) reaction within the well-defined
micropores of acidic zeolite catalysts62,63. Olefins can be returned as
monomer feedstocks to close the loop of plastics recycling, while other
products are downcycled as chemicals or fuels for different
applications.

Concluding remarks
Managing waste plastics has evolved into a sophisticated practice inter-
twined with environmental impacts, carbon emissions, and economic via-
bility. Compared to other non-perishable trash, such as metal scraps or E-
waste, waste plastics have an economic value that is too low to justify tedious
resource recoveries. The ongoing issue of transboundary disposal necessi-
tates political commitment and collaboration between exporting and
receiving nations to weed out unscrupulous practices involving false
declaration of waste plastics for recycling.

Any efforts to close the recycling loop, either by recovering or
reforming the monomers, is deemed the most emission-friendly. The
challenge in recycling is to recover sufficiently high-purity monomers that
reproduce plastics with comparable quality as that made of virgin mono-
mers. Chemically, this requires meticulous sorting and segregation of dif-
ferent waste plastics and managing their additives.

Where options for monomer recoveries are not possible, the next best
options are energy recovery from incineration (i.e., W2E) or as non-
monomer fuels frompyrolysis (i.e.,W2F). A notable concern arises with the
emission of CO2, either directly during theW2E process or predominantly
from the combustion of fuels produced via W2F. While the infrastructure
requires significant investment, a comparison against landfilling needs to be
made regarding environmental implications, land and maintenance costs,
and the associated carbon emissions.Different countries are bound by other
priorities due to different choices of solutions.

The Maldives, an island nation, is a notable case study of adopting
W2E solutions for plastic waste management. Since the 1990s, the
Maldives have been disposing of its waste in a lagoon known as
Thilafushi64, which has transformed into a landfill over time. In this
lagoon, waste plastics were commonly burned in the open air. It is
estimated that the Maldives produces around 20,000 tonnes of waste
plastic annually, with only 5% being recycled65. Most of this waste
ended up in the lagoon landfill, where it was either openly burned or
leaked into the ocean. In a significant shift towards sustainability, the
government, since late 2021, has committed to transforming this waste
lagoon into a large-scale “plastics-to-energy” facility. This project,
costing around US$211 million, is targeted for completion in 202465.
The initiative includes establishing amodernwaste collection, transfer,
and disposal system across the nation, covering 32 islands. When the
produced energy reduces the demand for fossil fuel to do the same, it
signifies a mutually beneficial outcome in terms of environmental
sustainability and economic growth. An intriguing question remains
concerning the large amount of drifting waste plastics at or near the
shoreline that was washed from other countries, or for that matter,
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illegally imported waste plastics—whose carbon emissions should be
accounted for in cleaning up, and are there adequate economic benefits
to do so?
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