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Abstract

Background Conventional ECG-based algorithms could contribute to sudden cardiac
death (SCD) risk stratification but demonstrate moderate predictive capabilities. Deep
learning (DL) models use the entire digital signal and could potentially improve predictive
power. We aimed to train and validate a 12 lead ECG-based DL algorithm for SCD risk
assessment.
Methods Out-of-hospital SCD cases were prospectively ascertained in the Portland,
Oregon,metro area. A total of 1,827 pre- cardiac arrest 12 lead ECGs from1,796 SCDcases
were retrospectively collected and analyzed to develop an ECG-based DL model. External
validation was performed in 714 ECGs from 714 SCD cases from Ventura County, CA. Two
separate control group sampleswere obtained from1342ECGs taken from1325 individuals
ofwhichat least 50%hadestablishedcoronary artery disease. TheDLmodelwascompared
with a previously validated conventional 6 variable ECG risk model.
Results The DLmodel achieves an AUROC of 0.889 (95%CI 0.861–0.917) for the detection
of SCD cases vs. controls in the internal held-out test dataset, and is successfully validated
in external SCD cases with an AUROC of 0.820 (0.794–0.847). The DL model performs
significantly better than the conventional ECG model that achieves an AUROC of 0.712
(0.668–0.756) in the internal and 0.743 (0.711–0.775) in the external cohort.
Conclusions An ECG-based DL model distinguishes SCD cases from controls with
improved accuracy and performs better than a conventional ECG risk model. Further
detailed investigation is warranted to evaluate how the DL model could contribute to
improved SCD risk stratification.

Sudden cardiac death (SCD) is a major, global public health problem1. In
Europe and the United States, ~700,000 individuals will suffer from this
mostly lethal condition on a yearly basis1,2. Given the high mortality rate of
SCD, effective primary prevention couldmake a substantial positive impact
but the current approach needs augmentation3,4. Based on randomized
clinical trials, patients identified to be at high risk based on severely reduced
left ventricular systolic function (LVEF < 35%) receive implantable
cardioverter-defibrillators4,5. However, there is no existing risk stratification
methodology for individuals with LVEF > 35% that make up 70% of

community SCD6,7. Moreover, ~40–50% of all SCD cases occur in indivi-
duals without previously diagnosed cardiac disease, which is a prerequisite
for SCD risk assessment.

Some novel prediction methodologies that extend beyond the left
ventricular ejection fraction have been developed8 but these are still in the
research domain. Especially, the standard 12 lead ECG has received a lot of
interest in the research field in anticipation of improving long-term SCD
risk stratification9. Various ECG abnormalities have been identified to
associate with an increased long-term risk of SCD10–12, and we have
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Plain language summary

Sudden cardiac death (SCD) occurs when
there are problems with the electrical activity
within theheart. It is acommoncauseofdeath
throughout theworld so it would be beneficial
to be able to easily identify individuals that are
at high risk of SCD. Electrocardiograms are a
cheap and widely available way to measure
electrical activity in the heart.We developed a
computational method that can use
electrocardiograms to determine whether a
person is at increased risk of having a SCD.
Our computational method could allow
clinicians to screen large numbers of people
and identify those at a higher riskof SCD. This
could enable regular monitoring of these
people and might enable SCDs to be
prevented in some individuals.
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previously published a 6 variable ECG electrical risk score that identifies
individuals at an increased risk of SCD10. However, conventional ECG-
based risk stratification tools are usually limited by low accuracy or prac-
ticality, since they include measurements that are not part of a usual ECG
interpretation, thus requiring customized measurement or trained medical
personnel interpretation.

In recent years, ECG-based deep learning (DL) algorithms have been
developed and are being deployed for diagnostic purposes13. ECG-basedDL
models have been successfully trained to detect various cardiac conditions,
e.g., LV dysfunction14, HCM15 or to recognize patients at high risk for atrial
fibrillation16. As opposed to conventional ECG analysis, DL models do not
require manual selecting and extracting of relevant features, which enables
them to capture the entire ECG signal and achieve higher prediction
accuracy.

In the current study, we train, test, and validate an ECG-based DL
model to identify individuals at high risk of SCD, and compare the pre-
dictions with a previously published and validated conventional ECG
electrical risk score10. The model accurately distinguishes sudden cardiac
death cases from controls, performing better than the conventional ECG
risk score.

Methods
Study design
We used two geographically separate community-based, prospective, and
ongoing studies of out-of-hospital SCDs in the general population: Oregon
SUDS (training, validation, and testing) and Ventura PRESTO (external
validation). Given that CAD is the most common underlying substrate for
SCD, our control group was designed to represent a control sample with a
similar prevalence of previously diagnosed CAD.

SCD cohorts (Oregon SUDS & Ventura PRESTO)
Detailedmethods forOregonSUDSandVenturaPRESTOstudies have also
been published earlier7,17,18. Both Oregon SUDS and Ventura PRESTO
studies ascertain all out-of-hospital SCDs from the Portland Oregon metro
area (population ~1 million, Oregon SUDS, since 2002), and Ventura
County, California (population ~850,000, Ventura PRESTO, since 2015)
using an identical approach. Potential SCD cases in the community are
identified in collaboration with each region’s emergency medical services
(EMS) system. Subsequently, established adjudication methods to confirm
likely cardiac etiology of SCD were employed by trained physician-
researchers; using all available medical record data for each potential SCD
case, EMS prehospital care reports, medical examiner’s reports, and death
certificates from Oregon and California state vital statistics records. SCD
was defined as a sudden loss of pulse due to a likely cardiac etiology that
occurred with a rapid witnessed collapse, or if unwitnessed, the subject
should have been seen alive within 24 h. We included successfully resusci-
tated cases in addition tonon-survivors. Cases of likely non-cardiac etiology
(e.g., trauma or substance abuse) or chronic terminal illness were excluded.

All caseswith archived resting 12 lead ECGs available for analysis were
included (Fig. 1). These ECGs were recorded prior to and unrelated to the
SCD event, with a calibration of 10mm/mV and paper speed of 25mm/s.
ECGs with paced rhythm, atrial fibrillation, or atrial flutter were excluded a
priori to create a DLmodel that could be applied to ECGs in sinus rhythm.
Pre-arrest clinical records and ECGs were available if the patient provided
written consent or was deceased, in which case consent was waived by the
institutional review boards. Institutional review boards of Ventura County
Medical Center, Oregon Health and Science University, Cedars-Sinai
Health System, and all other relevant health systems and participating
hospitals approved the study protocol.

Control population
We recruited control subjects from the Portland Oregon metro area to
represent individuals at intermediate risk of SCD with a large proportion
having CAD. Institutional review boards of Ventura County Medical
Center,OregonHealth andScienceUniversity,Cedars-SinaiHealth System,

and all other relevant health systems and participating hospitals approved
the study protocol, and all control subjects gave informed consent for their
data to be used in the study. Control subjects were identified through
multiple sources, including patients undergoing angiography, patients
having their chest pain assessed by EMS, or patients visiting an outpatient
cardiology clinic.We ascertained the control subjects so that the prevalence
of CAD and MI was comparable to SCD cases. Control patients had no
previoushistoryof cardiac arrest or ventricular arrhythmias.Matching cases
and controls for underlying CAD enables the development of a DL model
that identifies high-risk patients from a clinically comparable ‘intermediate-
risk’ group. ECGs were obtained and archived in an identical manner
to cases.

In all SCD cases and controls, paper 12 lead ECG recordings were
scanned, and digitized using software (ECGScan), which has been
demonstrated to provide a robust reconstruction of a digital ECG
waveform19.Due to the variable length of ECG leads,we restricted the length
of each lead in each sample to a 2.5 s strip,whichwas theminimum lengthof
ECG waveform for each lead. Hence, digital 2.5 s strips of each lead in the
12 lead ECGwere used as input for the DLmodel. ECGScan produces time
series ECGsignal, andwith a sampling rate of 500Hz, thefinal shape of each
ECG arrays was 12 × 1250.

Deep learning model development and training
To identify SCD cases using 12 lead ECG waveforms, we developed a
convolutional neural network for ECG interpretation (Fig. 2). We trained
the model to identify SCD cases with 1,101 prearrest 12 lead ECGs from
1,076 SCD cases from Oregon SUDS and 613 12 lead ECGs from 597
controls.A separatevalidation cohort of 366prearrestECGsand200control
ECGSwasused todeterminewhen to stopmodel training.The study sample
was divided at the patient level so thatmultiple ECGs from the same patient
were included in the same cohort. In the training and validation datasets we
used multiple ECGs per patient, but in the internal testing dataset and
external validation dataset we used only one ECG per patient (the closest
ECG that was unrelated to the SCD event). The mean time from ECG to
SCD was 2.0 ± 2.7 years in Oregon SUDS and 1.6 ± 2.1 years in Ventura
PRESTO.We trained themodel using the PyTorch DL framework, and the
Adamoptimizerwith default parameters (initial learning rate of 1e-3)with a
batch size of 500 and for 55 epochs. Based on the area under the curve of the
receiver operating characteristic (AUROC) curve in the validation dataset,
we performed early stopping for training.

The DL model was designed to interpret 12 lead ECG waveforms
startingwith atrous convolutionswhichwere followed bymulti-channel 1D
convolutions.We limited the number of layers to less than 1/10th the size of
previously described architectures20–23 to minimize model complexity and
optimize model runtime. The DL model incorporated convolutional layers
after initial atrous layers, with an inverted residual structure. In the DL
model, input and output are bottleneck 9 layers with an intermediate
expansion layer. To allow information integration across the 12 lead ECGs,
the number of input channels increased gradually in each set of expansion
layers thatwere preceded by bottleneck layers. Themodelwas optimized for
a lightweight architecture while still maximizing performance20. Given that
we used ECG waveform instead of images as input data, our deep learning
model is a 1D equivalent, and our model is smaller than other ECGmodels
in prior literature with similar performance More details regarding the
model architecture can be found in the original papers20,24.

Statistical analyses
All continuous variables are expressed as mean ± standard deviation.
After model development and training, we performed all statistical ana-
lyses on the internal held-out test set and external validation dataset which
were never seen during model training. We calculated the model’s per-
formance in identifying SCD cases by the AUROC. The model was
compared to a previously developed conventional ECG electronic risk
score, which evaluates the sum of 6 ECG risk markers: resting heart rate
> 75 bpm, LVH, delayed QRS transition, QRS-T angle > 90°, prolonged
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QTc, and prolonged Tpeak-to-Tend interval10. We performed logistic
regression models in the internal test dataset and external validation
dataset using clinical variables (age, sex, heart failure, coronary artery
disease, myocardial infarction, diabetes, chronic obstructive pulmonary
disease, seizure, and cerebrovascular accident) with and without DL-ECG
analysis output value (DL-ECG index).We selected the best threshold for
themodel bymaximizing the F1metric on the validation set and used this
threshold to report sensitivity and specificity on the test sets. Similarly, the
threshold to report sensitivity and specificity for the conventional ECG

electronic risk score and logistic regression models was also selected by
maximizing the F1 metric. For each calculation, two-sided 95% con-
fidence intervals (CI)were computedbybootstrapping randomly sampled
50% of the test set for 1,000 iterations. We performed statistical analyses
using Python and R.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Training dataset

Consecu�ve out-of-hospital SCD 
cases from Portland, OR metro 
area (Oregon SUDS, since 2002)

Excluded cases

• No pre-SCD res�ng 12-
lead ECG available for  
digi�za�on (n=3,405)

• AFib, AFL, or paced 
rhythm (n=248)

• 1,076 SCD cases with 
1,101 prearrest ECGs

• 597 control subjects 
with 613 ECGs

Tes�ng dataset

• 360 SCD cases with a 
prearrest ECG

• 200 control subjects 
with an ECG

Consecu�ve out-of-hospital SCD 
cases from Ventura County, CA 
(Ventura PRESTO, since 2015)

External valida�on dataset

Excluded cases

• 714 SCD cases with a 
prearrest ECG

• 329 control subjects with 
an ECG

Valida�on dataset

• 360 SCD cases with 
366 prearrest ECG

• 199 control subjects 
with 200 ECGs

Internal cohort External cohort

• No pre-SCD res�ng 12-
lead ECG available for  
digi�za�on (n=1,642)

• AFib, AFL, or paced 
rhythm (n=184)

Fig. 1 | Description of internal and external cohorts. Study subject selection for the training dataset, validation dataset, testing dataset, and external validation. Afib atrial
fibrillation, AFL atrial flutter, ECG electrocardiography, SCD sudden cardiac death.

Input data for model training, 
validation and testing
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External validation

Digi�zed res�ng 12-lead ECGs

Cases Controls

1,796 SCD cases 
from the 

Oregon SUDS

996 geographically 
matched pa�ents

714 SCD cases from 
a geographically 

dis�nct  SCD cohort 
(Ventura PRESTO)

329 control 
pa�ents

Model performance

Good accuracy in 
iden�fying individuals at 

an increased SCD risk 

Fig. 2 | Model development. Development of deep learning 12-lead ECG model showing input data, model architecture, validation and performance. ECG electro-
cardiography, SCD sudden cardiac death.
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Results
Demographic and clinical findings
Our study sample consists of a total of 2,510 SCD cases: 1,796 SCD cases
from the Oregon Sudden Unexpected Death Study (SUDS, Portland OR;
training, validation, and testing) and 714 SCDcases from the geographically
distinct Ventura Prediction of SuddenDeath inMulti-ethnic Communities
study (PRESTO, Ventura CA; external validation). In comparison to Ore-
gon SUDS SCD cases, Ventura PRESTO SCD cases were older
(72.3 ± 14.2 years vs. 67.5 ± 14.9 years) and more often female (41.3% vs.
35.4%). The prevalence of Hispanic ethnicity (30.7% vs. 2.4%) and Asian
race (7.8%vs. 3.3%)washigher inVenturaPRESTO,while the prevalenceof
White (82.0% vs. 57.6%) and Black race (10.1% vs. 2.1%) was higher in
Oregon SUDS. The prevalence of diabetes was 53.2% in Ventura PRESTO
and 45.4% in Oregon SUDS. Previously diagnosed heart failure (31.1% vs.
39.8%) and history of myocardial infarction (MI) (27.5% vs. 38.4%) were
lower in Ventura PRESTO compared to Oregon SUDS, respectively. The
prevalence of COPD was similar (26.6% in Oregon SUDS vs. 22.3% in
Ventura PRESTO).

In comparison to SCD cases, control subjects had a similar prevalence
of previously diagnosed coronary artery disease (CAD) (51.2%) and MI
(30.7%).However, control subjects were slightly younger (65.4 ± 11.6 years)
and had a somewhat lower prevalence of previously diagnosed diabetes
(27.8%), atrial fibrillation (13.4%), heart failure (12.8%), and COPD (9.1%).
Demographics and clinical characteristics of SCD cases and control subjects
are presented in Table 1.

DLmodel performance
In the internal testing dataset, the DL model achieved an AUROC of 0.889
(95%CI 0.861–0.917) in detecting SCD cases from controls. Sensitivity and
specificity were 0.843 (0.809–0.878) and 0.818 (0.764–0.872), respectively.

In the external validation dataset, theDLmodel achieved a comparable
AUROC of 0.820 (0.794–0.847) in detecting SCD cases. The sensitivity was
0.763 (0.733–0.796), while the specificity was 0.796 (0.753–0.838). Model
performance metrics in internal and external cohorts are presented in
Table 2 and AUROC curves in Fig. 3.

We evaluated the AUCs of models stratified by sex and age. The DL
model performed similarly in men and women in the internal cohort (test
for difference in AUCs across subgroups, p = 0.36), andmarginally better in
the external cohort among men (AUC= 0.842, 95% CI 0.81–0.874) than
among women (AUC= 0.775, 95% CI 0.718–0.831) (p = 0.043). No dif-
ferences were observed in model performance comparing age > 70 years vs.
age ≤ 70 years in the internal or external cohorts (p = 0.56 and p = 0.16,
respectively).

Conventional ECG electrical risk score performance
We compared the DL model’s performance to a previously developed and
validated 6-variable ECG electrical risk score that was independently
associated with SCD10. In the internal and external datasets, the ECG elec-
trical risk score achieved AUROCs of 0.712 (0.668–0.756) and 0.743
(0.711–0.775) in detecting SCD cases from controls, respectively. The sen-
sitivity was 0.779 (0.721–0.837) in the internal testing dataset and 0.569
(0.515–0.623) in the external validation cohort. The specificity was 0.506
(0.454–0.558) in the internal testing dataset and 0.802 (0.773–0.832) in the
external validation cohort (Table 2 and Fig. 3).

Logistic regression models
To evaluate the predictive power of DL-ECG index beyond conventional
clinical SCD risk factors, we performed logistic regression analyses
including clinical variables with and without DL-ECG index in the internal
and external datasets. In the internal test dataset, addition of the DL-ECG
index into clinical variables improved the discriminative value of SCD from
an AUROC of 0.780 (0.741–0.818) to an AUROC of 0.919 (0.895–0.943).
Similar results were obtained in the external test set, inwhich addition of the
DL-ECG index into clinical variables improved the discriminative value of
SCD from an AUROC of 0.806 (0.778–0.833) to an AUROC of 0.899
(0.878–0.920). Using a cut-point of 0.70 for predicting case status, the net
reclassification improvement using the DL model and clinical variables
compared to the model with clinical variables in the internal cohort was
28.7% (95% CI 21.0–36.5%) and in the external cohort was 15.3% (95% CI
9.7–20.9%). Regressionmodel performancemetrics in internal and external

Table 1 | Demographic and clinical characteristics of the study subjects in the internal and external datasets

Internal cohort External cohort

SCD cases in Oregon
SUDS (n = 1796)

Control subjects (n = 996) SCD cases in Ventura PRE-
STO (n = 714)

Control subjects (n = 329)

Age, years 67.5 ± 14.9 65.3 ± 11.6 72.3 ± 14.2 65.7 ± 11.7

Female sex, n (%) 635/1796 (35.4%) 327/996 (32.8%) 295/714 (41.3%) 98/329 (29.8%)

Race/ethnicity, n (%)

White 1,448/1765 (82.0%) 836/979 (85.4%) 411/714 (57.6%) 273/328 (83.2%)

Black 178/1765 (10.1%) 105/979 (10.7%) 15/714 (2.1%) 33/328 (10.1%)

Asian 59/1765 (3.3%) 15/979 (1.5%) 56/714 (7.8%) 4/328 (1.2%)

Hispanic 43/1765 (2.4%) 13/979 (1.3%) 219/714 (30.7%) 11/328 (3.4%)

Other 37/1765 (2.1%) 10/979 (1.0%) 13/714 (1.8%) 7/328 (2.1%)

Prior medical history

Coronary artery disease, n (%) 850/1796 (47.3%) 502/996 (50.4%) 257/714 (36.0%) 176/329 (53.5%)

Diabetes, n (%) 815/1795 (45.4%) 282/984 (28.7%) 380/714 (53.2%) 87/328 (26.5%)

History of MI, n (%) 689/1796 (38.4%) 302/996 (30.3%) 196/714 (27.5%) 105/329 (31.9%)

Atrial fibrillation, n (%) 428/1796 (23.8%) 137/996 (13.8%) 187/714 (26.2%) 41/329 (12.5%)

CVA, n (%) 337/1795 (18.8%) 83/984 (8.4%) 120/714 (16.8%) 18/328 (5.5%)

Heart failure, n (%) 714/1796 (39.8%) 136/996 (13.7%) 222/714 (31.1%) 33/329 (10.0%)

COPD, n (%) 478/1795 (26.6%) 89/984 (9.0%) 159/714 (22.3%) 31/328 (9.5%)

Seizure, n (%) 150/1795 (8.4%) 25/984 (2.5%) 36/714 (5.0%) 7/328 (2.1%)

Syncope, n (%) 186/1795 (10.4%) 50/984 (5.1%) 78/714 (10.9%) 11/328 (3.4%)

COPD chronic obstructive pulmonary disease, CVA cerebrovascular accident,MImyocardial infarction, SCD sudden cardiac death.
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cohorts are presented in Table 3 and AUROC curves in Fig. 4. Examples of
Local InterpretableModel-agnostic Explanations (LIME) highlightedECGs
fromtwoSCDcases and twocontrols from the external cohort arepresented
in the Supplementary Figure. LIME highlighted a wide range of ECG fea-
tures including PR interval, QRS complex, and ST- and T-wave changes.

Discussion
We utilized data from two large geographically distinct community-based
out-of-hospital SCD cohorts to train, test, and validate a 12 lead ECG
waveform-based DL model, which was compared to a previously validated
conventional ECG model. The DL model achieved a higher accuracy with
an AUROC of 0.889 for internal cohort and 0.820 for external validation,
and outperformed the conventional ECG risk score. A slightly lower per-
formance in the external cohort may be related to differences in demo-
graphics and clinical profiles, which may affect the accuracy of the model’s
prediction. However, despite such differences, the overall performance
remained good in the external cohort. To our knowledge, this is the first
report of an ECG-based DL model that has outperformed a conventional
ECG risk model in predicting out-of-hospital SCD at the community level.

There are some unique aspects of study design that made this work
feasible. SCD is a dynamic and unexpected event that requires prospective

ascertainment17. Since annual incidence is in the range of 50–100/100,0001,
existing cohorts of 5000–10,000 subjects cannot yield sufficient numbers of
SCD cases for viable analyses, especially those that employ deep learning
models. Furthermore, we were able to include both survivors and non-
survivors of SCD in our datasets, which avoids the bias of predicting only
non-survivors or survivors. The establishment of the two population
cohorts Oregon SUDS17 andVentura PRESTO18 consisting of ~1.85million
US residents, provided sufficient numbers for deep learning. Equally
important, both studies have been obtaining and archiving digitized 12 lead
ECGs performed prior, and unrelated to SCD events. While this is a chal-
lenging process for the SCD phenotype, it is a pre-requisite for discovery of
prediction models.

Recently published studies have developed DLmodels to predict SCD
or ventricular arrhythmias (VA) using cardiacMRI images25,26, monophasic
action potentials recorded during invasive electrophysiology studies27 as
well as clinical data28, that also show promise. The major advantages of
utilizing the resting 12 lead ECG for SCD risk assessment relate to low cost,
noninvasiveness, and wide availability in diverse populations around the
globe. Given the low cost and wide availability of ECGs, this model has
potential to augment early screening for subclinical cardiovascular condi-
tions that carry an increasedSCDrisk.More recently, rapiddevelopments in

Table 2 | Model performance in comparison to a conventional ECG electrical risk score in the internal and external datasets

AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Maximum F1 Metric

Internal cohort (n = 2,792)

Deep learning model 0.889 (0.861–0.917) 0.843 (0.809–0.878) 0.818 (0.764–0.872) 0.866

Conventional ECG electrical risk score 0.712 (0.668–0.756) 0.779 (0.721–0.837) 0.506 (0.454–0.558) 0.585

External cohort (n = 1,043)

Deep learning model 0.820 (0.794–0.847) 0.763 (0.733–0.796) 0.796 (0.753–0.838) 0.823

Conventional ECG electrical risk score 0.743 (0.711–0.775) 0.569 (0.515–0.623) 0.802 (0.773–0.832) 0.571

AUROC area under the receiver operating characteristics curve, CI Confidence interval.

Fig. 3 | Comparison of deep learningmodel with conventional risk score.The deep learning ECGmodel was compared with a conventional ECG risk score for prediction
of sudden cardiac death (SCD). Receiver operating curves for the identification of SCD cases in the internal (a, n = 2792) and external cohort (b, n = 1043).
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wearable device technology have enabled recording of the ECG beyond the
healthcare environment, during activities of daily living.

As compared to a previously developed and validated 6 variable
conventional ECG risk score, theDLmodel achieved significantly higher
performance in detecting SCD cases, which supports the higher utility of
DL-based models. In contrast to conventional risk calculators, DL
models do not require manual feature selection and extraction but
instead can utilize the entire digital signal to incorporate novel indices of
risk. Consequently, ECG DL models are not biased in focusing on pre-
specified ECG parameters and thus have the potential to achieve higher
throughput and broader scope while preserving accuracy (Fig. 5).
Another major advantage of DL techniques in comparison to conven-
tional statistical tools is that they require making fewer assumptions
about data structure. Hence, DL models can be more accurate for eva-
luation of complex nonlinear relationships in large datasets. However,
DL techniques may also have some disadvantages which need to be
considered during development, and also prior to deployment. These
include model-specific requirements for inputting data, vulnerability to

systemic bias and lack of the ability to explain mechanisms of findings
which is still a work in progress.

SCD is a complex trait as well as a multifactorial event, and patho-
physiology is based on the interplay between the underlying substrate and a
variety of triggers. ECG abnormalities that have been associated with an
increased riskof SCDareoften surrogates of theunderlying cardiac substrate
(e.g., LVH, myocardial scarring, repolarization abnormality), and accurate
risk stratification requires a combination of several nonspecific ECG
abnormalities10,11. Even though ECG may reflect widespread cardiac and
noncardiac conditions29–31, the logistic regression model showed that DL-
ECG index improved the discriminative value of SCDover clinical variables.
Similar findings were found in a recent DL-ECGmodel among heart failure
patients32. In comparison to conventional dichotomous analytical methods,
deep learning-based ECG analysis may provide more precise and compre-
hensive quantification of ECG abnormalities and deeper phenotyping.

The vast majority of SCD cases are not identified as high risk prior to
theirmostly lethal event, which highlights the importanceof extending SCD
risk assessment beyond left ventricle ejection fraction. While the overall

Fig. 4 | Utility of deep learning ECG index beyond clinical risk predictors.
Receiver operating curves for the identification of sudden cardiac death cases in the
internal (a, n = 2792) and external cohort (b, n = 1043) with logistic regression

models. Clinical variables include age, sex, heart failure, coronary artery disease,
myocardial infarction, diabetes, chronic obstructive pulmonary disease, seizure, and
cerebrovascular accident.

Table 3 | Performance of logistic regressionmodels including clinical variableswith andwithout deep learning ECG index in the
internal and external datasets

AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Maximum F1 Metric

Internal cohort (n = 2,792)

Clinical variables 0.780 (0.741–0.818) 0.773 (0.714–0.831) 0.644 (0.595–0.694) 0.639

Clinical variables + Deep learning ECG index 0.919 (0.895–0.943) 0.763 (0.703–0.822) 0.914 (0.885–0.943) 0.794

External cohort (n = 1,043)

Clinical variables 0.806 (0.778–0.833) 0.777 (0.732–0.823) 0.702 (0.668–0.735) 0.641

Clinical variables + Deep learning ECG index 0.899 (0.878–0.920) 0.808 (0.765–0.851) 0.842 (0.815–0.869) 0.751

Clinical variables include age, sex, heart failure, coronary artery disease,myocardial infarction, diabetes, chronic obstructive pulmonary disease, seizure, and cerebrovascular accident.AUROC area under
the receiver operating characteristics curve, CI Confidence interval.
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incidence of SCD in the community has remained relatively stable, the
incidence of SCD in heart failure with reduced ejection fraction has
decreased6, suggesting that the use of LVEF < 35% in risk prediction is
progressively less effective.An effective risk stratificationwould require both
optimal screening population and accurate screening tools, which is likely to
consist of a combination of several risk assessment modalities (e.g., ECG,
imaging, omics, etc.). ECG abnormalities have already been included in
recent SCD risk models8, and usage of DL based ECG analysis as a pre-
screening tool for identification of individualswho couldbe triaged formore
comprehensive risk evaluation could prove effective in selected individuals.
Due to the high proportion of CAD and prior MI without a history of
ventricular arrhythmias, we think that the control subjects in the present
study represent intermediate-risk patients, and given the increased baseline
SCD risk, this patient groupmay represent a reasonable target for screening
efforts. However, our study represents the first steps in ECG-DL based SCD
risk assessment. As for all DLmodels that have the potential to be clinically
useful, further prospective studies followed by randomized trials are needed
to study if DL-based ECG analysis has the potential to provide an inex-
pensive, high throughput, and widely deployable pre-screening tool to
augment current SCD risk stratification.

A strengthof our study is a large sample of carefully adjudicated out-of-
hospital SCD cases with prearrest resting 12 lead ECG. In addition, we were
able to create balanced datasets by including clinically comparable control
patients.However, some limitations shouldbe consideredwhile interpreting
these findings. We matched cases and controls geographically in the
training, validation, and internal testing datasets, but we had no geo-
graphically matched controls in external validation dataset. However, there
was no overlap of control samples between the internal and external vali-
dation datasets. The necessity of using a large control group with digitized
paper ECGs divided into two was driven by the goal of minimizing the
differences in thequality ofECGrecordings between cases and controls. The
OregonSUDSstudywas initiated in2002whenonlypaperECGsweremade
available, and all case and control ECGs were digitized before providing
them to the DL-ECG model. Control ECGs were also obtained randomly
from multiple community hospitals and health systems, which further
reduces the likelihood of systemic bias in quality of ECG recordings. Since
SCD is the first manifestation of heart disease in a substantial subgroup, a
prearrest ECG was not available if individuals had not undergone a cardiac
evaluation prior to their SCD event, creating potential for selection bias.
Although we aimed to match cases and controls based on the underlying
CAD status, some differences in other SCD risk factors remained between
SCD cases and controls, which may have affected the model performance.
However, some of these differences are important contributors to the
development of SCD, and the prediction of SCD is based on the identifi-
cation and combination of risk markers. We used a case-control study

design to collect sufficient numbers of carefully adjudicated SCD cases,
which does not allowus to reliably estimate the positive predictive value and
negative predictive value. We used a relatively short 2.5 s ECG strip, and
further studies are probably needed to investigate whether longer ECG strip
usage will result in higher prediction accuracies. Our model is only
applicable to sinus rhythm ECGs since atrial fibrillation/flutter and paced
ECGs were excluded during algorithm development. Lastly, the majority of
our study subjectswereWhite, and further studies areneeded to studyECG-
DL performance in racially/ethnically distinct subgroups. Additionally,
future prospective studies are needed to validate model performance in
clinically diverse settings.

Conclusions
We trained an ECG-based DL model that achieved high accuracy in dis-
tinguishing SCD cases from control patients. The model was successfully
validated in a geographically distinct SCD cohort and outperformed a
previously validated conventional ECG risk score. These results suggest that
DL-based ECG analysis has advantages over conventional ECG based SCD
risk assessment and yields better accuracy. Further detailed investigation is
warranted to evaluate how theDLmodel could contribute to improvedSCD
risk stratification.

Data availability
All analytical methods applied for the deep learning algorithm are included
in this published article. Based on institutional review board guidance
patient data is not publicly available and is de-identified. De-identified data
is only available by contacting the corresponding author.

Code availability
Code is available at https://github.com/ecg-net/scd-oregon33
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