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Difficult decisions typically involve mental effort, which scales with the deployment of cognitive (e.g.,
mnesic, attentional) resources engaged in processing decision-relevant information. But how does
the brain regulatemental effort? A possibility is that the brain optimizes a resource allocation problem,
whereby the amount of invested resources balances its expected cost (i.e. effort) and benefit. Our
working assumption is that subjective decision confidence serves as the benefit term of the resource
allocation problem, hence the “metacognitive” nature of decision control. Here, we present a
computational model for the online metacognitive control of decisions or oMCD. Formally, oMCD is a
Markov Decision Process that optimally solves the ensuing resource allocation problem under
agnostic assumptions about the inner workings of the underlying decision system. We demonstrate
how this makes oMCD a quasi-optimal control policy for a broad class of decision processes,
including -but not limited to- progressive attribute integration.We disclose oMCD’smain properties (in
terms of choice, confidence and response time), and show that they reproduce most established
empirical results in the field of value-based decision making. Finally, we discuss the possible
connections between oMCD andmost prominent neurocognitive theories about decision control and
mental effort regulation.

There is no such thing as a free lunch: obtaining reward typically requires
investing effort. This holds even formental tasks, whichmay involvemental
effort for achieving success (in terms of, e.g., mnesic or attentional perfor-
mance). Nevertheless, we sometimes invest very little mental effort, even-
tually rushing decisions and falling for all sorts of cognitive biases1. So how
does the brain regulate mental effort? Recent theoretical neuroscience work
proposes to view mental effort regulation as a resource allocation problem:
namely, identifying the amount of cognitive resources that optimizes a cost/
benefit tradeoff2–4. In this context, mental effort signals the subjective cost of
investing resources, the aversiveness of which is balanced by the anticipated
benefit. In conjunction with simple optimality principles, this idea has
proven fruitful for understanding the relationship between mental effort
and peoples’ performance in various cognitive tasks, in particular those that
involve cognitive control5,6. Recently, it was adapted to the specific case of
value-based decisionmaking, and framedas a self-contained computational
model: the Metacognitive Control of Decisions or MCD7.

The working assumption here is that decision confidence serves as the
main benefit term of the resource allocation problem8,9, hence the

“metacognitive”nature of decision control.On the onehand, this formalizes
the regulating role of confidence in decision making, which has recently
been empirically demonstrated in the context of perceptual evidence
accumulation10,11. On the other hand, this apparently contrasts with stan-
dard treatments of value-based decision making, which insists on equating
the benefit of value-based decisions with the value of the chosen option12–14.
This notion is a priori appealing, because the purpose of investing resources
into decisions is reducible to approaching reward and/or avoiding losses/
punishments.Nevertheless, the benefit of such resource investmentsmay be
detached from the subjective evaluation of alternative options15. This is
partly because the brain attaches subjective value to acquiring information
about future rewards. In fact, this holds even when this information cannot
be used to influence decision outcomes16–18. Recall that, inMarr’s sense, any
type of decision induces the same computational problem, i.e. the com-
parison of alternative options. In this view, evidence-based and value-based
decisions simply differ w.r.t. to the underlying comparison criterion: the
former relies on truthfulness judgments while the latter involves idiosyn-
cratic preferences19. Hence, in both cases, the benefit of allocating resources
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to decisions is to raise the chance of identifying the best option, i.e. con-
fidence. In other words, if resource allocation aims at comparing alternative
options, then decision confidence can be viewed as a probe for goal
achievement. This is essentially a simplifying assumption, in the sense that it
enables a unique computational architecture to control resource allocations,
irrespective of the nature of the underlying decision-relevant computations.

In value-based decision making, confidence derives from the dis-
criminability of uncertain value representations, which evolve over decision
time as the brain processes more value-relevant information. Low con-
fidence then induces a latent demand for mental effort: the brain refines
uncertain value representations by deploying cognitive resources, until they
reach an optimal confidence/effort trade-off. Interestingly, this mechanism
was shown to explain the -otherwise surprising- phenomenon of choice-
induced preference change7. More importantly, the MCD model makes
quantitative out-of-sample predictions about many features of value-based
decisions, including decision time, subjective feeling of effort, choice con-
fidence and changes of mind. These predictions have already been tested
-and validated- in a systematic manner, using a dedicated behavioral
paradigm (Lee and Daunizeau, 2021). Despite its remarkable prediction
accuracy, the original derivation of the model suffers from one main sim-
plifying but limiting approximation: it assumes that MCD operates in a
purely prospective manner, i.e., the MCD controller commits to a level of
mental effort investment identified prior to the decision. In principle, this
early commitment would follow from anticipating the prospective benefit
(in terms of confidence gain) and cost of effort, given a prior or default
representation of option values that would rely on fast/automatic/effortless
processes20. The issue here, is twofold. First, it cannot explain variations in
decision features (e.g., response time, choice confidence, etc.) that occur in
the absence of changes in default preferences. Second, it is somehow sub-
optimal, as it neglects reactive processes, which enable the MCD controller
to re-evaluate – and improve on- the decision to stop or continue allocating
resources, as new information is processed and value representations are
updated. The currentwork addresses these limitations, effectively proposing
an “online” variant of MCD which we coin oMCD.

As we will see, oMCD reduces to identifying the optimal policy for a
specific instance of a known class of stochastic control problems: namely,
“optimal stopping”21. This kind of problem can be solved using Markov
Decision Processes or MDPs22, under assumptions regarding the (stochas-
tic) dynamics of costs and/or benefits. Although less concerned with the
notionofmental effort, a similarMDPhas alreadybeenderived for a specific
type of “ideal” value-based decisions14,23,24. The underlying assumption here
is threefold: (i) the system that computes option values is progressively
“denoising” -in a Bayesian manner- its input value signals, (ii), the system
that monitors and controls the decision knows how the underlying value
computation system works, and (iii) the net benefit of decisions (i.e. the
benefit discounted by decision time) is the estimated reward rate. The
ensuing MDP is very similar to so-called Drift-Diffusion decision
models25,26, whereby the decision stops whenever the current estimate of
option value differences reaches a threshold. Interestingly, the authors show
that the assumptions (i), (ii) and (iii) imply that the optimal threshold is a
decreasing function of time. This is not innocuous, since this predicts that
decision confidence necessarily decreases with decision time, which is not
always verified empirically27. In retrospect, these assumptions may thus be
deemed too restrictive. In this work, we intend to generalize this kind of
approaches by relaxing these three assumptions.

In particular, we will consider that the decision control system (i.e. the
system that decides when to stop deliberating) has only limited information
regarding the innerworkings of the system that computes option values.We
will showhowdecision confidence can serve both as an efficient titration for
the benefit of resource investments and as a shortcut summary statistic for
(hidden) value computations. That is, we will show that confidence mon-
itoring is sufficient to operate quasi-optimal decision control for awide class
of value-based decision processes. We demonstrate the generalizability of
the ensuing oMCD policy on two distinct decision scenarios. In the above
“Bayesian value denoising” case, it replicates existing MDPs and extends

their repertoire of confidence/RT relationships.We also consider the case of
value computation by progressive attribute integration28–33. As we will see,
the latter scenario cannot be reduced to the Bayesian value denoising case.
This is because the main source of uncertainty in value representations
derive (as is the case for, e.g., forward planning) from the arbitrary
incompleteness of value computations. We demonstrate that, for both
decision scenarios, oMCD’s control policy provides a close approximation
to the ideal control policy, which requires complete knowledge of the
underlying value computations. We also identify testable properties of
oMCD control policies under both types of value computations, and show
that they are reminiscent of empirical value-based decisions.

Methods
As we will see below, deriving an optimal reactive variant of MCD requires
specificmathematical developments, which falls under the frame ofMarkov
decision processes22. But before we describe the oMCD model, let us first
recall the prospective variant of MCD7.

Note on ethics (see data re-analysis in the Results section): This work
complies with all relevant ethical regulations and received formal approval
from the INSERM Ethics Committee (CEEI-IRB00003888, decision no
16–333). All participants gave informed consent.

The prospective MCDmodel
Note: this section is a summary of themathematical derivation of theMCD
model, which has already been published7.

Let z be the amount of cognitive (e.g., executive, mnemonic, or
attentional) resources that serve to process value-relevant information.
Allocating these resources will be associated with both a benefit BðzÞ, and a
cost CðzÞ. As we will see, both are increasing functions of z: BðzÞ derives
from the refinement of internal representations of subjective values of
alternative options or actions that compose the choice set, and CðzÞ quan-
tifies how aversive engaging cognitive resources is (mental effort). In line
with the framework of expected value of control2,4, we assume that the brain
chooses to allocate the amount of resources ẑ that optimizes the following
cost-benefit trade-off:

ẑ ¼ argmax
z

E½BðzÞ � CðzÞ� ð1Þ

where the expectation accounts for the anticipated impact of allocating
resources into decision deliberation (this will be clarified below). Here, the
benefit term is simply given by BðzÞ ¼ R× PcðzÞ, where PcðzÞ is choice
confidence and itsweightR quantifies the importance ofmaking a confident
decision. As we will see, PcðzÞ plays a pivotal role in the model, in that it
captures the efficacy of allocating resources for processing value-relevant
information. So, how do we define choice confidence?

We assume that the subjective evaluation of alternative options in the
choice set is uncertain. In other words, the internal representations of
values of alternative options are probabilistic. Such a probabilistic repre-
sentation of value can be understood in terms of, for example, an uncertain
prediction regarding the to-be-experienced value of a given option. Inwhat
follows, the probabilistic representation of option value Vi takes the form
of Gaussian probability density functions pðViÞ ¼ Nðμi; σ iÞ, where μi and
σ i are the mode and the variance of the probabilistic value representation,
respectively (and i indexes alternative options in the choice set). This allows
us to define choice confidence Pc as the probability that the (predicted)
experienced value of the (to be) chosen item is higher than that of the (to
be) unchosen item.When the choice set is composed of two alternatives,Pc
is given by:

Pc≈s
πjΔμjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσ1 þ σ2Þ

p
 !

ð2Þ

where sðxÞ ¼ 1=1þ e�x is the standard sigmoid mapping, and we assume
that the choice follows the sign of the preference Δμ ¼ μ1 � μ2. Equation
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(2) simply derives from a moment-matching approximation to the
Gaussian cumulative density function34. Note that Eq. (2) implicitly
assumes that the option with the highest value estimate is chosen. This
satisfies the same formal criteria as for choice confidence in the context of
evidence-based decisions35.

We assume that the brain valuation system may, in some contexts,
automatically generate uncertain estimates of options’ value36,37, before
cognitive effort is invested indecisionmaking. Inwhat follows,μ0i and σ

0
i are

themode andvariance of the ensuingprior value representations. Theyyield
an initial confidence level P0

c . Importantly, this prior or default preference
neglects existing value-relevant information that would require cognitive
effort to be retrieved and processed20.

Now, how can a decision control system anticipate the benefit of
allocating resources to the decision process without knowing the details of
the underlying value computations? Recall that the purpose of allocating
resources is to process (yet unavailable) value-relevant information. The
critical issue is thus to predict how both the uncertainty σ i and themodes μi
of value representations will eventually change, before having actually
allocated the resources (i.e., without having processed the information). In
brief, allocating resources essentially has two impacts: (i) it decreases the
uncertainty σ i, and (ii) it perturbs the modes μi in a stochastic manner.

The former impact (i) derives from assuming that the amount of
information that will be processed increases with the amount of allocated
resources. This implies that the precision 1=σ iðzÞ of a given probabilistic
value representation necessarily increases with the amount of allocated
resources, i.e.:

1=σ iðzÞ ¼ 1=σ0i þ βz ð3Þ

where 1=σ0i is the prior precision of the representation (before any effort has
beenallocated), andβ controls the efficacywithwhich resources increase the
precision of the value representation. More precisely, β is the precision
increase that follows from allocating a unitary amount of resources z. In
what follows, we will refer to β as “type #1 effort efficacy”. Note that if β ¼ 0,
then mental effort brings no improvement in the precision of value
representations.

The latter impact (ii) follows from acknowledging the fact that the
control system cannot know how processing more value-relevant infor-
mation will affect its preference before having allocated the corresponding
resources. Let δi be the change in the position of the mode of the ith value
representation, having allocated an amount z of resources. The direction of
the mode’s perturbation δi cannot be predicted because it is tied to the
information that is yet to be processed. However, a tenable assumption is to
consider that the magnitude of the perturbation increases with the amount
of information that will be processed. This reduces to stating that the var-
iance of δi increases with z, i.e.:

μiðzÞ ¼ μ0i þ δi
δi ∼Nð0; γzÞ ð4Þ

where μ0i is the mode of the value representation before any effort has been
allocated, and γ controls the relationship between the amount of allocated
resources and the variance of the perturbation term δ. The higher γ, the
greater the expected perturbation of the mode for a given amount of allo-
cated resources. In what follows, we will refer to γ as “type #2 effort efficacy”.
Note that Eq. 4 treats the impact of future information processing as some
formof randomperturbation on themode of the prior value representation.
Importantly, Eq. 4 is not specific to the type of value computations that
eventually perturbs the valuemodes. Our justification for this assumption is
twofold: it is simple, and it captures the idea that the MCD controller is
agnostic about how the allocated resources will be used by the underlying
valuation/decision system. We will see that, in spite of this, the MCD
controller can still make quasi-optimal predictions regarding the expected
benefit of allocating resources, under very different value computation
schemes.

Now, predicting the net effect of resource investment onto choice
confidence (from Eqs. (3) and (4)) is not entirely trivial. On the one hand,
allocating effort will increase the precision of value representations, which
mechanically increases choice confidence, all other things being equal. On
the other hand, allocating effort can either increase or decrease the absolute
difference jΔμðzÞj between the modes (and hence increase or decrease
choice confidence). This depends upon the direction of the perturbation
term δ, which is a priori unknown. Having said this, it is possible to derive
the expected absolute mode difference (as well as its variance) that would
follow from allocating an amount z of resources:

E½jΔμðzÞj� ¼ 2
ffiffiffiffi
γz
π

q
exp � jΔμ0j2

4γz

� �
þ Δμ0 2× s π Δμ0ffiffiffiffiffi

6γz
p
� �

� 1

� �
V ½jΔμðzÞj� ¼ 2γz þ jΔμ0j2 � E½jΔμðzÞj�2

8><
>: ð5Þ

where we have used the expression for the first-order moment of the so-
called “folded normal distribution”. Importantly, E½jΔμðzÞj� is always
greater than jΔμ0j and increases monotonically with z - as isV½jΔμðzÞj�. In
otherwords, allocating resources is expected to increase the value difference,
even though the impact of the perturbation term can go either way.

Equation 5 now enables us to derive the expected confidence level
�PcðzÞ≜E½Pc� that would result from allocating the amount of resource z:

�PcðzÞ≈ s
λE½jΔμðzÞj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
2 ðλ2V½jΔμðzÞj�Þ

3
4

q
0
B@

1
CA ð6Þ

where λ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðσ1ðzÞ þ σ2ðzÞÞ

p
. Of course, �Pcð0Þ ¼ P0

c , i.e., investing no
resources yields no confidence gain. Moreover, the expected choice con-
fidence �PcðzÞ always increase with z, irrespective of the efficacy parameters,
as long as β≠ 0 or γ≠ 0. Equation 6 is important, because it quantifies the
expected benefit of resource allocation, before having processed the ensuing
value-relevant information.

To complete the cost-benefit model, we simply assume that the cost of
allocating resources to thedecisionprocess increasesmonotonicallywith the
amount of resources, i.e.:

CðzÞ ¼ αzν ð7Þ

where α determines the effort cost of allocating a unitary amount of
resources z (we refer to α as the “unitary effort cost”), and ν effectively
controls the range of resource investments that result in noticeable cost
variations (we refer to ν as the “cost power”).

Finally, the MCD-optimal resource allocation ẑ is identified by repla-
cing Eqs. (5), (6) and (7) into Eq. (1). This can be done before any resource
has been invested, hence the prospective nature of metacognitive
control, here.

Online MCD: optimal control policy
We now augment this model, by assuming that the MCD controller re-
evaluates the decision to stop or continue allocating resources, as value
representations are being updated and online confidence is changing. This
makes the ensuing oMCD model a reactive extension of the above “purely
prospective”MCDmodel, which relieves the system from the constraint of
effort investment pre-commitment.

Let t be the current time within a decision. For simplicity, we assume
that there is a linear relationship between deliberation time and resource
investment, i.e.: z ¼ κ t, where κ is the amount of resources that is spent per
unit of time.We refer to κ as “effort intensity”. By convention, the maximal
decision time T (the so-called temporal horizon) corresponds to the
exhaustion of all available resources. This implies that T ¼ 1=κ because we
consider normalized resources amounts.
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Now, at time t, the system holds probabilistic value representations
withmodesμðtÞ andvarianceσðtÞ. This yields the confidence levelPcðΔμðtÞÞ
given in Eq. (2) above, where we have made confidence an explicit function
of ΔμðtÞ for mathematical convenience (see below).

This confidence level can be greater or smaller than the initial con-
fidence level P 0

c , because new information regarding option values has been
assimilated since the start of the deliberation. Of course, the system will
anticipate that investing additional resourceswill increase its confidence (on
average). But this may not always overcompensate the cost of spending
more resources on the decision. Thus, how should the system determine
whether to stop or to continue, in order to maximize the expected cost-
benefit tradeoff? It turns out that this problem is one of optimal stopping,
which is a special caseofMarkovDecisionProcesses22,38.Aswewill see, it can
be solved recursively (backward in time) using Bellman’s optimality
principle39.

Let aðtÞ 2 f0; 1g be the action that is taken at time t, where aðtÞ ¼ 0
(resp. aðtÞ ¼ 1) means that the system stops (resp. continues) deliberating.
LetQðaðtÞ;ΔμðtÞÞ be thenet benefit that thedecision systemwould obtain at
time t:

QðaðtÞ;ΔμðtÞÞ ¼
R× PcðΔμðtÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

BðzÞ

� αðκtÞν|fflffl{zfflffl}
CðzÞ

ifaðtÞ ¼ 0

0 otherwise

8><
>: ð8Þ

where both the benefits BðzÞ and costs CðzÞ of resource investments have
been rewritten in terms of decision time. Without loss of generality, Eq. (9)
states that the net benefit of resource allocation is only realized when the
systemdecides to stop (aðtÞ ¼ 0).Note thatQðaðtÞ;ΔμðtÞÞ is also a function
of time (through the precision of value representations and effort cost), but
we have ignored this dependency for the sake of notational conciseness.

A time t, the optimal control policyderives fromacomparisonbetween
the net benefit of stoppingnow - i.e.,Qð0;ΔμðtÞÞ - and some -yet undefined-
threshold ωðtÞ, which may depend upon time. Let πωðtÞ be the control
policy (i.e., the temporal sequence of continue/stop decisions) that is
induced by the threshold ωðtÞ:

πωðtÞ ¼
�
0 if Qð0;ΔμðtÞÞ≥ωðtÞ
1 otherwise

ð9Þ

Finding the optimal control policy π*
ωðtÞ thus reduces to finding the

optimal threshold ω*ðtÞ.
By definition, at t ¼ T , the system stops deliberating irrespective of its

current net benefit Qð0;ΔμðTÞÞ. By convention, the optimal threshold
ω*ðTÞ can thus be written as:

ω*ðTÞ ¼ min
ΔμðTÞ

Qð0;ΔμðTÞÞ

¼ Qð0; 0;TÞ
¼ R=2� αðκTÞν

ð10Þ

Now, at t ¼ T � 1, the net benefit Qð0;ΔμðT � 1ÞÞ of stopping now
can be compared to the expected net benefit E½Qð0;ΔμðTÞÞjΔμðT � 1Þ� of
stopping at time t ¼ T , conditional on the current value mode difference
ΔμðT � 1Þ:

E½Qð0;ΔμðTÞÞjΔμðT � 1Þ� ¼ R× E½PcðΔμðTÞÞjΔμðT � 1Þ� � αðκTÞν
ð11Þ

where the expectation is taken under the transition probability density
pðΔμðTÞjΔμðT � 1ÞÞ of the value mode difference for a unitary time
increment (Δt ¼ 1 () Δz ¼ κ). This density derives from rewriting
Eq. (4) in terms of the instantaneous change in the moments of the
value representations. It is trivial to show that the corresponding first-
and second-order moments are E½μiðtÞ � μiðt � 1Þ� ¼ 0 and
E½ðμiðtÞ � μiðt � 1ÞÞ2� ¼ γ κ, respectively. It follows that the transition
probability density of the valuemode difference is stationary (i.e. it does not
depend upon time) and is given by:

pðΔμðtÞjΔμðt � 1ÞÞ ¼ NðΔμðt � 1Þ; 2γ κÞ8t>1 ð12Þ

which is of course valid for t ¼ T .
The optimal policy is to stop if Qð0;ΔμðT � 1ÞÞ≥

E½Qð0;ΔμðTÞÞjΔμðT � 1Þ�, and to continue otherwise. Note that both
Qð0;ΔμðT � 1ÞÞ and E½Qð0;ΔμðTÞÞjΔμðT � 1Þ� are deterministic func-
tions of ΔμðT � 1Þ. More precisely, they are bothmonotonically increasing
withΔμðT � 1Þ (see Fig. 1 below), because current confidence and expected
future confidence monotonically increase with ΔμðT � 1Þ. Critically, these
functions have a different offset, i.e.:Qð0; 0Þ < E½Qð0;ΔμðTÞÞjΔμðT � 1Þ ¼
0� as long as γ > 0. In addition, they eventually reach a different plateau,
i.e.: limΔμðT�1Þ!1 Qð0;ΔμðT � 1ÞÞ> limΔμðT�1Þ!1 E½Qð0;ΔμðT � 1ÞÞj
ΔμðT � 1Þ� as long as α > 0. This is important, because this implies
that there exists a critical value mode difference Δμ*ðT � 1Þ such that
Qð0;Δμ*ðT � 1ÞÞ ¼ E½Qð0;ΔμðTÞÞjΔμ*ðT � 1Þ�. The net benefit at that
critical point is the optimal threshold at t ¼ T � 1, i.e.:
ω*ðT � 1Þ ¼ Qð0;Δμ*ðT � 1ÞÞ. This is exemplified in Fig. 1 below.

Now, let usmove one step backward in time, at t ¼ T � 2.Here again,
the optimal policy is to stop if the current net benefit Qð0;ΔμðT � 2ÞÞ is
higher than the expected future net benefit E½QðaðT � 1Þ;
ΔμðT � 1ÞÞjΔμðT � 2Þ�, conditional on ΔμðT � 2Þ. However, the latter
now depends upon aðT � 1Þ, i.e., whether the system will later decide to
stop or to continue:

E½QðaðT � 1Þ;ΔμðT � 1ÞÞjΔμðT � 2Þ�

¼ E½Qð0;ΔμðT � 1ÞÞjΔμðT � 2Þ� if aðT � 1Þ ¼ 0

E½E½Qð0;ΔμðTÞÞjΔμðT � 1Þ�jΔμðT � 2Þ� otherwise

� ð13Þ

The optimal control policy cannot be directly identified from Eq. (13).
This is where we resort to Bellman’s optimality principle: namely, whatever
the current state and action are, the remaining actions of an optimal policy
must also constitute an optimal policywith regard to the state resulting from
the current action39. Practically speaking, the derivation of the optimal

Fig. 1 | Derivation of oMCD’s optimal control policy. Net benefits (y-axis) are
plotted against the value mode difference (x-axis). The red and green lines show the
net benefit if the system were stopping at t ¼ T � 1, and the expected net benefit at
t ¼ T � 1. Finally, the dotted black line shows the optimal net benefit at t ¼ T � 1,
and the dotted blue line shows its expectation at t ¼ T � 2 (see main text).
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threshold at t ¼ T � 2 is done under the constraint that oMCD’s next
action follows the optimal policy, i.e., aðT � 1Þ ¼ π*

ωðT � 1Þ.
Let Q*ðΔμðtÞÞ � Qðπ*

ωðtÞ;ΔμðtÞÞ be the net benefit evaluated under
the optimal policy at time t, which we refer to as the “optimal net benefit”.
Under Bellman’s optimality principle, the optimal policy at t ¼ T � 2 is to
stop if the current net benefit Qð0;ΔμðT � 2ÞÞ is higher than the expected
optimal net benefit E½Q*ðΔμðT � 1ÞÞjΔμðT � 2Þ�, where the expectation is
again taken under the transition probability density in Eq. (12).

Now, at time t ¼ T � 1, the optimal net benefit is given by:

Q*ðΔμðT � 1ÞÞ≜ maxfQð0;ΔμðT � 1ÞÞ; E½Qð0;ΔμðTÞÞjΔμðT � 1Þ�g
ð14Þ

Note that Q*ðΔμðT � 1ÞÞ is just another function of ΔμðT � 1Þ (cf.
dottedgreencurve inFig. 1).Thismeans that theonly sourceof stochasticity in
Q*ðΔμðT � 1ÞÞ comes from ΔμðT � 1Þ, which can nonetheless be predicted
(with some uncertainty), given the current valuemode differenceΔμðT � 2Þ.
In turn, this makes the expected optimal net benefit E½Q*ðΔμðT �
1ÞÞjΔμðT � 2Þ� a deterministic function ofΔμðT � 2Þ. Again, as long as γ > 0
and α > 0, there exists a critical value mode difference Δμ*ðT � 2Þ such that
Qð0;Δμ*ðT � 2ÞÞ ¼ E½Q*ðΔμðT � 1ÞÞjΔμ*ðT � 2Þ�. Thenet benefit at that
critical point is the optimal threshold ω*ðT � 2Þ at t ¼ T � 2.

In fact, the reasoning is the same for all times t<T � 1:
First, the expected optimal net benefit obeys the following backward

recurrence relationship (Bellman equation for all t<T � 1):

E½Q*ðΔμðtÞÞjΔμðt � 1Þ� ¼ E½maxfQð0;ΔμðtÞÞ; E½Q*ðΔμðt þ 1ÞÞjΔμðtÞ�gjΔμðt � 1Þ�
ð15Þ

This equation is solved recursively backward in time, starting at the
expected net benefit at t ¼ T � 1, as given in Eq. (11). Both expectations in
Eq. (15) are takenunder the transitionprobabilitydensitypðΔμðtÞjΔμðt � 1ÞÞ
of the value mode difference under a unitary resource investment
(cf. Equation (12)).

Second, the optimal threshold at time t is given by:

ω*ðtÞ ¼ Qð0;Δμ*ðtÞÞ ð16Þ

where Δμ*ðtÞ is the critical value mode difference, i.e., Δμ*ðtÞ is such that:

Qð0;Δμ*ðtÞÞ ¼ E½Q*ðΔμðt þ 1ÞÞjΔμðtÞ ¼ Δμ*ðtÞ� ð17Þ

Since the net benefit is a deterministic function of decision confidence,
the oMCD-optimal thresholdω*ðtÞ for net benefits can be transformed into
an oMCD-optimal confidence threshold ω*

PðtÞ. Replacing the net benefit

with the optimal threshold ω*ðtÞ and confidence with ω*
PðtÞ in Eq. 9 yields:

ω*
PðtÞ ¼

ω*ðtÞ þ αðκtÞν
R

ð18Þ

At any point in time, comparing the net benefitQð0;ΔμðtÞÞ of resource
allocation toω*ðtÞ is exactly equivalent to comparing the current confidence
level PcðtÞ to ω*

PðtÞ. In other terms, the optimal control policy (cf. Equa-
tion (10)) can be rewritten as:

π*
ωðtÞ ¼

0 ifPcðtÞ≥ω*
PðtÞ

1 otherwise

(
ð19Þ

This highlights the central role of confidence, whose monitoring
(during deliberation) is a sufficient condition for operating optimal decision
control. In turn, this greatly simplifies the decision control architecture
because knowledge about the underlying decision-relevant computations is
not required.Aswewill see later, oMCD isflexible (i.e. it encompassesmany
kinds of decision processes) and robust to deviations from its working
assumptions (i.e. it provides a tight approximation to optimal control under
alternative settings of the resource allocation problem).

This closes the derivation of oMCD’s optimal control policy.
Although the derivation of oMCD’s optimal control policy is agnostic

w.r.t. the underlying value computations, it still requires some prior infor-
mation regarding the upcoming information processing: namely, prior
moments of value representations, type #1 and #2 effort efficacies, decision
importance, unitary effort cost and cost power. This means that oMCD
implicitly includes a prospective component, which is used to decide how to
optimally react to a particular (stochastic) internal state of confidence. In
other terms, one can think of oMCD as amixed prospective/reactive policy,
whose prospective component is the shape of the confidence threshold
temporal dynamics.

Figure 2 below shows a representative instance of oMCD’s optimal
control policy, from 1000 Monte-Carlo simulations (using decision para-
meters R = 1, α = 0.2, β = 1, γ = 4, κ = 1/100, υ = 0.5, σ0 = 1).

First, one can see that oMCD’s optimal confidence thresholdω*
PðtÞ lies

above the average confidence level �PcðtÞ of its prospective variant (cf.
Equation 6,whoseMonte-Carlo estimate is depictedby theblue line inpanel
B). This means that oMCD’s control policy would, in most cases, demand
higher confidence than prospective MCD. Importantly however, oMCD’s
policy is sensitive to unpredictable fluctuations in the trajectory of value
modes, which will induce variations in resource investments (or, equiva-
lently, response times). This enables oMCDto exploit favorable variations in
confidence if they eventually reach the threshold sooner than expected.

Fig. 2 | oMCD’s optimal control policy. A The black dotted line shows the oMCD-
optimal net benefit threshold. The blue line and shaded area depict the mean and
standard deviation of net benefit dynamics (over the 1000 Monte-Carlo simula-
tions), respectively. This reflects the possible variations of within-trial confidence
dynamics. The vertical red line indicates the optimal resource allocation as obtained
from the prospective variant of MCD, and the horizontal red line depicts the

corresponding average net benefit level. B The black dotted line shows the oMCD-
optimal confidence threshold. The blue line and shaded area depict the mean and
standard deviation of decision confidence (over the same Monte-Carlo simula-
tions). The horizontal red line depicts the average confidence level that corresponds
to the optimal resource allocation under prospective MCD.
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Note that the confidence threshold ω*
PðtÞ is, by construction, the

confidence level that the system achieves when committing to its decision.
This means that, under oMCD’s policy, the relationship between reported
confidence levels and response times is entirely determined by the shape of
the optimal threshold dynamics. In this example, this relationship will be
mostly negative, i.e., reported confidence levels tend to decrease when
response times increase.This is despite the fact that average confidence �PcðtÞ
always increases as decision time unfolds, as long as effort efficacy para-
meters are nonzero. In otherwords, the overt relationship between response
times and reported confidence levels (across trials) may be qualitatively
different from the covert temporal dynamics of confidence during decision
deliberation.

So what is the impact of decision parameter on oMCD’s confidence
threshold dynamics? This is summarized in Fig. 3 below, where we sys-
tematically vary each parameter in turn (when setting all the others
to unity).

The net effect of increasing effort efficacy (either type #1 or type #2) is
to increase the absolute confidence threshold. In other terms, the demand
for confidence increases with effort efficacy. In contrast, the demand for
confidence decreases with unitary effort cost. Note that the effect of
increasing decision importance (not shown) is exactly the same as that of
decreasing unitary effort cost. Importantly, the shape of the confidence
threshold dynamics is approximately invariant to changes in effort efficacy
or unitary effort cost.

The only parameter that eventually changes the qualitative
dynamics of oMCD’s optimal confidence threshold is the effort cost
power (panel D). In brief, increasing the cost power tends to decrease the
initial slope of oMCD’s confidence threshold dynamics. Here, the latter
eventually falls below zero (i.e., the confidence threshold decreases with
decision time) when the effort cost becomes superlinear (ν > 1). This is
because, in this case, late resource investments are comparatively more
costly than early ones.

Note that, in contrast to effort efficacies, effort cost parameters can be
altered without changing the dynamics of expected confidence. In other
terms, the shapeof the relationship betweendecision time and confidence is,
for the most part, independent from the inner workings of the underlying
decision system.

Let us now relate theMCD framework to standard decision processes,
which differ in terms of their respective value computations.

How does MCD relate to standard decision processes?
By itself, the MCD framework does not commit to any specific assumption
regarding how value-relevant information is processed. Nevertheless, the
properties of decisions that are controlled through MCD actually depend
upon how probabilistic value representations change over time. In what
follows, we focus on two specific scenarios of value computations, and
disclose their connection with MCD.

Bayesian value denoising
Let us first consider the Bayesian value denoising case, in which value
representations are updated Bayesian beliefs on a hidden value signal. Note
that, in this case, the optimal control rule - formaximizing expected reward
rate - reduces to a specific instance of so-called drift-diffusion decision
models with decaying bounds on the estimated value difference14,24.

Assume that, at each time point, the decision system receives an
unreliable copy yðtÞ of the (hidden) valueV of each alternative option.More
precisely, yðtÞ is a noisy input signal that is centered on V , i.-
e.:yðtÞ ¼ V þ εðtÞ, where the random noise term εðtÞ is i.i.d. Gaussian with
zero mean and variance Σ (and we have dropped the option indexing for
notational simplicity). One may think of Σ as measuring the (lack of)
reliability of the input value signal. This induces the following likelihood
function for the hidden value: pðyðtÞjVÞ ¼ NðV;ΣÞ. Finally, assume that
the decision system holds a Gaussian prior belief about the hidden options’
value, i.e.: pðVÞ ¼ Nðμ0; σ0Þ, where μ0 and σ0 are the corresponding prior
mean andvariance.At time t, a Bayesianobserverwould assimilate the series
of noisy signals to derive a probabilistic (posterior) representation
pðV jyð1Þ; :::; yðtÞÞ ¼ NðμðtÞ; σðtÞÞ of hidden options’ values with the fol-
lowing mean and variance40:

μðtÞ ¼ μ0 þ ~δðtÞ
σðtÞ ¼ 1

1
σ0

þ t ×
1
Σ

8>><
>>: ð20Þ

where the perturbation ~δ of the value mode is given by:

~δðtÞ ¼ 1
Σ
σ0
þ t

Xt
t’¼1

ðyðtÞ � μ0Þ ð21Þ

Fig. 3 | Impact of decision parameters on oMCD’s
optimal confidence threshold dynamics. A Effect
of type #1 effort efficacy. Optimal confidence
threshold (y-axis, black dots) is plotted against
decision time (x-axis), for different β levels (color
code). B Effect of type #2 effort efficacy, same for-
mat. C Effect of unitary effort cost, same format.
D Effect of cost power, same format.
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Equation 21 specifies what the perturbation to the value mode would
be, if the underlying value computation was a process of Bayesian value
denoising, whose outcome is the posterior estimate μðtÞ ¼
E½V jyð1Þ; :::; yðtÞ� of value. In brief, Eq. (21) states that the value mode
changes in proportion to prediction errors (i.e., yðtÞ � μ0), which the
Bayesian observer accumulates while sampling more input value signals.
The stochasticity of the valuemode’s perturbation~δ is driven by the random
noise term ε in the incoming noisy value signal. Conditioned on the hidden
value V , it is easy to show that E½~δjV� / V � μ0. This implies that the
randomwalk in Eq. (21) actually has a nonzero drift that is proportional to
the hidden value. Importantly however, the Bayesian observer does not
know what the hidden value V is. Prior to observing noisy value signals, its
expectation is simply thatE½y� ¼ E½V� ¼ μ0 and thereforeE½~δ� ¼ 0. In fact,
this holds true at any time t: the Bayesian observer’s expectation about the
future change in its value beliefmode, i.e.E½μðt þ 1Þ � μðtÞjyð1Þ; :::; yðtÞ�, is
always zero, because its expectation about the next value signal reduces to
her current value mode, i.e. E½yðt þ 1Þjyð1Þ; :::; yðtÞ� ¼ μðtÞ. In other
words, although themodes’perturbation~δ actually have anonzeromean (as
long as V deviates from the mode of the observer’s belief), the Bayesian
observer’s expectation about its future realizations is always zero.

Nevertheless, the Bayesian observer can accurately predict how the
precision of its belief will change with time. Comparing Eqs. (3) and (20)
suggests that, under the Bayesian value denoising scenario, type #1 effort
efficacy reduces to:β ¼ 1=κΣ. Thismeans that type #1 effort efficacy simply
increases with the reliability of the input value signal.

In addition, although the Bayesian observer cannot anticipate in what
direction the to-be-sampled signal yðtÞwillmodify themode of its posterior
belief, it can derive a prediction over the magnitude of the perturbation:

E½~δðtÞ2� ¼ t ×
Σþ tσ0
ð Σσ0 þ tÞ2 ð22Þ

where the expectation is derived under the agent’s prior belief about the
hidden value.Now, Eq. (4) defines type #2 effort efficacy in terms of the ratio
E½~δðtÞ2�=κ t of expected change magnitude over effort investment (where
z ¼ κ t). Note that, under Eq. (22), this quantity varies as a function of
decision time. Thus, under the Bayesian value denoising scenario, type #2
effort efficacy can be approximated as its sample average over all admissible
decision times, i.e.: γ≈1=T

PT
t¼1ðΣþ tσ0Þ=ðΣ=σ0 þ tÞ2κ. This is only an

approximation of course, sinceE½~δðtÞ2� eventually tails off as time increases,
because noisy value signals that are sampled later in time have a smaller
effect on the posterior mode. In other words, were the MCD controller to
know about the inner computations of the underlying value updating sys-
tem, it would rely on Eq. (22) rather than on Eq. (4). The ensuing ideal
control policy is summarized in the Supplementary Methods 1 in the Sup-
plementary Information.

The progressive attribute integration case
Second, let us consider another type of value computation, which essentially
proceeds from progressively integrating the value-relevant attributes of
choice options. This typically happens when choice options can be
decomposed intomultiple dimensions thatmay conflictwith eachother (cf.,
e.g., tastiness versus healthiness for food items).

Let x1; :::; xk be the set of k such value-relevant attributes, the com-
bination ofwhich is specific to eachoption.Assume that the decision system
constructs the value of alternative options according to a weighted sum of
attributes, i.e.:V ¼Pkwk × xk, where the attribute weightswk are the same
for all options. Assume that each attribute is sampled from a Gaussian
distribution with mean ηk and variance ςk, i.e. pðxkÞ ¼ Nðηk; ςkÞ. Finally,
assume that attributes are available to the decision system one at a time, i.e.
decision time steps co-occurwith attribute-disclosing events. For the sake of
simplicity, we set the decision’s temporal horizon to T ¼ k, i.e. we focus on
the decision to stop (potentially prematurely) the integration of all available
value-relevant attributes. In what follows, we refer to this scenario as the
progressive attribute integrationmodel.

In the absence of default preferences, the system holds a prior repre-
sentation about the options’ value that is maximally uninformative. This is
because, prior to any value computation, any combination of value-relevant
attributes is admissible, and the system did not disclose the options’ attri-
butes yet. The first two moments of the system’s prior value representation
pðVÞ ¼ Nðμ0; σ0Þ are thus given by:

μ0 ¼
Pk
k’¼1

wk’ × ηk

σ0 ¼
Pk
k’¼1

wk’
2 × ςk

8>>>><
>>>>:

ð23Þ

where of k is the number of value-relevant attributes.
Now, as time unfolds and the decision system discloses the value-

relevant attributes, it progressively removes sources of uncertainty about the
value of alternative options. In principle, if the system reaches the temporal
horizon, then it knows all the attributes and can evaluate the alternative
options with infinite precision. However, as long as some attributes are
missing, value representations remain uncertain. Let KðtÞ be the set of
attribute indices that have beenavailable to thedecision systemupuntil time
t. At time t, the decision system thus holds an updated probabilistic
representation of value pðVjxKðtÞÞ ¼ NðμðtÞ; σðtÞÞwith the followingmean
and variance:

μðtÞ ¼ μ0 þ ~δðtÞ
σðtÞ ¼ σ0 �

P
k’2KðtÞ

wk’
2 × ςk’

8<
: ð24Þ

where the change in the value mode is simply given by:

~δðtÞ ¼
X

k’2KðtÞ
wk’ × ðxk’ � ηk’Þ ð25Þ

As before, Eq. 25 specifies what the perturbation to the value mode
would be, if the underlying value computation was a process of progressive
attribution integration, whose outcome is the value estimate μðtÞ. Note that
here, variability in mode perturbations does not arise from some form of
stochasticity or unreliability of input signals, as is the case for the Bayesian
value denoising scenario above. Rather, it derives from the arbitrariness of
the permutation order with which attributes become available for options’
evaluation.However, should the full set of attributes eventually be disclosed,
the estimated value would be μðTÞ ¼Pk

k’wk’ × xk’, with full cer-
tainty (σðTÞ ¼ 0).

Here again, the decision system cannot anticipate in which direction
the future value mode will change, i.e. its expectation over future mode
changes always is E½~δðtÞ� ¼ 0 at any point in time (because E½xk� ¼ ηk).
Nevertheless, it can derive a prediction over the magnitude of the pertur-
bation, by averaging over all possible permutation orders:

E½~δðtÞ2� ¼ t
k

Pk
k’¼1

wk’
2 × ςk’

¼ t σ0

ð26Þ

Comparing Eqs. (4) and (26) suggests that, under the progressive
attribute integration scenario, type #2 effort efficacy simplifies to: γ ¼ σ0.
Thismeans that type #2 effort efficacy simply scales with the expected range
of attributes’ variation. This also implies that, in contrast to the above value
denoising case, the transition probability density of value modes under the
progressive attribute integration scenario is stationary and complies with
oMCD’s assumption (cf. Equation (12)).

What about type #1 effort efficacy? Note that one cannot directly
compare Eq. (24) to Eq. (4), because of the arbitrariness of the order of
attribute-disclosing events. In fact, this arbitrariness implies that the
dynamics of value variances is decreasingwith timebut stochastic.Although
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oMCD is neglecting this stochasticity, type #1 efficacy can be derived from
the first-order moment of value variance dynamics. Accordingly, averaging
over all possible permutations yields the following expected change in
precision: E½1=σðtÞ � 1=σ0�≈t × 1=σ0ðk� tÞ. Using the same logic as
above, this suggests that type #1 effort efficacy can now be approximated as:
β≈1=ðk� 1ÞPk�1

t¼1 1=κ σ0ðk� tÞ. Note that we have removed the time
horizon from averaging over admissible decision times, since it induces a
singularity (infinite precision).

Importantly, the progressive attribute integration scenario implies that
both first- and second-order moments of value representations follow sto-
chastic dynamics. Thismeans that the ideal control policydoesnot reduce to
a single threshold (on either net benefits or confidence), but rather unfolds
onto the bidimensional space spanned by both moments of value repre-
sentations. This makes the progressive attribute integration scenario quali-
tatively different from the Bayesian value denoising case. We refer the
interested reader to the Supplementary Methods 2 in the Supplementary
Information for details regarding the mathematical derivation of the ideal
control policy under progressive attribute integration.

One can see that the definition of type #1 and type #2 effort efficacies
depends upon the way in which the decision process perturbs the value
representations (the above scenarios are just two examples out of many
possible forms of value computations). In principle, optimal control
would thus require variants of MCD controllers that are tailored to the
underlying decision system. For the sake of completeness, the derivation
of such ideal control policies are summarized in Appendices 1 and 2. In
this context, the MCD architecture that we propose provides an efficient
alternative, which generalizes across decision processes and still operates
quasi-optimal decision control (see below). The only requirement here, is
to calibrate the MCD controller over a few decision trials to learn effort
efficacy parameters. Note that such calibration is expected to be very quick
(at the limit: only one decision trial), because effort efficacies can be
learned on within-trial dynamics (of value representations). This is
effectively what we have done here, in an analytical manner, when
deriving approximations for the effort efficacy parameters under distinct
decision scenarios.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
In the previous section of this manuscript, we derived the online, dual
prospective/reactive variant ofMCD (and disclosed its connection with two
exemplar decision systems). We now wish to illustrate its properties.

How do prospective MCD and oMCD differ?
Formally speaking, online/reactive and prospective MCD policies are sol-
ving the same resource allocation problem, i.e. they both aim at stopping
resource investment when its net benefits are maximal. At this point, one
may thus ask whether oMCD produces better decisions than prospective
MCD, which operates by committing to a predefined resource investment.
More precisely, under prospective MCD, the decision stops when the
expected net benefit is maximal, which is evaluated at the onset of the
decision (this corresponds to the red vertical line in Fig. 2). But does oMCD
yield higher net benefits than prospective MCD (on average)?

To answer this question, we resort to Monte-Carlo simulations. In
brief, we simulate a particular decision trial in terms of the stochastic
dynamics of value representations, according to Eqs. (3) and (4), using the
same decision parameters as for Fig. 2. At each time step, oMCD’s policy
proceeds by comparing the ensuing confidence level to the optimal con-
fidence threshold. When the confidence threshold is reached, we store the
resource investment, as well as the ensuing confidence level and net benefit.
Weproceed similarly for prospectiveMCD, except that resource investment
is defined according to Eq. (1).We then repeat the procedure to evaluate the
average confidence levels, amounts of invested resources, and net benefits
induced by both MCD variants. These are summarized in Fig. 4 below,
where the averages are taken over 500 sample path trajectories of value
modes. Note: as a reference, we also compareMCD control policies to a so-
called “oracle” dummy policy, which retrospectively identifies the net
benefit apex, i.e. the time at which the stochastic trajectory of net benefits is
maximal. This provides an upper (though unachievable) bound to the
expected net benefit of any online control policy.

One can see that oMCD tends to invest fewer resources and yet
achieves higher confidence than prospectiveMCD(on average). In turn, the
ensuing average net benefit is lower for prospective MCD than for oMCD
(which is closer to the oracle). Unsurprisingly, under oMCD, the statistical
relationship between resource investments and reported confidence levels
unfolds along the dynamics of the optimal confidence threshold. In this
setting, decisions that take longer eventually yield lower confidence

Fig. 4 | the performance of oMCD’s optimal con-
trol policy. A A violin plot of the distribution of
resources invested (y-axis) is shown under oMCD
(black), prospective MCD (red), or oracle (green)
policies. Horizontal lines and shaded areas depict
sample mean and standard deviation, respectively.
B Average confidence level at the time of decision,
same format. C The average net benefits, same for-
mat.DMean achieved confidence (y-axis) is plotted
against resource investment deciles (x-axis) for all
control policies (oMCD: black, MCD: red, oracle:
green). Errobars show standard deviation around
the mean (s.e.m.). The black dotted line shows
oMCD’s optimal confidence threshold.

https://doi.org/10.1038/s44271-024-00071-y Article

Communications Psychology |            (2024) 2:23 8



(although this actually depends upon decision parameters, see Fig. 3). For
prospectiveMCD, there is no such relationshipbecause resource investment
is fixed once decision parameters are set.

So do these observations generalize over decision parameter settings?
To answer this question, we repeat the same analysis as above, under 200
random settings of all decision parameters. Figure 5 below summarizes the
results of this Monte-Carlo simulations series.

One can see that the impact of decision parameters on resource
investment and confidence is very similar under bothMCDvariants. This is
important, because this means that the known properties of prospective
MCD7 generalize to oMCD. In addition, oMCD’s optimal control policy
tends to yield lower resource investments and higher confidence levels than
prospective MCD. Both effects almost compensate each other, but oMCD
tends to provide a small but systematic improvement on the ensuing net
benefit, which typically increases with type #2 effort efficacy (γ). This is
because increasing γ increases the stochasticity of value mode dynamics,
which provides oMCD with more opportunities to exploit favorable var-
iations in confidence (cf. panel B).

Now, when compared to prospectiveMCD, oMCDpossesses a unique
feature: the potentially nontrivial statistical relationship between decision
confidence and resource investments (as proxied using, e.g., response
times), across trials with identical decision parameters. This was already
exemplified in Fig. 4 above (cf. panel D).

To make this distinction clearer, we performed another set of simu-
lations aiming at evaluating the impact of decision difficulty. Note that
difficult decisions can be defined as those decisions where the reliability of
value representations improve very slowly. Within the MCD framework,
increasing decision difficulty can thus be modelled by decreasing type #1
effort efficacy.Wesystematically variedβ from2 to8 (having set all theother
decision parameters to 4), simulated 500 sample path trajectories of value
mode dynamics for each difficulty level, and evaluated the ensuing effort
investments and achieved confidence levels. Figure 6 below summarizes the
simulation results.

One can see that the net effect of increasing decision difficulty (or
equivalently, decreasing type #1 effort efficacy) is to increase resource
investment and decrease confidence. This holds for both oMCD and its
prospective variant. Thismeans that, on average, reported confidence levels
will tend to correlate negatively with resource investments, across difficulty
levels (at least for this setting of decision parameters). However, for oMCD,

this negative relationship between resource investments and reported
confidence levels is also true within each difficulty level (across trials). This
has no equivalent under prospective MCD. In addition, the shape of this
relationship is preserved across difficulty levels. This is because type #1 effort
efficacy induces rather small distortions on oMCD’s confidence thresholds
(cf. Figure 3 above).

Figure 6 also reveals how oMCD’s optimal control policy prospectively
anticipates the impact of decision difficulty. In brief, the decay rate of
oMCD’s confidence threshold increases with decision difficulty, because
expected confidence gains become more costly. However, this is over-
compensated by the corresponding decrease in the ascent rate of expected
confidence,whichwill delay the time atwhich confidence eventually reaches
the optimal threshold. This eventually determines the way oMCD trades
effort against confidence: difficult decisions are givenmoredeliberation time
than easy decisions (this is also true for prospective MCD).

Note that the effect of difficulty on resource investment, as well as the
shape of the effort/confidence relationship, depends on the setting of
decision parameters. In other words, these effects do not generalize to all
decision parameter settings. For example, increasing decision difficulty
will eventually decrease resource investments. Also, the sign of the cor-
relation between confidence and resource investments across difficulty
levels may not always align with the sign of this correlation within each
difficulty level.

How optimal is oMCD’s policy?
One of oMCD’s main claims is that it is possible to derive a quasi-optimal
decision control policy, without detailed knowledge of the underlying value
computations. But how well does oMCD perform, when compared to ideal
policies that rely on such detailed knowledge? To address this question, we
compare both resource investments and achieved confidence levels under
either oMCD or the ideal control policy, for both decision scenarios (see
Supplementary Methods 1 and 2 in the Supplementary Information for
mathematical details regarding the derivation of the corresponding ideal
policies).

We thus conducted the two following sets ofMonte-Carlo simulations
series. For each decision scenario, we simulate sample path trajectories of
moments of value representations, under the corresponding type of value
computations. Each trajectory effectively corresponds to a dummy decision
trial, given some setting of the relevant decision parameters.Note that only a

Fig. 5 | Comparison between prospective MCD
and oMCD. A The amount of resources invested
under the prospective variant of MCD (x-axis) is
plotted against the average amount of resources
invested under oMCD (y-axis). Each dot corre-
sponds to a specific set of decision parameters
(200 samples). The color code indicates type #2
effort efficacy (blue: low γ, red: high γ). B Decision
confidence, same format. C Net benefit, same
format.
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subset of these parameters is common to all decision scenarii (cost/benefit
parameters, i.e.:R,α andν),whereas otherparameters are typically decision-
specific (bayesian value denoising: signal reliability Σ and prior variance σ0,
progressive attribute integration: attribute moments η and ζ as well as
attributeweightsw). For eachdecision parameter setting, we derive both the
ideal control policy and oMCD’s control policy (by approximating the effort
efficacy parameters that correspond to the decision-specific parameters).
We then collect the resource investments and achieved confidence that are
induced by these policies, when applied on sample path trajectories of value
representation moments. Now, how do ideal and oMCD policies compare
across different settings of decision parameters?

Figure 7 below summarizes the comparison of ideal and oMCD poli-
cies under the Bayesian value denoising scenario. This comparison is made
across 200 sets of randomly drawn decision parameters α, ν, Σ and σ0. For
parameter setting, we derive the average effort investment and achieved
confidence level across 500 sample path trajectories of moments of value
representations.

One can see that variations in decision-relevant parameter settings
induce very similar variations in average resource investments, achieved
confidence and net benefits under both decision control policies. Also,
although oMCD’s policy yields both more effort costs (in terms of resource
investments) and more benefits (in terms of achieved confidence), these

Fig. 6 | Impact of difficulty level. A oMCD’s mean
resource investment (y-axis, black dots) is plotted as
a function of type #1 effort efficacy (x-axis). Error-
bars depict standard deviations across trials, and red
diamonds show the resource investment under
prospective MCD. B Achieved confidence, same
format. C Achieved confidence (y-axis) is plotted
against resource investments deciles (x-axis), for
each difficulty level (color code: β = type #1 effort
efficacy), under oMCD’s optimal policy. D oMCD’s
confidence threshold (y-axis, plain lines) is plotted
against decision time (x-axis), for each difficulty
level (same color code as lower-left panel). Dashed
lines show expected confidence, and dots show the
corresponding resource investments under
prospective MCD.

Fig. 7 | Bayesian value denoising: comparison of
oMCD and ideal control policies. A Average
resource investments under oMCD’s policy (y-axis)
are plotted against average resource investments
under the ideal policy (x-axis), across parameter
settings (dots). The color code indicates type #2
effort efficacy (blue: low γ, red: high γ). B Average
achieved confidence, same format. C Average net
benefit, same format.
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effects compensate each other and oMCD’s ensuing net benefits are com-
parable to those of the ideal control policy. Moreover, despite oMCD’s
approximation of type #2 effort efficacy, it does not seem to have a sys-
tematic impact on the similarity between the two policies. These results
imply that oMCD provides a tight approximation to the ideal policy for
Bayesian value denoising.

Now Fig. 8 below summarizes the comparison of ideal and oMCD
control policies under the progressive attribute integration scenario (200 sets
of randomly drawn decision parameters α, ν, η, ζ and w, with k ¼ 10).

As before, one can see that variations in decision-relevant parameter
settings induce very similar variations in average resource investments,
achieved confidence andnet benefits under both control policies.Moreover,
despite oMCD’s approximation of type #1 effort efficacy, it does not seem to
have a systematic impact on the similarity between the two policies. These
results imply that oMCD provides an accurate approximation to the ideal
control policy for progressive attribute integration.

Taken together, these resultsmean that theMCDarchitecture operates
a quasi-optimal decision control that generalizes across decision processes
without requiring detailed knowledge about underlying value
computations.

How critical is the definition of MCD’s benefit term?
The working assumption of MCD is that decision confidence serves as the
main benefit term of the resource allocation problem (cf. Equations 1–2).
The advantage of this assumption is that it applies to any kind of decision
process, irrespective of the underlying computations.However, aswe hinted
in the introduction, for the specific case of value-baseddecisions, there exists
another natural candidate definition of the benefit term, i.e.: the value of the
chosen option. One may argue that changing the definition of the benefit
term effectively changes the nature of the resource allocation problem. So
how critical is MCD’s working assumption? Is oMCD robust to such
alternative setting of the resource allocation problem?

On the computational side of things, the derivation of the ensuing
optimal control policy is very similar to that of oMCD. Since the value of the
chosen option is, by definition, the maximum value over the choice set, we
refer to this policy asmax(value). It is relatively easy to show that oMCDand
max(value) share one common important feature, i.e.: the critical quantity
that triggers decisions is the absolute difference jΔμðtÞj in value modes.

However, in contrast to oMCD,max(value) is insensitive to the variance of
value representations (and hence to type #1 effort efficacy). We refer the
interested reader to the Supplementary Methods 3 in the Supplementary
Information for mathematical details regarding the derivation of max(va-
lue)’s policy.

So domax(value) andoMCDpolicies respond similarly to variations in
MCD parameters? To address this question, we performed the following
series of Monte-Carlo simulations. First, we sample a set of MCD para-
meters (α, β, γ, ν and κ) randomly. Second, we derive the optimal control
threshold dynamics under bothmax(value) and oMCD policies. Third, we
extract the mean response time, confidence, and net benefits over 500
random simulations of moments of value representations sample paths
(according to Eq. 1). We then repeat the three steps above 200 times. The
results of this analysis are summarized in Fig. 9 below.

Although oMCD tends to invest fewer resources than max(value) on
average, it also achieves smaller confidence levels. This is essentially because
the confidence mapping (cf. Equation 8) enforces an upper bound on
oMCD’s benefit term. Comparatively, max(value) thus tolerates stronger
effort costs. Nevertheless, both effects compensate each other and both
control policies eventually yield very similar outcomes in terms of net
benefits. Unsurprisingly, each policy is (slightly) better than the other at
maximizing its own benefit on average. More importantly, variations in
decision parameter settings induce very similar variations in average
resource investments, achieved confidence levels and net benefits. This
result suggests that both frameworks aremuch less different than intuitively
thought of, at least in terms of empirically observable decision features
(choice, deliberation time, confidence). Moreover, type #1 effort efficacy,
which induces variations in oMCD’s policy that have no equivalent in
max(value), does not seem to have a systematic impact on the similarity
between the two policies. In conclusion, oMCD can be thought of as pro-
viding a quasi-optimal policy formaximizing the value of the chosenoption.
In other terms, oMCD is robust to violations of its working assumptions.

Does MCD reproduce established empirical results?
As we highlighted before, MCD is agnostic about the underlying decision
process. However, what eventually determines the choice that is made is the
inner workings of value representation updates. This is important, since
some of the decision features may depend upon, e.g., whether the system

Fig. 8 | Progressive attribute integration: com-
parison of oMCD and ideal control policies. Same
format as Fig. 7. The color code indicates type #1
effort efficacy (blue: low β, red: high β).
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eventually arrives at a choice that is consistent with the comparison of
options’ values or not. Inspecting these kinds of effects thus requires per-
forming Monte-Carlo simulations under distinct decision processes (here:
Bayesian value denoising and progressive attribute integration).

Let us first consider the Bayesian value denoising scenario. First, we
simulated 104 stochastic dynamics of Bayesian value belief updates
according toEqs. 20–21, having set thedecisionparameters as follows:R = 1,
α = 0.1, ν = 2, σ0 = 10, µ0 = 0, Σ=100, and randomly sampling trial-specific
hidden value signals V under the ideal observer’s prior belief. Note that we
chose this parameter setting because it reproduces the empirically observed
rate of value-consistent/value-inconsistent decisions (see below). Second,
we identified theoMCD-optimal confidence thresholddynamics, having set
the effort efficacy parameters to their analytical approximation (cf. Equa-
tion 23 and related derivations). We then store the ensuing resource

investments and achieved confidence levels, as well as the choices of the
decision system (as given by the comparison of value modes at decision
time). Figure 10 below summarizes the results of this Monte-Carlo simu-
lations series.

First, one can see that the MCD approximation of within-trial choice
confidence dynamics is reasonably accurate (panel A), and smoothly trades
errors at early and late decision times. Second, on average, resource
investment decreases with the absolute difference in hidden option values
(cf. black line in panel B). Third, above and beyond the effect of option value
difference, resource investment decreaseswhen choice confidence increases
(cf. blue and red lines in panel B). This derives from the shape of the oMCD
confidence threshold dynamics (cf. Figure 3). Fourth, the consistency of
choice with value is higher for high-confidence choices than for low-
confidence choices (panel C). This observation derives from performing a

Fig. 10 | oMCD predictions under Bayesian value
denoising. A The blue line and shaded area depict
the mean and standard deviation of confidence
trajectories (across the 104 Monte-Carlo simula-
tions), respectively. The blue dashed line shows the
expected confidence under the correspondingMCD
approximation, and the black dashed line shows the
oMCD-optimal confidence threshold. B Resource
investment (y-axis) is plotted against the difference
in hidden option values (x-axis), for all trials (black),
high-confidence trials (blue) and low-confidence
trials (red), respectively. C The probability of
choosing the first option (y-axis) is plotted against
the difference in hidden option values (x-axis), for
all trials (black), high-confidence trials (blue) and
low-confidence trials (red), respectively.DAchieved
choice confidence (y-axis) is plotted against the
difference in hidden option values (x-axis), for all
trials (black), value-consistent trials (blue) and
value-inconsistent trials (red), respectively.

Fig. 9 | Comparison of max(value) and oMCD
control policies. A Mean invested resources under
oMCD’s control policy (y-axis) and under max(va-
lue) policy (x-axis) are plotted against each other
across random MCD parameter settings. The color
code indicates type #1 effort efficacy (blue: low β,
red: high β). B Mean confidence, same format.
C Mean MCD’s net benefit, same format. DMean
max(value) net benefit, same format.
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logistic regression of choice against hidden value, when splitting trials
according towhether they yield ahighor a low level of confidence41. Fifth, on
average, choice confidence decreases with the absolute difference in hidden
option values (cf. black line in panel D). Note that the oMCD framework
also predicts that confidence is higher for choices that are consistentwith the
comparison of hidden values than for inconsistent choices (cf. red and blue
lines in panel D). This suggests that MCD possesses some level of meta-
cognitive sensitivity42, i.e., it reports lower confidence when making a
decision that is at odds with the hidden (unknown) value. Under the
assumption that decision time proxies resource investment, these are
standard results in empirical studies of value-based decision making7,13,41,43.
Interestingly, when focusing on choices that are inconsistent with the
comparison of hidden values, the impact of value difference on confidence
reverses, i.e., choice confidence decreases with the absolute difference in
hidden values. This relates to known results in the context of perceptual
decision making44. We note that these results depend upon effort cost
parameters. In particular, metacognitive sensitivity tends to decrease in
parameter regimes where the dynamics of oMCD confidence thresholds
stop the decisions very early (e.g. low cost power and/or high unitary effort
cost). This may explain the loss of metacognitive sensitivity that concurs
withmental fatigue, which effectively increases one’s sensitivity to cognitive
effort45.

Let us now consider the progressive attribute integration scenario. We
essentially reproduced the same analysis as above, while simulating sto-
chastic dynamics of value computations by attribute integration according
to Eqs. 24–25, and setting the model parameters to yield a similar rate of
value-consistent choices (R = 1, α = 3, ν = 4, k = 20, ηk ¼ 1, ςk ¼ 1). Fig-
ure 11 below summarizes the results of thisMonte-Carlo simulations series.

In brief, one can see that we qualitatively reproduce the above rela-
tionships between effort investment, confidence and choice consistency.
This is important, since this means that these relationships tend to gen-
eralize across different decision processes. However, this equivalence is only
qualitative, and does not always hold. For example, reducing the unitary
effort cost eventually renders the oMCD confidence threshold dynamics
concave. For progressive attribute integration, this reverses the impact of the
difference in option values onto confidence for value-inconsistent choices
back again. This does not seem to happen under Bayesian value denoising.

For completeness, we re-analyzed the data reported in our previous
investigation of (the prospective variant of) the metacognitive control of
decisions7. In brief, participants were native French speakers, with no
reported history of psychiatric or neurological illness. A total of 41 people
(28women; age:mean= 28, SD = 5,min= 20,max= 40) participated in this
study (no participant was excluded). All participants rated the pleasantness
of a series of food items, and performed two-alternative forced choices
between pairs of (pseudo-randomly selected) items. In addition to partici-
pants’ value ratings and choice,we also collected choice confidence, decision
time, and subjective effort rating. We note that in this context, within-
decision value computations may rely either on retrieving previously
experienced food samples from episodic memory46,47, or on integrating
value-relevant attributes (e.g., tastiness and healthiness) derived from cog-
nitive decompositions of choice options30,48. Both cognitive scenarios map
ontoBayesian value denoising (whichwould average overmemory samples)
and progressive attribute integration processes, respectively.

We already verified the main predictions of the prospective MCD
model, in terms of the relationship between pre-choice (default) value rat-
ings and decision time/effort, as well as the ensuing decision-related vari-
ables (i.e. change-of-mind, confidence, choice-induced preference change,
etc). Aswe already discussed, prospective and online variants ofMCDmake
very similar predictions for these kinds of relationships.We now reproduce
the above analyses (cf. Figures 10 and11),whichdisclose predictions that are
specific to the oMCD framework. Figure 12 below summarizes the results of
these analyses.

Note that subjective effort ratings are commensurate with response
times, which suggests that effort intensity shows little variations when
compared to effort durations. We will comment on this in the Discussion

section below. In any case, one can see that the overall pattern of relation-
ships between resource investments (as proxied by either decision time or
reported mental effort), choice confidence and item values is qualitatively
similar to that predicted from the online MCD model (cf. Figs. 10 and 11
above). Note that all the oMCD predictions discussed above are statistically
significant in our empirical data:
• Effect of DV on reported effort (all trials): t(40) =−7.6, mean

r =−0.25 ± 0.07 (95% CI), p < 10−4

• Effect of DV on reported effort (high confidence): t(40) =−5.7, mean
r =−0.18 ± 0.07 (95% CI), p < 10−4

• Effect of DV on reported effort (low confidence): t(40) =−5.0, mean
r =−0.14 ± 0.05 (95% CI), p < 10−4

• Effort difference (high versus low confidence): t(40) =−7.3, mean
effort difference = -0.19 ± 0.05 (95% CI), p < 10−4

• Effect of DV on decision time (all trials): t(40) =−7.78, mean
r =−0.19 ± 0.05 (95% CI), p < 10−4

• Effect of DV on decision time (high confidence): t(40) =−5.9, mean
r =−0.15 ± 0.05 (95% CI), p < 10−4

• Effect of DV on decision time (low confidence): t(40) =−3.9, mean
r =−0.10 ± 0.05 (95% CI), p = 0.0002

• Response time difference (high versus low confidence): t(40) =−7.0,
mean RT difference =−0.62 ± 0.17 (95% CI), p < 10−4

• Effect of DV on choice (all trials): t(40) = 25.2, mean effect
size=1.56 ± 0.12 (logistic regression, 95% CI), p < 10−4

• Effect of DV on choice (high confidence): t(40) = 32.6, mean effect
size = 2.02 ± 0.12 (logistic regression, 95% CI), p < 10−4

• Effect of DV on choice (low confidence): t(40) = 10.4, mean effect
size = 0.84 ± 0.16 (logistic regression, 95% CI), p < 10−4

• Effect ofDVonchoice (high versus lowconfidence): t(40) = 13.8,mean
effect size difference = 1.17 ± 0.16 (logistic regression, 95%
CI), p < 10−4

• Effect of DV on confidence (all trials): t(40) = 8.5, mean r = 0.27 ± 0.06
(95% CI), p < 10−4

• Effect of DV on confidence (value-consistent): t(40) = 10.6, mean
r = 0.27 ± 0.05 (95% CI), p < 10−4

• Effect of DV on confidence (value-inconsistent): t(40) =−4.22, mean
r =−0.18 ± 0.09 (95% CI), p < 10−4

• Confidence difference (value-consistent versus value-inconsistent):
t(40) = 10.8, mean confidence difference = 0.10 ± 0.02 (95%
CI), p < 10−4

where DV stands for difference in option values, all statistical sig-
nificance tests are one-sided and derive from standard random effect ana-
lyses (sample size: n = 41). We note that these analyses were not part of a
preregistration protocol.

Discussion
In this work, we have presented the online/reactivemetacognitive control of
decisions or oMCD framework.

Limitations
To begin with, recall that we have framed oMCD as a solution to a resource
allocation problem. More precisely, we think of decision deliberation as
involving the investment of costly cognitive resources, which are necessary
to process decision-relevant information. The outcome of such resource
allocation is to override default behavioral responses, which would other-
wise be triggered by automatic (e.g., reflexive, habitual or intuitive) brain
processes. Under this view, the brain faces the problem of adjusting the
amount of resources to invest, which we equate with the issue of effort
regulation. This perspective is not novel: the notion of mental effort was
central to the early definition of automatic versus controlled processing,
with the formerdescribed asquickandeffortless, and the latter as slower and
effortful49. Since controlledprocesses are slow, it is reasonable to assume that
the brain may regulate effort simply by adjusting its duration. This is the
premise of our computational framework, which relies on the theory of
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optimal stopping21. However, effort actually unfolds along two dimensions:
duration and intensity. This means that, in principle, both decision speed
and confidence may be increased at the cost of increasing effort intensity.
Accordingly, investing cognitive control is known to speed up responses in
the context of, e.g., behavioral conflict tasks50,51. This raises the question:
what determines the brain’s policy for trading effort intensity against effort
duration? A possibility is that this depends upon the nature of the cognitive
resource that is required for processing decision-relevant information. The
issues of how to control resource investment and which resource to invest
are thus intertwined2. For example, one may think of resources as being
composed of cognitive modules, such as working memory or attention,
whose neurobiological underpinnings may induce distinct costs and/or
limitations on effort intensity and duration52–54. More generally, the effort
intensity/duration tradeoff may be eventually determined by the neuro-
biological constraints that are imposed on the neural architecture that

operates the processing of decision-relevant information4,55. For example,
value-based decision making may require the active maintenance of mul-
tiple value representations that tend to interfere with each other, e.g.,
because they involve the same neural population within the orbitofrontal
cortex32. In this case, cognitive control may alter the OFC neural code with
the aim of temporarily dampening these interferences. In principle, the
associated neural mechanism may operate based on simple confidence
monitoring (which would proxy value conflict signals), without knowledge
of the intricate architecture of value coding in the OFC. We will test these
ideas using artificial neural network models of MCD in forthcoming
publications.

On the generality of oMCD control policy
One of themain assumptions behindMCD is that mental effort investment
is regulatedby aunique controller that operates under agnostic assumptions

Fig. 11 | oMCD predictions under progressive
attribute integration. Same format as Fig. 10.

Fig. 12 | Re-analysis of behavioral data in a simple
value-based decision making experiment7.
A Reported mental effort (y-axis) is plotted against
the difference in reported option values (x-axis), for
all trials (black), high-confidence trials (blue) and
low-confidence trials (red), respectively.BResponse
time, same format. C, D Same format as Fig. 10.
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about the inner workings of the underlying decision system. This constraint
somehow culminates in the simplicity of oMCD’s control architecture,
which reduces to a monitoring of decision confidence. In this context, we
have shown that the optimal stopping policies of distinct decision processes
(Bayesian value denoising or progressive attribute integration) can be
approximated using a simple calibration of effort efficacy parameters. We
have also highlighted the ensuing properties of oMCD: when coupled with
these different underlying decision systems, oMCD reproduces most
established empirical results in the field of value-based decision-making. In
addition, we have shown that oMCD is robust to alternative settings of the
resource allocationproblem. In particular, decision confidence seems to be a
reasonable proxy for the value of the chosen option, which is the standard
candidate titration for the benefit of value-value based decisions14,24. Taken
together, these results suggest that the architecture of oMCD control, which
relies on the internal monitoring of decision confidence, may generalize to
most kinds of decision processes. Preliminary investigations show that this
holds for yet another important kind of value-based decisions, whereby
value computation is the output of a forward planning process on a decision
tree56,57. Arguably, this also holds for perceptual or evidence-baseddecisions.
In this context, decision confidence can be defined - somewhat more
straightforwardly - as the subjective probability of being correct35. As long as
effort efficacy parameters can be simply identified, the MCD architecture
will provide an accurate approximation to the optimal resource allocation
policy. This is trivial when perceptual detection or discrimination processes
can be described as some form of Bayesian denoising of some perceptual
variable of interest23,40. This would also hold for perceptual categorization
processes, which may rather resemble attribute integration scenarios19. In
fact, oMCD’s potential generalizability derives from its agnostic stance
regarding the nature of information processing that takes place in the
underlying decision system. This is also why oMCD can in principle be
extended to describe the metacognitive control of other kinds of cognitive
processes (e.g., reasoning ormemory encoding/retrieval). In this context, an
interesting avenue of investigation would be to consider the impact of
metacognitive adaptation on the generalization of control policies across
cognitive domains. Note that, because we assume MCD’s control archi-
tecture tobe invariant across contexts, it requires a systematic calibration (in
terms of, e.g., effort costs and/or efficacies) to guaranty the quasi-optimality
of resource allocation. As we highlighted before, we expect such calibration
to converge very quickly (e.g., over a few training trials). This is because
effort efficacies can be learned from within-trial confidence dynamics.
Nevertheless, whether this specific kind of metacognitive adaptation is
sufficient to recycle and adjust MCD’s control architecture to novel cog-
nitive domains, as well as how it shapes cross-domain metacognitive
learning effects, is virtually unknown and would require specific empiri-
cal tests.

On the difference between prospective and online/reactive
variants of MCD
Retrospectively, prospective and online/reactive variants of MCD solve the
same computational problem, i.e. maximizing the expected net benefit of
resource allocation. We have shown that their respective control policies
share many common features. In particular, they tend to respond similarly
to changes in effort costs and/or efficacies. However, they differ in at least
two important aspects. First, although its algorithmic derivation is more
sophisticated, oMCD’s control policy is computationally simpler than its
prospective variant. This is because it does not require an explicit com-
parison of all admissible resource investments prior todecisiondeliberation.
Rather, it relies on dynamical changes in decision confidence signals to
trigger a binary (yes/no) stopping decision. In other terms, the comparison
between admissible resource investments is performed implicitly, while the
control system monitors the progress of the underlying decision system.
This renders the neurocomputational architecture of oMCD very similar to
basic Drift Diffusion Decision Models or DDMs, whose candidate neural
underpinnings have been partially identified58–60. Second, only oMCD
predicts non trivial second-order statistics on key decision features beyond

those induced by changes in effort costs and efficacies. For example, both
prospective and online/reactive MCD typically predict a negative correla-
tion between reported confidence levels and response times across difficulty
levels (as induced by different type #1 effort efficacies), but only oMCD
predicts such a relationship within each difficulty level (across trials). The
range anddiversity of non trivial second-order statistics that oMCDpredicts
is exemplified in Figs. 10, 11.Wenote that some of these predicted statistical
relationships are within the grasp of those existing variants of DDMs that
explicitly account for decision confidence. This holds, e.g., for the two-way
interaction between confidence and item values onto response time and
choice41. Others may be more specific to oMCD (and related ideal control
policies), e.g., the inversion of the value/confidence relationship for value-
consistent and value-inconsistent choices. In any case, these non trivial
second-order statistics are the hallmark of online/reactive control policies.
In this context,what oMCDoffers is away topredict how these relationships
should change, would effort costs and/or efficacies be experimentally
manipulated.

On extending MCD with goal hierarchies
Whether MCD is operated online or not, it relies upon some prospective
computation,whichanticipates the costs andbenefits of investing additional
resources in the decision. In turn, the optimal cost-benefit tradeoff relies
upon decision-specific features, such as decision importance and difficulty.
The former is signalled by the weight parameter R that scales confidence in
the benefit term (cf. Equation 1). In our previous empirical work onMCD,
participants were asked to decide between pairs of food items. In this
context, we manipulated decision importance by instructing participants
that they would have to eat the item they eventually chose (so-called
“consequential decisions”) or not. As predicted by the MCD framework,
increasing decision importance systematically increases decision time,
above and beyond the effect of option values7. In other terms, increasing
decision importance may overcompensate the cost of mental effort by
increasing the demand for confidence. More generally, we think of R as the
expected rewardattached to the attainmentof the superordinate goal,within
which the decision is framed. Importantly, although R is analogous to a
reward, it is distinct from the values that are attached to the choice options.
This does not mean that the values that decision systems attach to choice
options are independent from the goal: recent research has demonstrated
that option values are strongly influenced by how useful choice options are
for achieving one’s goal12,61. However, at least in principle, alternative choice
options that would be instrumental for attaining an important goalmay still
have lowvalue. For example,while starving, onemayonlyhave access to low
quality/palatability food items. A possibility is to conceive of goals as being
organizedhierarchically,whereby superordinate goals are brokendown into
candidate subordinate goals7,62,63. According to MCD, the selection of sub-
ordinate goals would be under higher scrutiny when superordinate stakes
increase (everything else being equal). Having said this, the urgency of
attaining superordinate goals may also incur additional temporal costs for
subordinate goal selection, which may overcompensate the increased
demand for confidence (aswould be the case for, e.g., starvation).We intend
to investigate these kinds of issues in forthcoming publications.

Data availability
All empirical data (as well as analysis code) is available here: https://
owncloud.icm-institute.org/index.php/s/wAsSPNndwZVlBlR.

Code availability
The matlab code that was used to generate all Figures in this manuscript is
available here: https://owncloud.icm-institute.org/index.php/s/
nXnbv2b3gtNz0Jj. This code is also available as part of the VBA aca-
demic freeware (https://mbb-team.github.io/VBA-toolbox/), which is ver-
sioned and regularly updated.
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