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Deep learning reduces sensor
requirements for gust rejection on a small
uncrewed aerial vehicle morphing wing

Check for updates

Kevin P. T. Haughn 1 , Christina Harvey 2 & Daniel J. Inman 3

Uncrewed aerial vehicles are integral to a smart city framework, but the dynamic environments above
and within urban settings are dangerous for autonomous flight. Wind gusts caused by the uneven
landscape jeopardize safe and effective aircraft operation. Birds rapidly reject gusts by changing their
wing shape, but current gust alleviation methods for aircraft still use discrete control surfaces.
Additionally, modern gust alleviation controllers challenge small uncrewed aerial vehicle power
constraints by relying on extensive sensing networks and computationally expensive modeling. Here
we show end-to-end deep reinforcement learning forgoing state inference to efficiently alleviate gusts
on a smart material camber-morphing wing. In a series of wind tunnel gust experiments at the
University of Michigan, trained controllers reduced gust impact by 84% from on-board pressure
signals. Notably, gust alleviation using signals from only three pressure taps was statistically
indistinguishable from using six pressure tap signals. By efficiently rejecting environmental
perturbations, reduced-sensor fly-by-feel controllers open the door to small uncrewed aerial vehicle
missions in cities.

Althoughboth the public sector anddefense agencies are interested in urban
uncrewed aerial vehicle (UAV) mission performance, fixed winged aircraft
are still incapable of adapting to the complex aerodynamics within a city
environment1–3. Currently, the most dynamic environments are dominated
by multirotor flight vehicles; however, the highly maneuverable and
responsive quadrotor design suffers from substantial weight and power
constraints, limiting the operational range and on-board computational
capabilities needed for autonomy4–7. Current fixed wing UAVs have greater
range but are not as maneuverable8. Counter to both rotorcraft and tradi-
tional fixed wing UAV design, birds can adapt their wing shape as the
environment changes to achieve both efficient and maneuverable flight9,10.
This ability supports birds of prey in navigating through complex
environments11, or rejecting perturbations in a gusty environment12,13.
UAVs can achieve a similar adaptive gust rejection by changing the shape of
their wings with camber morphing (Fig. 1a).

Wing morphing brings several challenges regarding mechanical
complexity and compliancewith theweight and volumeconstraints of small
UAV design. Recent advances in smart materials offer a clever way to
address these challenges14,15.Macro-fiber composites (MFC) have been used
for bio-inspired soft robotics and can act as both the skin and actuator of a
camber-morphing wing16,17. By rapidly changing the wing’s curvature,

MFCs can actively reduce the aerodynamic forces experienced during gusts
without the mechanical complexity associated with large scale shape
changes. In addition, the smooth shape change offered by MFC camber-
morphing improves aerodynamic efficiency, speed, weight reduction, and
overall control authority when compared to traditional rigid flap actuation
methods18–20.However,MFCs suffer fromhysteresis, creep, and inconsistent
performance under out-of-plane loading. These challenges informed our
autonomous gust alleviation (GA) controller design for a cambermorphing
wing with three active MFC sections (Fig. 1b).

Autonomous gust rejection is a key part of the puzzle that must be
achieved to enable small, fixed wing UAVs to complete missions in
complex aerodynamic environments, thus expanding the operational
range compared to their quadrotor counterparts. Perturbations, such as
gusts, impact flight performance and complicate tracking of predefined
trajectories21. This is especially true for small UAVs due to their light-
weight nature. Historically, gust response requires a pilot or autopilot to
respond to a perturbation with an antagonistic action22,23. However,
these corrections occur after the external force has already perturbed the
aircraft, and pilot reaction times typically fall between 0.4 s and 1.3 s after
a perturbation signal before providing an input reaction24. This may
compromise mission success when strict altitude caps are in place, such
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as during nap-of-the-earth flight25. Autopilot systems following classical
control theory have used traditional control surfaces with strain gauges
for feedback to achieve 50% gust load and flight ride quality
improvement23. Recently this response has been improved to 80% when
assuming a Doppler light detection and ranging (LIDAR) system was
available to provide a preview of incoming gusts26. Instead of responding
to a perturbation after it occurs, or spending computation and weight

resources on LIDAR systems to look ahead for future perturbations, our
fly-by-feel (FBF) activeGA senses environmental changes on the wing in
real time, beginning the initial morphing reaction in as little as one
discrete timestep (0.05 s) to mitigate unintended changes in aero-
dynamic forces during a gust.

Successful adaptation, such as that provided byGA, relies on an accurate
representation of the changing environment27–29. FBF is a biologically inspired

Fig. 1 | Natural flyers use wing shape morphing to
reject gusts. a Inspired by how birds change the
shape of their wings to adjust for environmental
changes, we implemented a trailing edge camber
morphing mechanism. b The morphing wing con-
sisted of 3 active sections driven by macro-fiber
composites (MFC). A rigid wing acting as a gust
generator was mounted at quarter chord 30 cm
upstream of the morphing wing with three active
camber morphing sections within the University of
Michigan 30 cm × 30 cm wind tunnel. c The
morphing wing was designed with six pressure taps
to sense gusts. d The gust generator deflected
upwards (yellow) and downwards (green) at varying
degrees (depicted by opacity) to create a variety of
velocity wakes, e the magnitude of which was
quantified with particle image velocimetry.
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paradigm that uses distributed sensors to inform UAVs of environmental
changes29–34. Recently, FBFachievedup to76%meangust rejectionona servo-
driven camber morphing wing by using incremental nonlinear dynamic
inversion with quadratic programming and virtual shape functions (INDI-
QP-V), incorporating sixteen on-board piezoelectric pressure sensors to
detect changes in the airflow for state inference as well as fourteen fiberoptic
cables, twelve straingauges, andawing rootmountedcamera todetect camber
deflection with proprioceptive modeling35. However, the expansive sensing
networks used to inform decision making through proprioception and state
inference add weight and challenge the computational power capabilities
offered by small UAVs5–7,28,36. Instead of relying on vast amounts of sensory
data for decisionmaking, we used intelligent controller design to determine if
fewer sensors could beused to achieveGAwhile reducing computational cost.
The model-based controllers often used for GA require highly accurate pre-
dictions to achieve sufficient control because any errors produced prior to
action selection propagate through the controller. This dramatically increases
computational costs27,37–39. Alternatively, model-free deep reinforcement
learning (DRL) can train neural networks to make action decisions directly
from raw sensor inputs without using dynamics or state inferencemodels40,41.
Proximal policy optimization (PPO) is a DRL algorithm that has shown to
account for MFC hysteresis and produce effective camber control in a
morphing airfoil42,43. For this reason, we used PPO to develop the GA policies
(i.e., controllers) directly from three different sensor combinations (Supple-
mentary Fig. 1). Controllers were trained tomake decisions in a gusting wind
tunnel environment based on pressure signals provided by up to six pressure
taps installed on the top surface of the morphing wing (Fig. 1c).

Most successful DRL applications are trained in simulation due to the
repetitive nature of DRL’s trial-and-error training format44,45. However,
accurately simulating complex, gusty environments requires large computa-
tional time and cost46,47. We avoided the computational costs as well as the
uncertainty associated with simplified approximation by training directly on
the physical hardware environment. Although training in the physical hard-
ware space offers unique challenges, we found success using methods
emphasizing efficiency and autonomy in state-action exploration through a
pseudo-episodic training method48,49. This training format requires an auto-
matic transition between episodes. Therefore, we adaptedmethods previously
established in the literature to automate a gusting environment29,35,36. By
deflecting a rigid wing, mounted in a wind tunnel upstream of ourmorphing
wing, we exposed the morphing wing to a broad range of repeatable gusts
during training to facilitate thorough exploration of the dynamic environ-
ment’s state and action spaces (Fig. 1d). Exploration is crucial for developing a
robust controller capable of effectively rejecting the various degrees of per-
turbation experienced in a city. Therefore, during training the gust generator
induced a variety of wakes representative of the updrafts and downdrafts
experienced when flying over the complex street systems between buildings
(Fig. 1e). Autonomously rejecting these types of gusts with reduced-sensor
FBF will open the door to urban flight for fixed wing UAVs.

Results
Gust impact and reduction
Thegust generatorused in thiswind tunnel environmentperturbed the local
angle of attack for the incoming airflow in amanner analogous to common
flight situations in natural and urban environments (Supplementary Fig. 2).
The controller experienced thegusts as instantaneous changes inwind speed
and direction, similar to a sharp-edged gust model (see materials and
methods). This model is often used to imitate an aircraft encountering an
updraft, as found between two buildings, resulting in a change in lift21,23,50,51.
The magnitude of gust-generated lift that was rejected by the active
morphing wing was termed the gust rejection percentage (GRP) defined as:

GRP tð Þ ¼ 1� jΔLC tð Þj
j 1T
PT

t¼0 ΔLB tð Þj

 !
× 100%: ð1Þ

GRP was measured as a percentage difference between the change in
lift during activemorphing control,ΔLC, and the baseline average change in
lift, ΔLB, produced by the wing when unactuated over the duration of the
gust, T (Fig. 2a, b). To replicate common scenarios experienced during city
flight, tests were conducted at three different flight conditions (low-lift,
medium-lift, and high-lift) for three gust magnitudes (mild, moderate, and
strong) in two directions (upward and downward) (Supplementary
Table 1). Although the high-lift condition experienced smaller gust impact
(5% change in lift), the medium-lift and low-lift conditions experienced
much larger ranges and magnitudes of gust impacts (28% and 29% change
in lift, respectively). To define the stability and robustness of the trained
neural network policies, we trained a total of twenty (20) policies and
repeated gust alleviation performance tests ten (10) times for each gust
condition (6), resulting in 1200 gust rejection wind tunnel tests. We
quantified a controller’s consistency between individual test iterations, gust
conditions, and trained policies using the average standard deviation (STD)
of the settledGRPbetween testswhile holding all other factors constant. The
settled GRPwas consistent between test iterations for a single policy at each
gust condition (high-lift: STD = 4.9%; medium-lift: STD = 2.3%; low-lift:
STD = 2.5%) (Fig. 2c), but the average settled GRP performance of indivi-
dual trained policies was less consistent between gust conditions (high-lift:
STD = 10.5%; medium-lift: STD = 21.4%; low-lift: STD = 19.0%) (Fig. 2d).
However, the average settled GRP was consistent between trained policies
for each gust condition (high-lift: STD = 8.2%; medium-lift: STD = 7.5%;
low-lift: STD = 5.7%) (Fig. 2e).

We repeated the training and testing process described above to
measure GRP for three sensor configurations: one, three, and six chordwise
distributed pressure taps (Fig. 3a). This resulted in 3600 gust rejection wind
tunnel tests in total. We found the number of pressure taps used for state
observation significantly affected the trained GA controller performance.

Diminishing effect of rearward sensors
We used the settled GRP from each test to calculate themean gust rejection
percentage for each pressure tap configuration and gust condition
(Fig. 3b–d).Controllersusing all six pressure taps consistently achieved large
mean gust rejections for each flight condition (high-lift: 84%; medium-lift:
84%; low-lift: 86%) relative to the respective gust-generated change in lift.
When we reduced the number of signals informing the DRL algorithm to
only use one pressure tap, we found a significant reduction in the gust
rejection performance (high-lift: P = 0.006; medium-lift: P < 0.001; low-lift:
P < 0.001). However, when using only three pressure taps, we found an
insignificant effect on the gust rejection compared to the six-tap case for all
tested flight conditions (high-lift: P = 0.40; medium-lift: P = 0.32; low-lift:
P = 0.67). This result indicates that the increased complexity of the six-tap
input did not yield additional improvements in gust rejection performance
beyond the three-tap construction. In fact, for the medium-lift flight con-
dition, the three-tap configuration achieved greater, although not sig-
nificantly greater, mean gust rejection.

The mean GRP is only part of the puzzle. Performance consistency is
important if this approach is to provide safe and reliable flight control for
future UAVs. Therefore, we directly considered the uncertainty of our gust
rejection metric using the standard deviation of the settled GRP distribu-
tions (Supplementary Fig. 3a–c). We found that the one-tap configuration
was significantly less consistent than the controllers using more pressure
taps (high-lift: P = 0.001; medium-lift: P < 0.001; low-lift: P < 0.001). Like
themean results,we foundno significant difference between the consistency
of the six-tap and three-tap configurations (high-lift: P = 0.20; medium-lift:
P = 0.91; low-lift: P = 0.46). Note that the standard deviations were small
relative to the gust-generated change in lift (one tap: 15%, three taps: 14%, six
taps: 12%), suggesting that the active morphing gust rejection was overall
quite consistent for our implementation.

Timing is also a crucial component of perturbation response since a
slower reaction would negate much of the benefit offered by the correction.
The instantaneous change in lift produced by the sharp-edged gusting
environment neglected the buildup in gust intensity typically found in
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nature, creating a challenging environment for controller response. Still,
using rise time, we quantified the controllers’ speed to comment on how
reducing sensor count impacted the active responsiveness of the system
(Fig. 3e).We found that the controller speedwasnot significantly affectedby
the pressure tap configurations (P > 0.05) for all flight conditions and was
consistent with rise times established in previous work where DRL con-
trollers showed to be faster than traditional feedback controlmethods for an
MFC morphing wing42 (Fig. 3f–h). However, the higher intensity gusts
resulted in greater rise times,which suggests the limiteddiscrete action space
likely restricted controller speeds. Rise time uncertainty was considered
using standard deviation, as done previously with gust rejection (Supple-
mentary Fig. 3d–f).

Next, we explored the functional differences between the number of
taps used and found that sensitivity of the pressure taps decreased towards
the trailing edge of the wing (Fig. 4a), explaining the insignificant difference
in performance between using three sensors and six sensors. The leading-
edge pressure taps showed the greatest sensitivity for both positive and
negative gust deflections,which is consistentwith expectations as this region
is usually responsible for the largest suction peak on lift producing airfoils.
Comparing upward and downward gusts in the high-lift flight condition,
the second pressure tap showed less sensitivity (27% reduction) during the
downward gust than during the upward gusts. The third tap, however,

showed a steep reduction in sensitivity (83%) when experiencing a down-
wardgust as opposed to anupwardgust. Similar effects occurred in theother
flight conditions as well (Supplementary Fig. 4).

Downward gusts challenge sensing
Despite the overall success, we found situations in which the controllers
underperformed relative to the other tested gust conditions, including the
mild downward gust during high-lift flight (Fig. 3b). For this condition, the
wing morphing controller overcompensated by actuating the trailing edge
to amagnitude appropriate for a larger change in lift (Fig. 4b).However, this
effect did not occur for the mild upwards gust in the same flight condition.
These results suggested that the controllers were less effective at differ-
entiating between the magnitudes of downward gusts in this flight
condition.

To investigate further, we used particle image velocimetry (PIV) to
quantify the change in local flow velocity across the top surface of the
morphing wing at each tested gust condition compared to the baseline
neutral gust condition during high-liftflight (Fig. 4c). Themild upward gust
condition (7.5° gust generator deflection) increased the flow velocity over
the first three pressure taps. Themild downward gust (−7.5° gust generator
deflection) reduced velocity at the leading edge of the wing. However, the
change in velocity shifted from negative to positive near the third pressure
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Fig. 2 | Gust Rejection Percentage (GRP) provides a metric for controller per-
formance and consistency. With Proximal Policy Optimization, we trained 10
controllers using six pressure taps for gust alleviation in the high-lift flight condition
gusting environment. aWe quantified controller performance by comparing the
change in lift of the actively controlled wing (solid line),ΔLC, with that of the inactive
baseline (dotted line), ΔLB, where the magnitude of the arrows indicates GRP.
b On average (n = 600), the learned controllers rejected more than 84% of the ΔLB

produced by the tested gusts. In addition, we measured consistency between tests,
gust conditions, and trained controllers using the standard deviation between c ten
(10) tests for one trained controller at one gust condition, d average gust responses
for a single controller at each gust condition (6), e and the average responses at a
single gust condition for each trained controller (10). Gust deflections included both
upward (yellow) and downward (green) directions at three strengths (increasing
with opacity).
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tap, producing a minimal pressure change. For the strong downward gust
(−12.5° gust generator deflection) there was a larger reduction of velocity at
the leading edge of the wing, but the velocity change near the third pressure
tap was still weak. Despite this, the trained controllers still achieved mean
GRP values of above 73% for the three-tap and six-tap configurations in this
challenging gust condition.

The strong downward gust during low-lift flight also produced dis-
proportionately low performance relative to the other gusts within the same
flight condition. In this case, the controller undershot the target, again
suggesting it was difficult to distinguish between downward gust magni-
tudes. Interestingly, this gust was generated by a similar deflection angle
(−8°) to that of the other challenging gust condition. This may provide
insight into a challenging characteristic specific to our gust generating
mechanismasopposed to adeficiency in the gust rejection controller design.
The wake behind a deflecting wing produced changes in lift similar to those
experienced during a vertical gust but generated additional streamwise
aerodynamic effects (Fig. 1e) that are absent in traditional gust models.

Discussion
Here we showed a FBF controller that does not require many sensors to
effectively reject gusts. The learned controllers consistently achieved greater
than 80% gust rejection without the computational and mechanical com-
plexities associated with expansive distributed sensing networks. This sug-
gests that the success of FBF aircraft need not depend on our ability to
implement highly complex large scale distributed networks if we can
effectively identify a reduced set of sensors that provides comparable per-
formance. These results run counter to the big data mentality that is per-
vasive in deep learning and has recently driven sensor network design in

machine learning based distributed sensing applications, including
FBF30,31,52. Like intelligent feature selection in deep learning, intelligent
controller and sensor design can achieve reduced-sensor FBF, providing an
efficient alternative to large-scale distributed sensing networks53. This
reducesmechanical complexity and cost during fabrication aswell asweight
and computational requirements during operation. In addition, where
human pilots naturally have a delayed initial reaction (0.4 s to 1.3 s) to gusts,
FBF can begin changing shape in as little as a single timestep (0.05 s), andwe
showed that the controller speed was not impacted by reduced sensor
input24. Further, we expect that optimizing the controller action spacewould
provide amore rapid response.Ourfindings suggest that these cost-effective
solutions can expand the mission scope of small, fixed-wing UAVs to
increasingly dynamic environments. This creates the opportunity for
numerous critical applications8,54.

Incorporating reduced-sensor FBF UAVs for surveillance and disaster
response will drastically improve safety for those living in large cities4. The
range offered by fixed wing designs will provide greater coverage than that
achieved by quadrotor designs, allowing them to provide broader surveil-
lance or survey fire and earthquake scenes across the city for extended
periods of time. This technology may prove particularly useful to first
responders impeded by street traffic, communicating crucial information to
improve efficiency and safety. Similarly, we can apply thesemethods to long
range urban reconnaissance for soldiers encountering potentially dangerous
situations.

Finally, the success of this model-free method promotes future intel-
ligent aircraft designs for other complex maneuvers and environments
where accurate models are not readily available. For example, similar
hardware-based learningmayproducecontrollers formorphingUAVswith
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pressure taps did not significantly affect the rise time.
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alternative shape changes to achieve avian-like aerobatics. Banking, diving,
and perching in obstacle-dense environments, such as forests, opens the
door to mission performance in natural disaster scenarios such as flooding,
hurricanes, and wildfires54,55. The extended range offered by adaptive FBF
morphing UAVs will greatly improve survey coverage and search and
rescue response by increasing the distance covered and time in flight
between charges.

Methods
Morphing wing construction
We designed the morphing wing with three 42mm wide active sections
separated by two 51mmwide passive sections to form a 228mmwide wing
with a 320mm chord. To construct the active sections, we followed the
methods established in previous work, which combine a NACA0012
leading edge with an antagonistic double macro-fiber composite (MFC)
unimorph trailing edge17. We used multi-material 3D printing to include a
flexure box design at the interface between the rigid and morphing portion
of our active wing section to maximize deflection potential. Unlike in the
previous work, we used narrowerM8528-P1MFCs to allow for three active
sections tofit within ourwind tunnel. Using epoxy, we bonded eachMFC to
a 0.025mm stainless steel shim to produce a bending shape change when
actuated.We also used epoxy to attach the active trailing edge section to the
flexure box interface at the rear of the rigid leading edge.

We constructed the passive sections following methods established by
Pankonien et al. for a spanwise morphing wing17. The passive sections
contain a rigid NACA0012 leading section, but don’t have a rigidly struc-
tured trailing end. Instead, structure was provided by the spanwise skin
extending across the full wing. Bonding a soft 3D-printed mixed cruciform
honeycomb to the elastic silicon skin provided additional strength to the

trailing edge of the passive sections56,57. This allowed the passive sections to
smoothly morph with the active sections while maintaining structural
integrity under out of plane aerodynamic loading.

Within each passive section of the wing, we installed six 0.5 mm
pressure taps for state observation. The pressure taps were located at posi-
tions of 0%, 1.5%, 5%, 10%, 40%, and 50% of the chord length measured
from the leading edge. We offset the front four pressure taps at an angle of
30° from the leading tap to mitigate the effect of upstream pressure taps on
the flow58. Due to the large separation between the front four and rear two
pressure taps, we installed the two rearmost pressure taps at a separate 30°
angle, not including the front four taps to allow all taps to fit within the
passivewing section. Each1.5 mmpressure tap holewas included in the 3D-
printed NACA0012 leading section of the airfoil. We used epoxy to fasten
ethyl vinyl acetate tubing into the pressure tap locations. After installation,
we used a razorblade to cut the end of each pressure tap to be flush with the
surface of the morphing wing to avoid disrupting the flow over the wing.

Experiment setup
Thefinalmorphingwing designwas installed30 cmbehind a gust generator
(measured at quarter chord positions) in the 30 cm × 30 cm wind tunnel at
the University of Michigan (Fig. 5). We created a gusting environment for
three flight configurations (high-lift, medium-lift, low-lift) by using various
combinations ofmorphing wing angles of attack (α = 10 ± 1°, 4 ± 1°, 4 ± 1°)
and flow speeds (U = 10m s−1, 15m s−1, 10m s−1) asmeasured ahead of the
gust generator (SupplementaryTable 1).We includedelliptical endplates on
the wing to prevent wing tip vortices from forming, limiting this analysis to
2Dairfoil effects.Wemeasured themorphingwing’s lift using a six-axisATI
Delta load cell mounted at the quarter-chord. Six compact differential low-
pressure transducersmeasured thepressures experiencedby the six pressure
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lift flight condition. a Although the first three pressure taps produced sensitive
pressure signals (error bars represent 95% confidence intervals) for the upward
(yellow line) gust deflections, the third pressure tap was much less sensitive to
downward (green line) gusts (16.7%). b At the mild downward gust condition, the
trained gust alleviation controllers using six pressure taps overshot zero lift error.
c Particle image velocimetry (PIV) showed the environmental change in the local

velocity experienced by the wing during different gusts. This change was measured
by directly comparing the velocity at each position during a gust to that experienced
during the neutral airflow. Blue represents a decrease in velocity at the specific
position due to the gust generator, and red shows an increase in velocity. The change
in local velocity was stronger over the front three pressure taps in the upward gust
than in the downward gusts, where the change in velocity was most notice-
ably reduced at the third pressure tap location.
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taps in comparison to the static pressure located at the front of the test
section of the wind tunnel, as measured using a pitot-tube. The gust gen-
erator consisted of a 15 cm chordNACA0012 rigid wing with a 25 cm span.
We used a stepper motor operated turntable to vary the gust generator’s
angle of attack and create the desired gust deflection.

The gust generator’s deflection angle produced different gust inten-
sities depending on the wind tunnel flight condition (high-lift, medium-lift,
low-lift).We found the effect of the gust generator setupwas sensitive to the
angle of attack of our morphing wing. At the highest tested angle of attack
(10 ± 1°), the gust generator produced the smallest effect, even when using
larger deflections. We limited our gust generator deflections to a range
between positive and negative 12.5˚ during tests to prevent stall and avoid
highly variable wake effects. Training included maximum deflections up to
13.5˚ to allow for the randomized training exploration to include states
around the maximum testing conditions. The generated gusts had greater
effect with flight configurations at the lower angle of attack (4 ± 1°) and
gained an even stronger effect at the higherflow speed (15m s−1). Therefore,
we used gust generator deflection ranges that produced changes in lift that
were recoverable within the structural morphing capabilities of the wing
(Supplementary Table 1).

To create learned controllers capable of reacting to the changing
environment, we adapted an open-source implementation of proximal
policy optimization (PPO) in Pytorch to develop policies for the camber
morphing wing59. The deep reinforcement learning (DRL) environment
included a discrete action space. The first testing configuration (high-lift)
used a symmetric action space of 7 voltage signal changes. For the sub-
sequent flight conditions (medium-lift and low-lift), we reduced the action
space to 3 voltage signal changes, sacrificing potential controller speed for a
smaller action space. This compromise required less exploration and
potentially improved variability between trained controllers (Supplemen-
tary Table 1). Each flight configuration used the same continuous state

space, including normalized change in pressure signals and normalized
MFC voltage signals.

The actor and critic network structures included a one-dimensional
convolutional neural network input layer with the ten most recent state
measurements for state observation, resulting in input dimensions of 2 × 10,
4 × 10, and 7 × 10 for the one-tap, three-tap, and six-tap configurations,
respectively (Fig. 6). This layer included convolutions with kernel lengths of
three and a stride length of one. The two subsequent hidden layers were
structured linearly with 512 nodes each and rectified linear unit (ReLU)
activation functions60,61. Due to challenges and time constraints associated
withDRL training in hardware environments, many hyperparameters were
selected based on previous work performed in a similar MFC morphing
environment42 (Supplementary Table 2). However, we tuned the learning
rate manually, determining a value of 3 × 10−5 to be suitable for Adam
optimization62.We used change in lift as our optimization parameter, using
real-time load cell measurements to provide a reward to the learning
algorithm. The goal of the learning algorithm was to develop a controller
thatminimized the change in lift experienced during a gust using the reward
function,

R tð Þ ¼ �10×ΔL2C tð Þ: ð2Þ

Although lift measurements were used for the reward structure during
training, the controllers did not use lift information for action selection. The
learned policies only used pressure and MFC voltage signals for action
selection. During testing, the load cell provided information to judge con-
troller performance.

A Python script in Jupyter Notebooks orchestrated controller training
and testing (Fig. 5). For this work, we defined a gust as a change in effective
wind velocity, including speed and direction. Due to electromagnetic inter-
ference, the load-cell and pressure sensors were unable to provide accurate
signals during step-motor operation. During training and testing, our script
paused timestep progression, policy updates, and data collection during gust
generator rotation, then resumed training and testing after the gust generator
achieved the desired deflection. Due to this full computational pause during
rotation, gusts appeared as immediate changes in lift (Fig. 2a). This resulted in
perturbations, as viewed by the controller, that are analogous to the sharp-
edged updrafts and downdrafts that are used to model changes in lift
experienced by small UAVs in gusty city environments21,23,50,51,63,64.

Training was formatted in a pseudo-episodic manner, alternating
between baseline episodes and gusting episodes to facilitate autonomy
during training49. Each episode began after rotating the gust generator to a
specified location depending on the episode’s function. Baseline episodes
began at zero degrees and gusting episodes began with the gust generator
rotated to a random deflection within the specified training gust range
(Supplementary Table 1). The MFC actuators began baseline episodes
without camber morphing in either direction. From this neutral position,
the pressure taps provided a base signal for comparative pressure obser-
vations throughout the episode. After initialization was completed, the
episode began, including policy action selection and learning updates. The
initialized pressure and goal lift values were recorded and carried into the
following gusting episode to maintain the same base signals for calculating
comparative pressure and reward values. In addition, the MFC sections
began gusting episodes actuated to the same position in which they ended
the prior baseline episode. Gusting episode action selection and training
began after the gust generatorwas deflected to a randomized positionwhere
it was held for the length of the episode, 200 timesteps, representing an
extended 10 s gust. Terminating the gust operation represented the com-
pletion of a training episode pair (baseline and gusting), returning the gust
generator to zero degrees and the morphing wing MFCs to a neutral
deflection position to begin a new initialization and subsequent baseline
episode.

Training included 1000 total episodes consisting of 200 timesteps of
0.05 s. Learning updates occurred after every 20 timesteps from four

Pressure Taps MFCs

Wind Tunnel 

Turn Table Load Cell

Differential Pressure 
Transducers

High Voltage
Amplifier

Load Cell
DAQ

Motor 
Controller

NI DAQ
PC

Pressure 
Signal

MFC Voltage
Signal

Python
Jupyter Notebook

Fig. 5 | Data flow structure of our gusting wind tunnel experiment for controller
training and testing. Training and testing were orchestrated using a Jupyter
Notebook written in Python on a personal computer (PC). The Python script
informed themotor controller to rotate the turn table to deflect the gust generator to
a desired magnitude and direction. The change in airflow in the wake of the gust
generator was detected by the six pressure taps on themacro-fiber composite (MFC)
morphing wing. The pressures were measured and compared to a static pressure
measured in front of the experimental setup using six differential pressure trans-
ducers. Signals from these pressure transducers were acquired by a National
Instruments Data Acquisition System (NI-DAQ) and provided to the Python script.
The Python script used this information for action selection. The selected action was
provided to the NI-DAQ and transformed into an MFC voltage signal which was
then amplified to power theMFC cambermorphing trailing edge of thewing. The lift
produced by the change in camber wasmeasured by the load cell and provided to the
Python script for reward calculation during controller training and performance
measurement during controller testing.
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minibatches of five state-action samples in series, resulting in a maximum
sample size of 2 × 105 for policy training. Progress was observed using a
running average reward earned over 100 consecutive episodes, from which
the highest performing policy was evaluated for testing (Supplementary
Fig. 1).Weused thisprocedure to train controllers (high-lift:n = 10;medium-
lift: n = 5; low-lift: n= 5) for each of three different pressure tap configura-
tions, including: using all six pressure taps, the front three pressure taps, and a
single pressure tap on the leading edge of the morphing wing. We selected
these pressure tap configurations based on the pressure distribution expected
for the top surface of a symmetric airfoil and the sensitivity of the respective
tap locations58. In all, this approach resulted in 60 trained controllers.

Testing
We tested each of the 60 controllers at their trained flight condition (high-lift,
medium-lift, low-lift) for three gust magnitudes (mild, moderate, strong) in
two directions (upwards and downwards). Upward gusts were denoted as
positive and downward as negative (Supplementary Table 1). This resulted in
360 independent testing conditions. Like the baseline training episodes, each
testing episode began with an initialization period to reset the base pressure
tap signals duringneutral airflow.After initialization, the test episode timestep
count and controller action selection began. The first quarter of the testing
episode consisted of neutral airflow, followed by the gust generator deflecting
to a specified gust condition for the following two-quarters of the testing
episode. Finally, the gust generator returned to adeflectionof zero, concluding
the discrete gust and remaining at neutral for the final quarter of the test
(Fig. 2a). For each test,wemeasured controller performance as a gust rejection
percentage (GRP), comparing the change in lift experienced by the active
cambermorphingwing,ΔLC, to the baseline change in liftmeasuredwhen the
same wing remained unactuated during the gust, ΔLB (Eqn. 1) (Fig. 2a).

Due to the black-box nature of neural networks, and the policies
developed using suchmethods, we accounted for stability and robustness of
control through repetition. For the initial flight condition (high-lift), we
repeated gust alleviation performance tests ten (10) times for each combi-
nation of trained controller (10), gust condition (6), and pressure tap con-
figuration (3). This amounted to 1800 gust rejection tests. We measured
consistency in performance between test iterations (Supplementary Fig. 5),

gust conditions (Supplementary Fig. 6), and training iterations (Supple-
mentary Fig. 7) while all other factors were held constant. Following the
completion of testing at the high-lift flight condition, we repeated the
process for five (5) trained controllers at both additional flight configura-
tions (low-lift and medium-lift) to test the robustness of our methods and
results for different angles of attack and airflow speeds (Supplementary
Table 1). This doubled our previous count of test data, resulting in 3600 gust
rejection tests in total (Supplementary Figs. 8–13).

We calculated settled GRP for each gust response test by averaging the
GRP achieved during the last half of the gust alleviation test,

settled GRP ¼ 2
T

XT

t¼T=2

GRP tð Þ: ð3Þ

Therefore, a higher settled GRP represented greater gust rejection per-
formance. We calculated the settled GRP values for each individual test,
providing distributions of n = 100 GRP values for each gust and pressure tap
configuration at the high-lift flight condition, and n= 50 for each gust and
pressure tap configuration at the medium-lift and low-lift flight conditions.
Due to themaximumboundednature of thismetric,manydistributionswere
skewed to varying degrees (Supplementary Figs. 14–16). Although the
median is traditionally used to represent central tendency for highly skewed
distributions, since the distributions were predominantly skewed away from
superior performance and there was a large variation in skew between testing
conditions, we used the mean as a conservative estimate of central tendency
for our primary performance metrics. Further, we use statistical methods to
comment on the significance when comparing performances between con-
trollers using different pressure tap configurations. Initially we used a linear
mixed effects model to determine the relationship between GRP and the
number of pressure taps while considering the random effects of the tested
gust conditions and the individual trained controllers. However, we found
that the residuals were not normally distributed and therefore broke linear
assumptions. Therefore, we trained generalized linear mixed effects models
using Markov chain Monte Carlo to provide statistical analyses that were
more robust to the variably skewed distributions offered by our tests.

Fig. 6 | The neural network structure for the actor
and critic models in the proximal policy optimi-
zation (PPO) algorithm. Each network has the
same base structure, including a 1D convolutional
neural network layer followed by three fully con-
nected layers with rectified linear unit (ReLU)
actuation functions. The input for each network
includes the tenmost recent voltage signals supplied
to the macro-fiber composites and the ten most
recent pressure tap signals, amounting to 2, 4, or 7
measurements for each timestep depending on the
pressure tap configuration. The actor network out-
puts the policy for action selection, including seven
actions for the high-lift flight condition and three
actions for the medium-lift and low-lift flight con-
ditions. The critic network outputs the state value
used to estimate long term expected reward.
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We also considered performance consistency by measuring the abso-
lute difference between the settled GRP of an individual test to the average
settled GRP for the associated test condition (flight configuration, gust
condition, and number of used pressure taps). This provided a metric for
each individual test from which we used another generalized linear mixed
effects model to determine significance when comparing gust rejection
consistency between controllers using one, three, and six pressure taps.

Finally, we measured the speed of our controllers using rise time,
measured as the time required for the learned controllers to increase GRP
from10%to90%of the settledGRP.Therefore, a lower rise time represented
a faster response. Rise times weremeasured for each test. Althoughmany of
these test distributions were highly skewed, because the distributions were
predominantly skewed toward slower rise times and there was a large var-
iance in skew between distributions, we again used the mean as a con-
servative estimate of central tendency (Supplementary Figs. 17–19). Again,
we used a generalized linear mixed effects model to analyze the significance
between the speed of controllers using one, three, and six pressure taps.

When investigating the sensor signal degradation that occurred during
the downward gusts, we used a LaVision particle image velocimetry (PIV)
system with DaVis 10 intelligent imaging software to characterize the var-
ious aerodynamic effects developed by the gust generator (Fig. 1e). Oil-
based smoke particles were accelerated through the open-loop wind tunnel.
An EverGreen double-pulse quantel laser mounted outside the wind tunnel
illuminated a two-dimensional sheet of particles in the longitudinal
dimensions.Above thewind tunnel, two Imager sCMOScameras in a stereo
configuration captured 50 sets of paired images with 15-µs intervals. From
this, we captured the mean velocity profiles in the x and z directions of the
wind frame of reference up stream of and around the morphing wing,
including the locations where pressure taps were installed (Fig. 4c).

Data availability
All data gathered from experimentation and used for analysis are available
to be viewed on the corresponding author’s GitHub repository at: https://
github.com/kevpatha/few_sensor_gust_alleviation/.

Code availability
All code used for experimentation and analysis are available to be viewed on
the corresponding author’s GitHub repository at: https://github.com/
kevpatha/few_sensor_gust_alleviation/.
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