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Children exhibit a developmental
advantage in the offline processing
of a learned motor sequence

Check for updates

Anke Van Roy, Geneviève Albouy, Ryan D. Burns & Bradley R. King

Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory.
That is, young adults exhibit optimal performance, children are conceptualized as developing systems
progressing towards this ideal state, and older adulthood is characterized by performance
decrements. However, not all behaviors follow this trajectory, as there are instances in which children
outperform young adults. Here, we acquired data from 7–35 and >55 year-old participants and
assessed potential developmental advantages in motor sequence learning and memory
consolidation. Results revealed nocredible evidence for differences in initial learning dynamics among
age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to
adolescents, young adults and older adults. Interestingly, children demonstrated the greatest
performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory
consolidation. These results suggest that children exhibit an advantage in the offline processing of
recently learned motor sequences.

The ability to learn novel movements is vital to the everyday functioning of
individuals across the human lifespan (e.g., from a child learning to ride a
bike to an older individual learning to operate a touchscreen). One of the
dominantmotor learning paradigms in the field ismotor sequence learning
(MSL), whereby participants acquire a novel series of interrelated actions
(i.e., amotor sequence).MSLhas beenextensively studiedwithmultiple task
variants, including the serial reaction time task (SRTT; i.e., participants
respond to visual cues presented in a repeating order) and thefinger tapping
task (i.e., participants repeatedly reproduce a known/shown sequence of
finger movements in a self-initiated manner). There has been extensive
previous research that has employed these MSL task variants in healthy
young adults (~18–35 years), facilitating the development of a framework
that characterizes the time course of sequence learning in this age group (see
refs. 1–4 for reviews). Typically, a fast online (i.e., during repeated practice)
acquisition phase with substantial performance improvements occurs
during an initial training session.This is followedbya slowoffline (i.e., in the
absence of active task practice) consolidation phase that spans hours during
which the acquired memory trace is stabilized, strengthened and reorga-
nized into a more robust form.

Although previous research has examined MSL in school-aged chil-
dren (i.e., between 5 and 12 years), the results are quite heterogenous.While
some studies have reported comparable learning within the initial practice
session in children and adults5–8, others have shown that children exhibit

worse9–13 or better learning10,14–17. There is a general consensus, however, that
children exhibit impaired consolidation of a recently acquired motor
sequence over offline periods that include sleep [e.g., refs. 13,15,18, but see
refs. 8,19 for specific examples of sleep-related benefits]. Specifically,
whereas post-learning sleep is known to boost offline consolidation pro-
cesses in young adults [see ref. 3 for a review], such a beneficial effect is
absent in children. Interestingly, there is some evidence from sequential
finger tapping task variants suggesting that this degraded consolidation over
sleep may be the by-product of enhanced or accelerated consolidation over
the wake epochs shortly following initial learning9,14,20. Specifically, children
showed a rapid performance stabilization and enhancement 15 min9 and
1 h14 after learning, which were not observed in young adults.

Interestingly, this enhanced offline processing does not appear to be
limited to the timescale of hours following initial learning but is also
observed on shorter timescales. Specifically, Du et al.5 employed a stepping
versionof an SRTTand found that young children (i.e., 6-year-olds) showed
larger performance improvements over the short rest intervals in between
blocks of practice within a session as compared to older children (i.e., 10-
year-olds) and young adults. These results collectively suggest that young
childrenmay exhibit a developmental advantage with respect to the micro-
(i.e., timescale of seconds between practice blocks) and macro- (i.e., time-
scale of hours between practice sessions) offline processing of recently
practicedmotor sequences duringwake intervals. This childhood advantage
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could then be added to the list of examples in which children outperform
adults in specific learning and memory behaviors (for review see21).

At the other end of the lifespan, there is considerable evidence that
older adults (>~60 years) exhibit comparable initial learning of a novel
motor sequence as young adults22–26. And,whereas children appear to have a
developmental advantage in the offline processing of recently acquired
sequences, older adults are known to exhibit deficits. Specifically, the
magnitude of offline gains over macro-offline intervals that include sleep
and/orwake is significantly less than those observed in younger adults22,24–28.

Although the existing literature suggests that the offline processing of
recently acquired movement sequences appears to be superior in children
and then declines throughout adulthood, systematic examinations into
changes across the human lifespan are relatively limited (but see
refs. 10, 11, 16,29 for examples in the domain of implicit sequence learning).
This study thus aimed to provide an exhaustive characterization of motor
learning and memory consolidation behaviors across the lifespan (i.e., in
groups of children, adolescents, young adults and older adults). Consistent
with previous research5–8, we hypothesized that the initial learning of a
motor sequence (i.e., within a single training session) would be comparable
across the 4 age groups. We expected children to exhibit enhanced micro-
and 5-h macro-offline consolidation in comparison to young adults, indi-
cative of a developmental advantage in the offline processing of a recently
acquiredmotor sequence acrossperiodsofwakefulness.This developmental
advantage in macro-offline consolidation was expected to be absent in the
24-h retest, as previous research has indicated impaired sleep-facilitated
consolidation in children8,13,15,18. Last, and consistent with earlier studies,
older adults were expected to demonstrate intact initial learning but
impaired macro-offline consolidation across both 5- and 24-h intervals
when compared to the young adults.

Methods
The project consisted of two experimental protocols. Specifically, Experi-
ments 1 and 2 examined the effect of age on the initial acquisition of a
movement sequence and the time course of motor memory consolidation,
respectively.Data collection andanalysis planswerepre-registered inMarch
and August 2021 via the Open Science Framework and can be accessed at
https://doi.org/10.17605/OSF.IO/WBK9H and https://doi.org/10.17605/
OSF.IO/ZMJ75. Any additional analyses that were not included in the
pre-registrations are labeled in this text as exploratory. Note that 4 (out of
130) and 12 (out of 108) datasetswere acquiredprior to the pre-registrations
of Experiments 1 and 2, respectively. This was done to verify that keypresses
and their timingwere logged adequately, and that saved datawere complete.
The processed data used for the results presented in this text as well as the

raw data are publicly available on Zenodo (https://doi.org/10.5281/zenodo.
8274118).

Participants
Healthy volunteers between 7–35 and 55–75 years old of all genders were
recruited by advertisements on relevant websites and research databases.
Note that as our experiments were conducted through a web-based data
collection platform, recruitment was not constrained to a specific geo-
graphical region. Individuals interested in participation were sent an online
screening questionnaire to assess eligibility, which was subsequently
reviewed by a member of the research team. Exclusion criteria were: (1)
reported history of medical, neurological, psychological or psychiatric
conditions, (2) use of psychoactive or sleep-influencing medications, (3)
indications of abnormal or irregular sleep, (4) mobility limitations of the
fingers or hands, or (5) considered a professional typist or prior extensive
training on a musical instrument requiring dexterous finger movements
(e.g., piano, guitar). All experimental procedures were approved by the
University of Utah Ethics Committee (IRB_00136894). Adult participants
and parents of underage participants gave informed consent and partici-
pants below 18 years of age provided informed assent. Participants received
an electronic gift card with a value of $15 or $30 (Experiments 1 and 2,
respectively) as compensation for their participation.

A convenience sample of 224 individualsmet the inclusion criteria and
thus initiated participation in an experimental protocol. They were divided
into the following four age groups: children (operationally defined as
7–12 years old), adolescents (13–17 years old), young adults (18-35 years
old) and older adults (≥55 years old). Pre-registered analyses compared
differences among these age groups. Yet, to provide more fine-grained
analyses of age-related trajectories of motor learning and memory con-
solidation behaviors, we also conducted exploratory analyses with age as a
continuous variable (see below for details).

Sample size computations were conducted a priori and with the soft-
ware G*Power30. For the assessment of age-group differences in initial
motor sequence learning (i.e., Experiment 1), and to detect an effect size of
f = 0.3 (based on the comparison of initial learning between 9-year-olds and
young adults in Adi-Japha et al.9), with an alpha of 0.05 and power of 0.80,
the desired sample size was 128 subjects (32 per group). Of the participants
that initiated the motor learning protocol, data from 7 participants were
excluded from analyses due to a failure to comply to experimental
instructions (e.g., repeatedly pressing the same key; n = 3 children), missing
data because of software issues (n = 1 young adult), or a failure to correctly
perform themotor task (i.e., statistical outliers (>3 SD fromgroupmean) on
sequence accuracy as defined in the preregistration; n = 1 child, 1 young
adult, 1 older adult). Excluded participants were replaced and thus the final
sample size for analyses consisted of 130 participants (see Table 1 for par-
ticipant demographics).

For the assessment of age-group differences in macro-offline con-
solidation processes (i.e., Experiment 2), the detection of an effect size of
f = 0.20 (slightly more conservative than Adi-Japha et al.9), with an alpha of
0.05, a power of 0.80 and a correlation among repeated measurements of
0.25, this experiment required a sample size of 108 (27 participants per
group). Of those participants that initiated the motor learning protocol, 21
individuals were excluded from data analysis. Specifically, 17 participants
failed to comply to experimental instructions (i.e., 4 children repeatedly
pressed the samekey and 5 children, 2 young adults and 6 older adults either
did not complete the protocol or did not adhere to the specific schedule of
the experimental sessions). One older adult was excluded due to inaccurate
data because of software issues. And, based on our preregistration, addi-
tional exclusions were due to a lack of performance improvements across
training (n = 1 young adult, 1 older adult) and an inability to correctly
perform the motor task (statistical outliers on sequence accuracy; n = 1
young adult). Similar toabove, excludedparticipantswere replacedand thus
the final sample for analyses consisted of 108 participants (see Table 2 for
participant details). Data from the third session of one young adult and the
post-learning random data of one adolescent were missing; thus, these

Table 1 | Participant demographics, and sleep and vigilance
scores for each age group in Experiment 1

Variable Children Adolescents Young adults Older adults p-value

n 33 33 32 32 /

Female (n) 17 12 23 24 0.004*

Age (years) 10.2 (1.6) 15.3 (1.3) 26.3 (5.0) 64.4 (5.2) /

M/E Preference 2.9 (0.9) 3.3 (0.8) 2.9 (1.0) 2.3 (0.8) <0.001*

Time of testing (SD in min) 12:47 (172) 12:29 (133) 14:52 (175) 12:05 (169) <0.001*

Sleep quality 5.1 (0.8) 5.0 (0.7) 4.8 (0.6) 4.8 (0.8) 0.12

Sleep duration (hours) 9.8 (0.9) 9.1 (1.4) 8.5 (1.0) 7.7 (1.1) <0.001*

SSS score 2.0 (0.9) 2.0 (0.8) 2.0 (0.7) 1.5 (0.7) 0.031*

Numbers represent the mean, with standard deviation in parentheses. Gender was determined by
asking what gender the participant identified with the most. No participant reported to be non-
binary.Morningness/Eveningness (M/E) Preferencewas added as an exploratory variable to assess
age-related differences in circadian preferences and was defined on a 5-point Likert scale (i.e., 1 =

extrememorningperson, 5=extremeeveningperson). Theaverage timeof testing is specified in 24-
h time notation,with theSD inminutes. Sleep quality is definedon a 6-point Likert scale (i.e., 1= very
bad, 6= very good). SSS=Stanford SleepinessScale33, with higher numbers indicative of increased
sleepiness. The p-values resulted from one-way ANOVAs assessing group differences. See Sup-
plementary Table 1 for full statistical information.
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individuals were excluded from the contrasts involving these specific task
runs only.

Note that the procedures of Experiment 1 (assessing initial motor
sequence learning) were identical to the first session of Experiment 2
(assessing macro-offline consolidation). Accordingly, data from a subset of
early participants from Experiment 2 (n = 42; 16 children, 19 adolescents, 4
young adults, 3 older adults) were included in the analyses of Experiment 1.
Thus, these participants were included in analyses for both experiments.

General experimental procedures
After verificationof eligibility, participantswere contacted via emailwith the
necessary information to continue participation. This email contained a link
to a video created by our study team that provided detailed instructions on
how to complete our motor learning task (details on the task are provided
below). Participantswere also provided links toour series of tasks created on
the web-based data collection platform PsyToolkit31,32. As our experiments
were conducted online, participants were free to choose which day(s) to
complete experiments butwere instructed to complete theprotocols ondays
in which they were well-rested and could adhere to the schedule of the
sessions. The precise times-of-day that the experiments were completed
were constrained and followed experiment-specific schedules provided
below. Participants were instructed to receive a good night of sleep and to
refrain from alcohol the night before and throughout the experiment.
Compliance to these instructions was verified through a brief questionnaire
prior to completion of the motor task. Lastly, parents of the child partici-
pants were asked to be present when their child completed the experiments.

For both experiments and at the beginning of each experimental ses-
sion, a brief questionnaire was completed in which participants reported
their sleep patterns in the previous 24 h and their subjective feelings of
alertness (Stanford Sleepiness Scale33). Additionally, and for Experiment 2
only, participants completed the Psychomotor Vigilance Task (PVT34) to
provide an objective measure of vigilance at the time of testing. The PVT

required participants to fixate on the middle of the computer screen and
press the space bar as fast as possible when a visual stimulus appeared after a
varying delay interval. Response time (i.e., time between appearance of
stimulus and keypress) was logged and used to assess vigilance (i.e., higher
RTs indicative of lower vigilance). We administered a shortened version of
the PVT35,36 that consisted of 35 trials, of which the first 5 were discarded as
participants became familiar with the task.

Serial Reaction Time Task (SRTT)
All participants performed an adapted version of the explicit Serial Reaction
Time Task (SRTT) similar to our previous research37,38, which was coded in
the online data acquisition platform PsyToolkit31,32. The SRTT was chosen
for this research, in part, because of the online data acquisition protocol. It
was assumed that participants, and young children in particular, couldmore
easily comprehend and follow the instructions for the SRTT variant (i.e.,
press the key that spatially corresponds to the visual stimulus). This in
contrast to the sequential finger tapping task, where fingers are assigned
numerical values and participants are then instructed to perform the
sequence of finger movements that corresponds to the explicitly provided
sequence of numbers.

The SRTT employed in this research consisted of an 8-choice reaction
time task inwhich participants were instructed to react to visual cues shown
on a screen (see Fig. 1a). Eight squares that spatially corresponded to the
eight fingers used to perform the task (i.e., no thumbs) and the eight keys on
the keyboard were presented on the screen. The color of the squares alter-
nated between red and green, indicating rest and practice blocks, respec-
tively. During practice, a visual stimulus (i.e., a butterfly) appeared
consecutively in one of the squares and participants responded to the visual
cues by pressing the corresponding keywith the correspondingfinger as fast
and accurately as possible. The task was presented as a game, designed to
increase motivation in child participants, in which participants of all four
age groups were instructed to move quickly to catch as many butterflies as

Table 2 | Participant demographics, and sleep and vigilance scores for each age group in Experiment 2

Variable Children Adolescents Young adults Older adults p-value

n 27 27 27 27 /

Female (n) 16 12 21 18 0.08

Age (years) 10.6 (1.6) 15.4 (1.4) 26.6 (4.4) 63.0 (4.4) /

M/E Preference 3.0 (0.8) 3.2 (0.9) 3.2 (0.8) 2.4 (0.9) 0.002*

Session 1 Time of testing 11:34 (97) 11:34 (96) 11:39 (82) 11:30 (92) 0.99

Sleep quality 4.9 (0.7) 5.1 (0.6) 5.0 (0.6) 4.7 (0.8) 0.19

Sleep duration (hrs.) 9.7 (1.1) 9.4 (1.2) 8.3 (1.1) 7.7 (1.3) <0.001*

SSS score 2.2 (0.9) 2.1 (0.8) 2.0 (0.7) 1.5 (0.7) 0.012*

PVT score (ms) 360.9 (81.5) 341.9 (102.3) 320.9 (62.0) 327.5 (75.7) 0.31

Session 2 Time of testing 16:42 (99) 16:56 (112) 16:43 (89) 16:29 (96) 0.81

Offline period (hrs.) 5.1 (0.8) 5.4 (0.9) 5.1 (1.1) 5.0 (0.7) 0.43

SSS score 2.0 (1.0) 1.8 (0.8) 2.0 (0.7) 1.7 (0.7) 0.36

PVT score (ms) 386.0 (88.4) 318.5 (61.0) 320.3 (69.1) 323.6 (68.0) 0.002*

Session 3 Time of testing 11:57 (148) 12:25 (156) 11:30 (97) 11:24 (109) 0.31

Offline period (hrs.) 24.4 (1.8) 24.8 (1.9) 23.8 (1.4) 23.9 (1.4) 0.095

Sleep quality 5.0 (0.8) 4.7 (0.8) 4.7 (0.7) 4.6 (0.7) 0.38

Sleep duration (hrs.) 10.3 (0.9) 9.3 (1.5) 8.0 (1.3) 7.6 (1.0) <0.001*

SSS score 1.9 (0.7) 2.3 (1.3) 2.3 (0.8) 1.5 (0.6) 0.003*

PVT score (ms) 378.7 (97.3) 325.8 (74.6) 308.0 (54.4) 306.3 (33.6) <0.001*

Numbers represent the mean, with standard deviation in parentheses. Gender was determined by asking what gender the participant identified with the most. No participant reported to be non-binary.
Morningness/Eveningness (M/E) Preference was added as an exploratory variable to assess age-related differences in circadian preferences and is defined on a 5-point Likert scale (i.e., 1 = extreme
morning person, 5 = extreme evening person). The average time of testing is specified in 24-h time notation, with the SD in minutes. The offline periods represent the time periods between session 1 and
sessions 2 and 3, respectively. Sleep quality is defined on a 6-point Likert scale (i.e., 1 = very bad, 6 = very good). SSS =Stanford SleepinessScale33, with higher numbers indicative of increased sleepiness.
The PVT score indicates the average simple RT across the 30 trials. The p-values resulted from one-way ANOVAs assessing group differences. See Supplementary Discussion 1 for full statistical
information.
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possible (see Fig. 1b). The visual cues succeeded each other in either a
pseudorandom or a sequential order, depending on the experimental run
(i.e., pseudorandom SRTT vs. sequential SRTT, respectively). In the
sequential SRTT, participants were aware that the stimuli and keypresses
followed a deterministic sequential pattern (i.e., 4-7-3-8-6-2-5-1, in which 1
through 8 are the left pinky to the right pinky fingers from left to right), but
they were not given any information about the structure or length of the
sequence. All participants completed the same 8-element sequence. During
the pseudorandom SRTT runs, the visual stimuli (and thus corresponding
key presses) appeared in an order that pseudo-randomly changed every 8
elements. Specifically, the stimulus appeared in each location once every
eight elements, but the stimulus never appeared in the same location con-
secutively. Theorderof the stimuli thus changed every eight elementswithin
a block, across blocks of practice and differed across participants. For both
pseudorandom and sequential task variants, practice blocks contained 48
key presses (i.e., 6 repetitions of the 8-element sequence in the sequence
condition) and were separated by 15-s rest periods.

Measures reflecting performance speed (i.e., response time between
visual cue and keypress) and accuracy (i.e., correct or incorrect keypress) of
the participants’ motor responses were recorded for each trial and used to
assess performance on the task. Per our pre-registrations, individual trials
(i.e., responses) were excluded from analyses if the measured response time
was greater than 3 standard deviations above or below the participant’s
mean response time for that block. For Experiments 1 and 2, an average of
1.78% (children: 2.03%, adolescents: 1.76%, young adults: 1.68%, older
adults: 1.65%) and 1.69% (children: 2.0%, adolescents: 1.83%, young adults:
1.58%, older adults: 1.34%) of trials were excluded from analyses,
respectively.

Experiment 1 design
The first experiment consisted of a single experimental session in which
participants performed both the random and sequential variants of the
SRTT (see Day 1 [blue] of Fig. 1c). Participants were instructed to complete

this session between 9 am and 7 pm (see Table 1 in the main text and
Supplementary Note 1, Supplementary Table 1 and Fig. S1 for details on
time of testing). The experimental session started with one block of famil-
iarization (pseudorandom; data not analyzed) followed by four blocks of the
pseudorandom SRTT (pre-learning random), which afforded an assess-
ment of generalmotor execution on the task prior to any sequence learning.
Subsequently, participants completed 20 blocks of the sequential SRTT.
These blocks were divided into two runs: a training run that consisted of 16
blocks and then a post-learning test run of 4 blocks. The post-learning test
run was completed approximately one minute after the end of training,
affording the assessment of end-of-training performance following the
further dissipation of mental and physical fatigue39. Lastly, four additional
blocks of the pseudorandom SRTT (post-learning random) were com-
pleted, allowing us to assess whether improvements in performance on the
sequential SRTT could be attributed to learning of the movement sequence
per se (i.e., sequence-specific learning) or simply a general improvement in
movement speed due to task familiarization.

Experiment 2 design
The second experiment consisted of three experimental sessions (see
Fig. 1c). Participants were instructed to complete the first session between 9
am and 2 pm. This session was identical to what was described for
Experiment 1. The second session took place approximately five hours after
the first session, allowing the assessment of motor memory consolidation
after an interval of post-learningwakefulness. This second session consisted
of four blocks of sequential SRTT during which participants again per-
formed the same specific sequence as in session 1, and four blocks of
pseudorandom SRTT (post-test random). Finally, the third session was
completed 24 h after the first session, allowing the examination of motor
memory consolidation after a night of sleep. Similar to the second session,
this third session included four blocks of sequential SRTTand four blocks of
pseudorandom SRTT (post-test random). See Table 2 in the main text as
well as SupplementaryNote 1, SupplementaryTable 2 and Fig. S2 for details

Fig. 1 | Experimental procedures. a Serial reaction time task (SRTT). A stimulus
appeared in 1 of 8 spatial locations and the participant responded with the corre-
sponding key/finger as fast as possible. Stimuli appeared in either a pseudorandom
or sequential (i.e., 4-7-3-8-6-2-5-1) manner. b To increase motivation and atten-
tion, the task was built around a story in which participants were asked to catch
butterflies. c Design of Experiments 1 and 2. Experiment 1 consisted of the first
session only (i.e., Day 1 in blue) and Experiment 2 of all three sessions displayed.
Session 1 included four blocks (bl) of pseudorandom SRTT (Ran), followed by 20
blocks of sequential SRTT, which were divided into 16 blocks of training and 4

blocks of test after a 1-min rest, and four additional blocks of pseudorandom SRTT.
In Experiment 2, session 2 and 3 were completed approximately 5 and 24 h,
respectively, after session 1. Both sessions 2 and 3 consisted of 4 blocks of sequential
SRTT and 4 blocks of pseudorandom SRTT. Note that the first session of Experi-
ment 2 was constrained between 9 am and 2 pm to give ample time for the 5 h
delayed retest. The participants in Experiment 1 were instructed to complete the
session anytime between 9 amand 7 pm.Butterfly images in a andbwere taken from
https://openclipart.org and fall under the Creative Commons Zero 1.0 Public
Domain License.
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on actual time of testing. For the intervals between sessions, participants
were instructed to refrain from napping, consuming alcohol or recreational
drugs and to receive a good night of sleep.

Data processing and statistical analyses
Wefirst describe general data processing and statistical analysis information
prior to providing details specific to each of the two experiments. All null
hypothesis statistical testing described below was performed using IBM
SPSS Statistics for Windows, version 28 (IBM, Armonk, NY, USA). All
significance tests were two-sided, considered significant when p < 0.05 and
performed for both normalized outcome measures (i.e., reaction time and
accuracy). For the sake of completeness, we also highlight those effectswhen
0.05 < p < 0.1 as non-significant trends. In the event of a violation of the
sphericity assumption, Greenhouse-Geisser correction was applied. All
significant main effects and interactions were followed up by pairwise
comparisons using the Tukey test and one-way ANOVAs, respectively.
Depending on the statistical test, eta-squared, partial eta-squared orHedges’
g are reported as effect size measures. The correspondence among reported
p-values, test statistics and degrees of freedom reported in thismain textwas
verified via statcheck40.

In addition to the null hypothesis significance testing outlined above,
the anovabf, ttestbf and regressionbf functions in RStudio version 1.3.1093
(Posit, PBC, Boston, Massachusetts, USA) were used to compute Bayes
Factors (BF) for all effects presented in themain text.Note that this Bayesian
analysis was not included in the pre-registrations. BFs reflect the likelihood
that the observed data favor an alternative model (e.g., evidence for differ-
ences among groups, blocks, sessions, etc.) relative to the null model (e.g.,
evidence for no differences). For t-tests, the null model was the difference
between means equal to zero. For mixed model ANOVAs, the null models
were specified as the random effect of subjects. For one-way ANOVAs and
simple linear regressions, the null models were only the intercept term. For
multiple linear regressions that assessed age group differences in the rela-
tionship between micro- and macro-offline performance gains (see below
for details), the reported BFs reflect the comparison of twomodels with and
without the age group x micro-offline gain interaction term. Default para-
meters in the R functions were used, with the exception of “whichModels”
that was set to “all” for mixed model ANOVAs and multiple regressions in
order to compute the appropriate BFs. In our results, we report BF10 values
and adhere to the interpretations offered in Wagenmakers et al.41; larger
values are indicative of greater likelihood that the observed data favor the
alternative as compared to the null hypotheses.

To assess potential differences among age groups and experimental
sessions in certain demographic/participant characteristics, one-way
ANOVAs or chi-square tests (Experiment 1) and two-way ANOVAs
(Experiment 2) were performed. Thesemeasures included gender, vigilance
(both subjective and objective) at the time of testing, self-reported sleep
quantity and quality of the night prior to the experimental session(s), and
the time of day in which the motor task or session was completed. Any
significant effects from these analyses were followed up by pairwise com-
parisons to determine which age groups or sessions differed from each
other. Group means for these dependent measures are provided in
Tables 1 and 2 and full output from the corresponding statistical analyses
can be found in Supplementary Tables 1 and 2.

For the SRTT, the averaged response times for correct keypresses
and the percentage of correct keypresses were computed for each block
and task variant. Additionally, as previous research has indicated age
differences in motor performance independent of sequence
learning6,7,22,23,42, baseline differences in performance were accounted for
by normalizing both movement speed and accuracy of the sequential and
post-learning random SRTT runs relative to the outcome variables of the
pre-learning random run. More specifically, for each outcome measure
and each block of the SRTT runs, performance was divided by the mean
outcome measure across the four blocks of the pre-learning random run.
Statistical analyses of these normalized measures are presented in the
main text. For completeness, results based on non-normalized

performance measures are reported in Supplementary Notes 2–4, Sup-
plementary Tables 3, 4, and Figs. S3–S8.

Experiment 1—dataanalysis. Sequential learning dynamics (i.e., block-
to-block performance changes) were compared among age groups using
a mixed ANOVA, with group (i.e., children, adolescents, young adults,
older adults) as between-subject and block (i.e., 16 training blocks or 4 test
blocks) as within-subject factors.

To assess whether observed improvements in performance across
practice blocks reflected sequence-specific learning (as opposed to general
skill learning as a result of familiarization with the motor task), a learning
magnitude measure was computed for performance speed. Specifically, the
difference between averagednormalized performance across the four blocks
in the post-learning test run of the sequential SRTT and the averaged
normalized performance in the post-learning random run was divided by
the average normalized performance in the post-learning random run. This
measure thus reflects the relative difference between the random and
sequential task variants at the end of training, affording the assessment of
sequence-specific learning. Larger values are indicative of greater sequence-
specific learning.The effect of age groupon learningmagnitudewas assessed
with a one-way ANOVA. Supplementary Note 3 and Fig. S5 include cor-
responding results for when this learning magnitude measure was com-
puted on non-normalized RT data. It is worth noting here that the findings
were consistent across the two computations.

To provide a more fine-grained characterization of the age-related
changes in sequence-specific learningmagnitude,we conductedexploratory
analyses with age as a continuous variable. Specifically, we tested five
potential fit options (i.e., single exponential, double exponential, linear,
quadratic, andpower functions) to characterize the relationshipbetweenage
and learning magnitude. As we did not acquire data from participants
between 35 and 55 years of age, separate models were built to characterize
age-related changes from 7 to 35 and 55 to 75 years of age. The model with
the lowestAkaike InformationCriterionvaluewasdeemed as the bestfitting
model and the corresponding results are presented.

Similar to previous research5,43,44, we distinguished between micro-
online (i.e., within blocks of task practice) andmicro-offline (i.e., across rest
epochs in between blocks of practice) performance improvements. Micro-
online changes were computed as the difference between the averaged
normalized RT for the correct keypresses of the first and last sequence
repetitions within each block (i.e., first sequence block n – last sequence
block n). For micro-offline changes, the difference between the averaged
normalized RT of the last sequence repetition of one block and the first
sequence repetition of the subsequent block (i.e., last sequence blockn–first
sequence block n+ 1) was computed. These micro-online and micro-
offline measures were analyzed with separate group(4) x block(16) or
group(4) x rest block (15) mixed ANOVAs, respectively. Supplementary
Note 3 and Fig. S6 include corresponding results when micro-online and
-offline measures were computed with non-normalized RT data. Last, and
following the same exploratory procedure as described above for the
learningmagnitudemeasure,we assessed age-related changes in thesemicro
measures with age as a continuous variable.

Experiment 2—data analysis. As in Experiment 1, learning dynamics
(i.e., block-to-block performance changes) across training and the post-
learning test were analyzed using group(4) x block(16 or 4) mixed
ANOVAs to assess potential group differences in initial encoding of the
motor sequence within the first session (i.e., before the assessment of
consolidation).

The main focus of Experiment 2 was the effect of age on motor
memory consolidation across the 5 h and 24 h macro-offline intervals. To
this end, and for both the sequential and random SRTT, a macro-offline
change measure was computed for each outcome variable and offline
interval. Specifically, sequential offline changes were calculated as
the difference between the average normalized performance on the
sequential SRTT run in the 5 h and 24 h retest sessions and the average
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normalized performance in the post-learning test run of the first session.
Similarly, offline changes for the random task variant were computed as
the difference between the averaged normalized performance on the
post-test random runs in the 5 h and 24 h retest sessions and the averaged
normalized performance in the post-learning random run of the first
session. These measures reflect the offline changes in sequential perfor-
mance and general motor execution from the end of the initial training
session to the two retest sessions, respectively. Mixed ANOVAs with
group (4) as between-subject and offline period (i.e., 5-h and 24-h offline
periods) as within-subject factors were conducted. Supplementary Note 4
and Figs. S7 and S8 include corresponding results when macro-offline
measures were computed with non-normalized RT data. Consistent with
the exploratory analyses described above for Experiment 1, age-related
changes in the macro-offline performance gains were also assessed with
age as a continuous variable.

Last, and similar to previous research44,45, we assessed the relationship
between offline changes in performance on the micro- and macro-offline
timescales. Specifically, we performed exploratorymultiple regressions with
the micro-offline gains as independent and the 5 h or 24 h macro-offline
gains as dependent variables. To examine how these relationships differed
among age groups, we included age group (dummy coded) main effects as
well as age groupxmicro-offline gains interaction variables in the regression
models. The young adult groupwas selected as the reference group and thus
the interaction variables compare the regression slopes of the other 3 age
groups with those of the young adults.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Experiment 1—participant characteristics, sleep and vigilance
Group means from participant characteristics, the time of when the
experimental session was completed, self-reported sleep quality and dura-
tion of the night preceding the experimental session, and a subjective
measure of vigilance are provided in Table 1. Results from the corre-
sponding statistical analyses and a brief discussion can be found in Sup-
plementary Note 1 and Supplementary Table 1.

Experiment 1—dynamics of performance improvements
Normalized performance measures on the SRTT are depicted in Fig. 2a, b.
Performance accuracy remained stable across training, as evidenced by no
main effect of block (F(7.011,883.403) = 0.501, p = 0.835, partial ƞ2 = 0.004,
BF10 = 3.153e−06), and did not significantly differ among age groups
(F(3,126) = 0.322, p = 0.810, partial ƞ2 = 0.008, BF10 = 0.091). Furthermore,
no significant group x block interaction was found (F(21.033,883.403) = 0.715,
p = 0.821, partial ƞ2 = 0.017, BF10 = 1.821e−05). Similarly, no block
(F(2.283,287.681) = 1.523, p = 0.217, partial ƞ2 = 0.012, BF10 = 0.060), group
(F(3,126) = 1.796, p = 0.151, partial ƞ2 = 0.041, BF10 = 0.456), or interaction
effects (F(6.850,287.681) = 0.814, p = 0.574, partial ƞ2 = 0.019, BF10 = 0.013)
were found for the post-learning test.

For an assessment of performance speed, response times significantly
decreased across sequential practice blocks, as shown by a main effect of
block (F(7.900,995.358) = 64.246, p < 0.001, partial ƞ2 = 0.338, BF10 = 5.881e152).
These performance improvements were similar among age groups, as
indicated by the lack of a significant group effect (F(3,126) = 1.578, p = 0.198,
partial ƞ2 = 0.036, BF10 = 0.291) and group x block interaction
(F(23.699,995.358) = 1.337, p = 0.130, partial ƞ2 = 0.031, BF10 = 1.21e−04). Dur-
ing the post-learning test run, there was no significant block effect
(F(2.102,264.890) = 0.404, p = 0.678, partial ƞ2 = 0.003, BF10 = 0.012), indicating
a performance plateau was reached. Moreover, consistent with the training
run, therewere no significant differences among groups (Groupmain effect:
F(3,126) = 1.099, p = 0.352, partial ƞ2 = 0.025, BF10 = 0.318; Group x Block
interaction: F(6.307,264.890) = 1.148, p = 0.335, partial ƞ2 = 0.027,
BF10 = 0.032). Collectively, the assessment of performance across blocks of
practice indicates that the four groups acquired thenovelmotor sequence, as
evidenced by the reduction in RTs in the training run. And, we found no
credible evidence that the four groups differed in these performance
improvements.

Experiment 1—sequence-specific learning
A learning magnitude measure was calculated for performance speed that
reflects the relative difference between the random and sequential task
variants at the end of training and therefore affords the assessment of the
magnitude of sequence-specific learning (see Fig. 2c). Results revealed a
significant group effect (F(3,129) = 5.440, p = 0.002, ƞ2 = 0.115, 95% CI =
[0.20, 0.208], BF10 = 20.731). More specifically, a significantly smaller

Fig. 2 | Initial motor sequence learning. aAverage normalized response time (RT)
for both task variants. b Average normalized accuracy for both task variants. For
a and b, shaded regions represent standard errors of the mean. c Average learning
magnitude for performance speed per age group. Shaded regions represent the
kernel density estimate of the data, colored circles depict individual data, open
circles represent group medians, and the horizontal lines depict group means65. CH

children, AD adolescents, YA young adults, OA older adults. *p < 0.05 for pairwise
group comparisons. d Learning magnitude as a function of age. Quadratic fit from
childhood into young adulthood: Learning magnitude = (-0.0008572*age2)+
(0.04021*age)+ (−0.2226). Quadratic fit for older adults: Learning magnitude =
(0.00157*age2)+ (−0.1996*age)+ 6.4675. n = 33, 33, 32 and 32 for groups of
children, adolescents, young adults, and older adults, respectively.
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sequence-specific learning magnitude was observed in children as com-
pared to adolescents (p = 0.014, G =−0.714, 95% CI = [−1.204, −0.219],
BF10 = 8.645) and young adults (p = 0.001, G =−0.970, 95% CI = [−1.476,
−0.457], BF10 = 124.212). Follow-up analyses indicated that the difference
in learningmagnitude could be attributed to significant group differences in
RT for the post-learning random run (F(3,126) = 5.795, p < 0.001, partial
ƞ2 = 0.121, BF10 = 35.104). Children demonstrated greater improvements in
performance speed from the pre-learning to post-learning random runs as
compared to young (p < 0.001, G =−0.876, 95% CI = [−1.377, −0.369],
BF10 = 43.280) and older adults (p = 0.022, G =−0.591, 95% CI = [−1.081,
−0.098], BF10 = 3.018). Accordingly, a portion of the performance
improvements across the sequential training blocks in children can be
attributed to general learning of the task that is not specific to the sequence.

We also conducted exploratory regression analyses with age as a
continuous variable to provide a more fine-grained characterization of the
age-related trajectories of sequence-specific learningmagnitude. Consistent
with the differences among groups, age was a significant predictor of
learning magnitude from childhood into young adulthood (see Fig. 2d; the
bestfitmodelwas aquadratic function:R2 = 0.156, F(1,95) = 8.808,p = 0.004).
Specifically, learning magnitude increased across childhood, reaching peak
values at approximately 24 years of age, and then decreased thereafter. Age
was also a significant predictor of learningmagnitudewithin the older adult
group, exhibiting an approximate U-shaped trajectory from 55 to 75 years
(quadratic model: R2 = 0.247, F(1,29) = 4.746, p = 0.038).

Experiment 1—micro-learning across sequential training
Formicro-online learning, the block x group interaction was not significant
(F(34.573,1429.030) = 1.159, p = 0.243, partial ƞ2 = 0.027, BF10 = 0.001;
see Fig. 3a). There was, however, a significant block effect
(F(11.524,1429.030) = 2.358, p = 0.006, partialƞ2 = 0.019, BF10 = 0.140) aswell as
a non-significant trend for a group effect (F(3,124) = 2.663, p = 0.051, partial
ƞ2 = 0.061, BF10 = 0.259; see Fig. 3c). Although these findings suggest dif-
ferences in micro-online learning across blocks of practice and among age
groups, the corresponding BFs indicate that the data are more consistent
with no differences as compared to the alternative (i.e., evidence of differ-
ences). Consistent with these results, there was only a non-significant trend
for age being a predictor of micro-online gains from childhood into young
adulthood (power model: R2 = 0.032, F(1,96) = 3.141, p = 0.080; see Fig. 3e).

No age-related changes were revealed within the older adult group (power
model: R2 = 0.045, F(1,30) = 1.424, p = 0.242).

The assessment of micro-offline learning showed no rest block
(F(11.662,1446.066) = 1.209, p = 0.272, partial ƞ2 = 0.010, BF10 = 2.28e−04; see
Fig. 3b), nor a rest block x group interaction (F(34.985,1446.066) = 0.836,
p = 0.739, partial ƞ2 = 0.020, BF10 = 7.098e−05). There was a non-significant
trend for a group effect (F(3,124) = 2.490, p = 0.063, partial ƞ2 = 0.057,
BF10 = 0.217), yet the corresponding BF indicated that the data are more in
favor with the null hypothesis as compared to the alternative. Similarly, the
characterizations of age-related trajectories revealed that there was only a
non-significant trend for age being a predictor of micro-offline gains from
childhood into young adulthood (power model: R2 = 0.029, F(1,96) = 2.873,
p = 0.093; see Fig. 3f). No significant age-related changes were revealed
within older adulthood (powermodel: R2 = 0.043, F(1,30) = 1.362, p = 0.252).

Experiment 2—participant characteristics, sleep and vigilance
Group means for participant characteristics, the times of when the experi-
mental sessions were completed, the duration of the offline periods between
sessions, self-reported sleep quality and duration for the nights preceding
each experimental session, and subjective (SSS) and objective (PVT) mea-
sures of vigilance are provided in Table 2. Results from the corresponding
statistical analyses and a brief discussion can be found in Supplementary
Note 1 and Supplementary Table 2.

Experiment 2—initial learning dynamics
Similar to Experiment 1, we assessed the dynamics of learning during the
initial training session of Experiment 2. Normalized performancemeasures
are shown in Fig. 4. For brevity, the corresponding statistical results can be
found in Supplementary Table 5. In brief, the results from the assessment of
the performance improvements during the initial training session of
Experiment 2 largelymirrored those presented above for Experiment 1.We
found little credible evidence for differences among age groups in the per-
formance changes across training blocks.

Experiment 2—macro-offline performance gains
Results on the sequential macro-offline changes in performance (Fig. 5)
revealed both offline period (F(1,104) = 104.357, p < 0.001, partial ƞ2 = 0.501,
BF10 = 1.037e14) and group (F(3,104) = 14.541, p < 0.001, partial ƞ2 = 0.296,

Fig. 3 | Micro-online (left) and -offline
(right) gains. a, b Depict micro-online and offline
gains, respectively, displayed as a function of prac-
tice blocks (N children = 31, N adolescents = 33, N
young adults = 32, N older adults = 32). c, dContain
violin plots of micro-online and -offline, respec-
tively, gains averaged across blocks. Note that pair-
wise comparisons in these panels included blocks or
rest periods in the statistical models. Shaded regions
represent the kernel density estimate of the data,
colored circles depict individual data, open circles
represent group medians, and the horizontal lines
depict group means65. CH children, AD adolescents,
YA young adults, OA older adults. e, f show aver-
agedmicro-online and -offline gains, respectively, as
a function of age from childhood into young adult-
hood and within older adulthood. Lines of fit
childhood into young adulthood: micro-online
gains = (−0.318*age)−0.459; micro-offline gains =
0.298*exp(−0.377*age). Lines of fit within older
adulthood: micro-online gains = (0.003*age) +
(−0.238); micro-offline gains = (227.361*age) +
(−1.897). n = 33, 33, 32 and 32 for groups of chil-
dren, adolescents, young adults, and older adults,
respectively.
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BF10 = 90620.35) main effects, as well as a significant offline period x group
interaction effect (F(3,104) = 3.382, p = 0.021, partial ƞ2 = 0.089,
BF10 = 0.384). Follow-up comparisons revealed significant group effects for
both the 5h (F(3,107) = 5.756, p = 0.001, ƞ2 = 0.142, 95% CI = [0.027, 0.249],
BF10 = 28.76) and the 24h (F(3,107) = 20.582, p < 0.001, ƞ2 = 0.373, 95% CI =
[0.216, 0.479], BF10 = 26.800e06) sequential macro-offline gains. Post-hoc
pairwise comparisons indicated that the sequentialmacro-offline gains after
a 5h period of wakefulness were higher in children and adolescents as
compared to the young (p = 0.032, G = 0.590, 95% CI = [0.049, 1.125],
BF10 = 1.943; p = 0.053, G = 0.548, 95% CI = [0.009, 1.082], BF10 = 1.497,
respectively) and older adults (p = 0.008,G = 1.382, 95%CI = [0.788, 1.966],
BF10 = 3765.434; p = 0.015, G = 1.290, 95% CI = [0.704, 1.866],
BF10 = 1289.955, respectively). It is worth emphasizing that the BFs for the
comparisons between the children, adolescents and young adults suggest
only anecdotal evidence that the data are in favor of the alternative
hypothesis (i.e., evidence for group differences) as compared to the null
hypothesis for the 5h offline gains. The children showed higher 24hmacro-
offline gains in comparison to the young (p = 0.001, G = 1.285, 95% CI =
[0.699, 1.861], BF10 = 574.756) and older (p < 0.001, G = 2.449, 95% CI =
[1.737, 3.147], BF10 = 1.080e08) adults, and the older adults displayed sig-
nificantly lower 24h macro-offline gains than all the other age groups
(adolescents: p < 0.001, G = 1.256, 95% CI = [0.673, 1.829], BF10 = 658.860;
youngadults:p = 0.002,G = 1.237, 95%CI = [0.656, 1.809], BF10 = 458.448).

In line with the age group comparisons presented above, our analyses
with age as a continuous variable revealed that age significantlypredicted the
5 h macro-offline gains from childhood into young adulthood (linear
model: R2 = 0.068, F(1,78) = 5.650, p = 0.020; see Fig. 5b). Age was not a
significant predictor of the 5h offline gains within the older adult group
(double exponential model: R2 = 0.183, F(1,23) = 1.72, p = 0.203). Lastly, age
significantly predicted the 24hmacro-offline gains fromchildhood to young
adulthood (Power model: R2 = 0.157, F(1,78) = 14.537, p < 0.001; see Fig. 5d)
as well as within older adulthood (linear model: R2 = 0.136,
F(1,25) = 3.95, p = 0.058).

Experiment 2 - link between the offline performance changes on
a micro- and macro-timescale
The regressionmodel assessing the relationship between the micro- and 5h
macro-offline gains – independent of age group – revealed a significantly
positive relationship between these two offline measures (b = 0.581,
p < 0.001, BF10 = 831.113; see Fig. S9). This suggests that greater perfor-
mance changes during the short rest periods throughout training were
associated with greater performance gains across the 5h offline period of
wakefulness following training. We then assessed whether such a relation-
ship differed between pairs of age groups. Young adults exhibited a steeper

slope as compared to children (b =−1.371, p = 0.003, BF10 = 0.381), ado-
lescents (b = -1.287, p = 0.002, BF10 = 0.476) and older adults (b =−1.509,
p = 0.003, BF10 = 0.475). However, the reported BFs indicate that the data
are more consistent with no differences and these between-group differ-
ences were no longer statistically significant if the young adult participant
with the extremely negative 5h offline gain (see Fig. 5a) was removed from
the analyses.

Micro-offline gains were also significantly and positively related to the
24h macro-offline gains (b = 0.609, p < 0.001, BF10 = 16736.4; see Fig. S10).
Specifically, greater performance changes during the short rest periods were
also associated with greater performance gains across the 24h period fol-
lowing training. This relationship was significantly different between the
children and young adults (b = -0.669, p = 0.047, BF10 = 6.268). Specifically,
whereas young adults exhibited a significant positive relationship between
micro- and macro-offline performance gains (b = 0.647, p = 0.007,
BF10 = 6.380), children did not (b =−0.023, p = 0.90, BF10 = 0.360). There is
little credible evidence that this relationship between micro-offline and 24h
macro-offline gains was different between young adults and the other two
age groups (adolescents: b = 0.126, p = 0.679, BF10 = 0.594; older adults:
b =−0.217, p = 0.556, BF10 = 0.189).

Discussion
The current study examined age-related differences among children, ado-
lescents, young adults and older adults in initial motor sequence learning
and motor memory consolidation. Our results revealed that: (1) the
dynamics of initial motor sequence learning, as demonstrated by perfor-
mance improvements during training, were comparable (i.e., not statisti-
cally different) across age groups; (2) children exhibited less sequence-
specific learning during the initial training session relative to adolescents
and young adults; (3) although micro-online and -offline performance
changeswere the smallest and largest, respectively, in children, therewasnot
sufficient evidence to support the hypothesis of differences among age
groups; (4) children exhibited greater changes in performance from the end
of initial training to both the 5h and 24h retests, suggesting a developmental
advantage in the macro-offline consolidation of a newly acquired move-
ment sequence; and, (5) therewas a significant positive relationship between
the magnitudes of micro- and macro-offline performance changes.

Initial performance improvements are comparable across age
groups, but children exhibit less sequence-specific learning
On the one hand, our results provided no evidence that performance
improvements across training differed among age groups, which was con-
sistent with a subset of the previous literature5–8,22–26,46. This finding thus
agrees with the lifespan invariance model that has been discussed in

Fig. 4 | Normalized motor performance in
Experiment 2. Average normalized response time
(RT; a) and accuracy (b) for the three experimental
sessions and two task variants of Experiment 2.
Shaded regions represent standard errors of the
mean. Corresponding statistical analyses are in
Supplementary Table 5. n = 27 in each of the 4 age
groups, except n = 26 for young adult data in Session
3 and adolescent data in post-test random of Ses-
sion 3.

https://doi.org/10.1038/s44271-024-00082-9 Article

Communications Psychology |            (2024) 2:30 8



previous literature in the context of memory consolidation29. On the other
hand, our results indicated that children exhibited less sequence-specific
learning and thus their performance improvements across sequential
training blocks are partially due to general motor improvements (i.e.,
improvements on themotor task that are independentof sequence learning).
This finding – which resembles the prototypical developmental trajectory
where young adults perform the best and children are progressing towards
this optimal performance level - is consistent with a subset of previous
literature in which children exhibited smaller sequence-specific motor
learning11,12,47. The pattern of results may explain some of the heterogeneity
that is present in the literature with respect to the development of motor
sequence learning. That is, previous research that assessed performance
improvements across blocks of practice may report comparable learning
between children and young adults (e.g.,8,20), whereas studies that afford the
extraction of sequence-specific learningmay reveal differences between age
groups (e.g.,11,47). Presumably, the greater general learning that is evident in
children is due to this group simply learning how to perform the task itself
(i.e., spatially mapping the stimuli on the screen to the appropriate fingers).
Future research that aims to isolate and examine sequence learning per se
could consider incorporating an extended task familiarization phase con-
sisting of additional random runs (i.e., no sequence to be learned). This
would allow children to exhaust their general learning of the task itself prior
to sequence acquisition. Nevertheless - and as a point of emphasis - even
though sequence-specific learning was smaller in children, they still
exhibited significant learningof themotor sequence. That is, their sequence-
specific learning magnitude was significantly greater than zero (see Sup-
plementary Table 6) and thus amemory trace of the acquired sequence was
presumably formed. Interestingly, whereas children showed a smaller
learning magnitude, there was no credible evidence that the adolescents
differed from young adults. This suggests that sequence-specific learning
reaches adult-like levels by the teenage years.

Micro-offline consolidation during interspersed rest breaks
In line with previous literature5 and our hypothesis, children exhibited the
largest micro-offline performance gains. However, the group main effect
within the omnibus group (4 levels) x block ANOVAwas a non-significant

trend (p = 0.063) and the corresponding Bayes Factors did not provide
substantial evidence in favor of age group differences. Specifically, although
pairwise comparisons indicated that micro-offline gains were larger in
children as compared to both young and older adults (F(1,61) = 4.829,
p = 0.032, partial ƞ2 = 0.073 and F(1,61) = 5.374, p = 0.024, partial ƞ2 = 0.081,
respectively), the corresponding BFswere 1.109 and 1.411, respectively, and
thus indicative of only anecdotal evidence in support of age group
differences41. It is worth noting here that the assessment of micro-offline
gains on non-normalized RT data did reveal significant age group effects,
with children exhibiting larger gains than the other 3 age groups (see
Supplementary Note 3 and Fig. S6). This analysis, however, was not part of
our pre-registration. Nonetheless, the result of our pre-registered analysis of
micro-offline gains presented in the main text can be viewed as weaker in
comparison to Du et al.5. One potential explanation could be the specific
ages included in the child groups. Specifically, Du et al.5 found a micro-
offline advantage in younger children (i.e., 6-year-olds) as compared to
older children (i.e., 10-year-olds) and adults. In the current research, the
online nature of our protocolmade it difficult to acquire data in such young
children (i.e., 6-year-olds). Moreover, as data acquisition in Du et al.5 was
limited to these discrete age groups in (i.e., data from 7–9 year-old children
were not acquired), an estimate of when this childhood advantage inmicro-
offline processing disappears was not possible. We speculate that the dif-
ferences between children and young adults in our study would have been
larger in magnitude if the sample included a greater number of younger
children (i.e., 6- to 7-year-olds). Another potential consideration is the
considerably longer rest breaks (i.e., 3 min) between practice blocks that Du
et al.5 implemented. In comparison to our 15 second rest intervals, this
allowed more time for the recently acquired memory trace to be con-
solidated over thesemicro-offline epochs. Of note, recent research in young
adults has produced inconclusive results with respect to the impact of the
rest period durations. In a probabilistic sequence task, there was no effect of
duration (15 s vs. 30 s vs. self-selected) on micro-offline performance
changes48, whereas a temporal gradient (10 s vs. 20 s)was found in resistance
to an interfering sequence in a deterministic motor sequence task49. In
summary, future studies are needed to further examine micro-learning
processes in children, with systematic examinations into certain

Fig. 5 |Macro-offline performance gains. Sequential offline gains across the 5 h (a)
and 24 h (c) offline periods for the four age groups. Shaded regions represent the
kernel density estimate of the data, colored circles depict individual data, open
circles represent group medians, and the horizontal lines depict group means65. CH
children, AD adolescents, YAyoung adults, OAolder adults. *p < 0.05 and~p < 0.10
for pairwise group comparisons. n = 27 in each of the 4 age groups. Five-hour (b)
and 24h (d) sequential offline gains are plotted as a function of age. Lines of fit from
childhood into young adulthood: 5h gains = (−0.003 * age)+ 0.075; 24 h
gains = (0.872*age)−0.682. Lines of fit within older adulthood: 5h gains = (1.814e−6

* exp(0.256 * age))+ (−1.858e−6 * exp(0.256 * age)); 24h gains = (−0.006 * age)
0.381. For better visualization of the age-related changes, the scale of the y-axes was
set to range from−0.4 to 0.4 and thus the young adult with the outlier 5h sequential
gain (visible in a) is not depicted in (b). This individual, however, was included in the
fitting procedure. Note that if this individual was excluded from statistical analyses,
the pattern of results observed in (a) remains largely similar, with the exception that
the pairwise difference between young and older adults becomes statistically sig-
nificant (i.e., older adults exhibit worse offline consolidation over a 5h wake interval
as compared to young adults).
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methodological choices such as the age of the participants, the length of the
rest epochs and the choice of sequence task (i.e., probabilistic vs.
deterministic).

Although this fast consolidation process occurring over micro-offline
intervals has received considerable attention over the last 5 years43–45,49,50,
limited researchhas examinedmicro-learningprocesses in older adults.Our
results found no evidence for differences in micro-online and -offline per-
formance gains betweenyoungandolder adults.Accordingly,whereas older
adults have deficits in the macro-offline consolidation processes occurring
between two practice sessions24–26,28, they do not exhibit deficits in the rapid
consolidation process that occurs during the rest periods interspersed with
blocks of task practice.

Lastly, similar to previous studies that employed the self-initiated,
sequential finger tapping task in young adults5,43–45, our results with the
SRTT also provide evidence for a significant contribution of the micro-
offline gains to overall learning in all four age groups. That is, performance
improvements across blocks of training were largely due to micro-offline –
as compared to micro-online – performance gains. However, and inde-
pendent of the specific task variant, one cannot rule out the effect of fatigue
on these results. Gupta and Rickard51,52 have argued that the magnitude of
the micro-offline gains in young adults can be attributed to the build-up of
fatigue or reactive inhibition as a function of task practice within blocks.
Specifically, it was suggested that performance deteriorates across practice
within ablockdue to reactive inhibitionand thusmicro-offlineperformance
gains are inflated due to this performance variable that can be considered
independent of learning andmemory processes.However, it isworth noting
that this view cannot account for recent neuroimaging data showing reac-
tivation of sequence learning-related patterns of hippocampal activity
during the interspersed rest periods43,44,50. These neuroimaging data then
suggest thatmicro-offline epochs afford an opportunity for a rapidmemory
consolidation process. Additional research is necessary to definitively con-
clude whether these micro-offline performance gains are reflective of a
memory consolidation process or are simply attributed to reactive
inhibition.

Children exhibited a developmental advantage in macro-offline
consolidation
Our results revealed larger sequential performance gains across both the 5h
and 24hmacro-offline periods in children.While the young adults showed a
performance maintenance (i.e., offline gains that were not significantly
different from zero; see Supplementary Table 7) across the 5h interval,
children and adolescents significantly improved their performance on the
sequential task. Interestingly, children also demonstrated higher offline
gains across the 24h period as compared to adults. While the enhanced 5h
consolidation in children is in linewith the findings ofAshtamker&Karni14

that showed an accelerated consolidation in children across a one-hour
offline period, the greater 24h gains stand in contrast to previous research
that demonstrated impairedovernight consolidation in children [refs. 13,15;
see below for expanded discussion on sleep-related consolidation].

It could be argued that the larger macro-offline processing in children
could be explained by performance levels reached at the end of the training
session53,54. For example, perhaps children showed greater macro-offline
gains due to a continuation of initial learning rather than the offline pro-
cessing of previously acquired information. This potential explanation,
however, is not in line with our data. Notably, during the post-training test
phase, there was an absence of a block effect in all groups, including in the
children. This indicates that all groups reached a performance plateau at
the end of the first session and thusmacro-offline gains do not appear to be
the result of continued learning. Along the same lines, one could speculate
that the young adults reached a performance ceiling effect, and thus their
potential to further increase their performance over macro-offline intervals
was saturated (see Fig. S4 for a plot of absolute reaction times). Again, this is
not consistentwithour data.Notably, therewas a significant session effect in
sequential offline gains, whereby gains were larger in the 24h retest as
compared to the 5h retest. Within-group comparisons revealed that this

session effect was present for all age groups, including young adults. This
suggests that a performance ceiling effect was not reached and thus this
explanation cannot fully account for our results. Last, one could raise the
question whether perhaps themacro-offline performance gains are inflated
in childrendue tonon-sequence-specific improvements (i.e., improvements
due to motor task familiarization as opposed to sequence learning). How-
ever, the children did not show greater macro-offline gains on the random
task variant (see Supplementary Note 5 and Fig. S11). Moreover, and to
assess this possibility further, we examined the offline changes in the
sequence-specific learning magnitude (i.e., difference between the learning
magnitude (i.e., sequence vs. random) of the 5h and 24h retest sessions and
the learning magnitude of the first session; see Supplementary Note 5 and
Fig. S11). These results revealed significantmain effects of offline period and
group, but no offline period x group interaction effect. Post-hoc pairwise
comparisons indicated that children exhibit enhanced sequence-specific
offline gains—across both offline periods—in comparison to young and
older adults. This finding is consistent with the assessment of the sequential
macro-offline gains presented in the main text (Fig. 5). Altogether, these
data suggest that the offline changes in children likely involved the
strengthening of their sequential memory and that this strengthening was
greater as compared to young and older adults.

Offline performance gains on the 24h retest were largest in children, a
result that was unexpected based on previous literature13,15. Specifically,
children have typically exhibited impaired consolidation over post-learning
intervals that include sleep as observed in young adults. It is worth noting
that most of the previous studies comparing sleep and wake conditions in
children employed an AM/PM design. In this design, participants acquire
the motor sequence at a different time of day based on the condition and
then are retested after a delay of 12 h. For example, the wake (i.e., AM-PM)
group initially learns the sequence in the morning and then is retested
following 12 h of wakefulness. The sleep (i.e., PM-AM) group completes
initial learning in the evening and this is retested after a 12 h interval that
included a night of sleep. Although informative, these designs are sensitive
to time-of-day effects. And there is evidence that the time of initial practice
can affect performance during acquisition and offline consolidation in
young adults55,56. Specifically, Kvint et al.56 found a greater sequential
knowledge acquisition but similar 12h consolidation in an AM-trained as
compared to a PM-trained group. Furthermore, Truong et al.55 showed an
enhanced consolidation when the training and retest were completed at
3 pm(as compared to10 am).Thesefindings indicate time-of-day effects for
the acquisition and consolidation outcomes in young adults. Although
previous research that employed AM/PM designs in children did not find
differences inmotor skill acquisitionbetweenmorning andeveninggroups8,
the impact on offline consolidation processes has yet to be systematically
and exhaustively examined.Althoughcertainly speculative, it is possible that
the impaired overnight consolidation that previous studies have found in
children could be – at least partially – attributed to the choice of experi-
mental design. An alternative, albeit related explanation, is that the bene-
ficial effect of sleep requires additional time to emerge at the behavioral level
and thus that these previous studies did not show overnight gains due to
their retest immediately after the sleep episode (i.e., 12h after initial learn-
ing). Consistent with this explanation, Desrochers et al.19 found that a post-
learning nap facilitated the consolidation of a recently acquired motor
sequence in pre-school children, but only after an extended period of time
that included a night of sleep. Additional research is necessary to further
disentangle these potential explanations.

Potential neural correlates of enhanced macro-offline proces-
sing in children
An open question is: What are the neural correlates of the greater macro-
offline performance gains observed in children? Based on (a) recent evi-
dence in young adults demonstrating that the patterns of activity observed
in the hippocampus and putamen duringmotor learning are spontaneously
reactivated in macro-offline intervals57; and, (b) the known role of reacti-
vation processes in memory consolidation and longer-term retention58,59, it
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is tempting to speculate that the childhood advantages observed in this
research can be attributed to enhanced reactivation of learning-related
patterns of brain activity. This possibility is pure speculation at this point but
deserves attention in future research.

Older adults exhibit impaired overnight consolidation
On the other end of the lifespan, our results showed similar 5h but smaller
24h offline gains in the older as compared to the young adults. The com-
parable 5h offline gains are in line with previous studies that showed a
similar consolidation between young and older adults across an offline
periodofwakefulness24,25. Similarly, the smaller 24hoffline gainsobserved in
the older adults are in line with several studies that demonstrated impaired
overnight consolidation with aging25,26,28. These studies have largely attrib-
uted this deficit to age-related decreases in sleep quality and quantity, aswell
as alterations in the sleep-related electrophysiological markers of plasticity
such as sleep spindles and slow waves22,24 (but see3,23,25 for discussion of
alternative explanations). Whereas our older adult participants did report
shorter sleep duration as compared to both children and adolescents, no
credible evidence for differences in sleep quality were found. However, it is
important to note that these measures were self-reported and previous
research has shown that older adults tend to overestimate their sleep
quality60. Nonetheless, our results replicate the often demonstrated finding
that aging negatively impacts overnight consolidation of recently acquired
motor sequences.

Limitations
There are some limitations and methodological considerations of the cur-
rent research that warrant further attention. First, these experiments were
conducted online and thus were not monitored by researchers in real-time.
Althoughwecannot completely discard thepossibility that theonlinenature
influenced our results, it is worth nothing that previous studies that com-
pared online and in-person experiments in children61 and young adults49,62

found comparable results between these study modalities. For instance,
Cubillos et al.62 showed similar learning curves for the performance of the
finger-tapping task between a supervised-lab and unsupervised-online
young adult group. Additionally, Bönstrup et al.49 obtained similar micro-
offline learning in young adults through an online crowdsourcing platform.
It is also worth noting that our protocol was not implemented in common
crowdsourcing platforms (e.g., Mechanical Turk) that typically acquire full
datasets within hours of posting an experiment and have come under
scrutiny for unreliable data63. Furthermore, although there are drawbacks to
employing web-based data acquisition, a significant advantage is the
recruitment from a large and broad pool of participants, enabling us to
include individuals that otherwise may not have been able to complete our
traditional in-person studies.

Second, and specific to experiment 2, each session ended with a
pseudorandomrun.The implementationof this randomrun is oftenused in
sequence learning studies and has the benefit of assessing sequence speci-
ficity of performance improvements5,6,11,47,64. However, we cannot rule out
the possibility that the random runs at the end of each session interfered
with the macro-offline processing of the sequential motor memory.

Third, explicit awareness was not assessed at the end of any session or
experiment. No explicit recognition or recall test was implemented due to
the online nature of the experiment and the potential interference with the
offline processes in Experiment 2. Nevertheless, the lack of such a test
impedes our ability to draw any conclusions regarding age groups differ-
ences in explicit awareness andhowsuchadifferencemay affect the learning
and memory results.

Fourth, it is important to note that, due to concerns surrounding the
acquisition of quality data from young children, our minimum age for this
research was 7 years. Moreover, this youngest age was relatively under-
sampled in our experiments (n = 3 and 1 7-year-olds included in analyses of
Experiments 1 and 2, respectively). Due to difficulties with completing the
onlinemotor task, several 7-year-old children had to be excluded from data
analyses. Future studies could consider implementing certainmeasures (e.g.,

monitoring through videocall) to increase the number of young children
that successfully complete the experiments.

Fifth, and as outlined in our pre-registration, the age groups were
operationally defined based on age (i.e., children and adolescents were
between 7 and 12, and 13 and 17 years, respectively), which does not con-
sider the participant’s pubertal status. Our questionnaire battery did ask the
parents to indicatewhether their child exhibited signs of puberty onset at the
time of participation. Note that all participants 13 years and older (i.e.,
classified as an adolescent based on age) were reported to having started
puberty. And only a minimal number of child subjects (6 in each of the
experiments) were considered to have initiated puberty. Given the relatively
few subjects that would be re-classified based on parental report of puberty
onset, we do not anticipate our results to substantially change if pubertal
status – as opposed to age - was used to demarcate childhood and
adolescence.

Conclusions
The current study examined initial motor sequence learning and the time
course of motor memory consolidation across the human lifespan. Our
results demonstrated comparable dynamics of performance improvements
during the initial learning session, yet 7- to 12-year-old children exhibited
smaller sequence-specific learning. Children demonstrated the largest per-
formancegainsovermacro-offline intervals, suggesting that children exhibit
a developmental advantage in the offline processing of recently practiced
movement sequences. The neural underpinnings of this childhood advan-
tage are not yet known and thus future research is warranted to
characterize them.

Data availability
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