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Detecting chronic kidney disease by
electrocardiography
Jeroen P. Kooman1✉

Although chronic kidney disease (CKD) can be detected by relatively simple
blood and urine tests, it remains underdiagnosed even in patients at high risk for
the disease. Deep learning-based approaches are now being developed to detect
CKD based on electrocardiogram (ECG) data.

Chronic kidney disease is a long-term condition involving abnormalities of kidney structure or
function that can impact patients’ health. The diagnosis requires either an estimated glomerular
filtration rate (eGFR)—a measure of kidney function—below 60 ml/min/1.73 m2, based on a
prediction formula which includes serum creatinine levels, or the detection of markers of kidney
damage, including the presence of albumin in urine (albuminuria). According to eGFR, CKD is
subdivided into five different stages, with stage 5 indicating kidney failure. CKD is estimated to
be the 12th leading cause of death worldwide. The global prevalence is estimated to exceed 800
million cases1. Changes in lifestyle factors and early treatment with angiotensin-converting
enzyme inhibitors or angiotensin receptor blockers can delay progression of CKD as well as
cardiovascular disease2. Nevertheless, many patients with CKD remain undetected, even those
with risk factors such as hypertension2.

In an article now published in Communications Medicine, Holmstrom et al. describe a
potential screening approach using a convolutional neural network-based deep learning model to
detect CKD from ECG waveforms3. Deep learning is a type of machine learning-based artificial
intelligence inspired by the human brain, whereby multiple layers of algorithms called con-
volutional neural networks learn from unstructured data to perform classification or
prediction tasks.

The model developed by Holmstrom et al., and similar recently developed approaches4, are
exciting advances which, if further validated and implemented in the clinic, have the potential to
improve detection of patients with CKD using data routinely acquired for other purposes. Here,
the findings and clinical implications of the study by Holmstrom et al. are discussed, along with
similar studies.

The primary cohort studied by Holmstrom et al. consisted of 111,370 patients and included
247,655 ECGs, of which 100,233 were randomly allocated to the training set and 11,137 to the
test set. The model achieved an accuracy of 0.767 in the primary cohort and 0.709 in an external
validation cohort. Accuracy was higher with more advanced stages of CKD and in younger
patients. This might be explained by the fact that on one hand, ECG alterations are more likely to
be prevalent in patients with more advanced CKD, whereas in younger patients, ECG
abnormalities due to causes other than CKD are less prevalent.

The definition of CKD was based on ICD-9/10 codes, identifying 7816 patients with a
diagnosis of CKD in the primary cohort who had an ECG taken within a 1-year window of a
CKD diagnosis. Aside from this relatively long time window, which is of potential relevance
because renal function may significantly change over this time period, an important limitation of
the study is that data on eGFR were available in only 49% of patients at any point in time. Thus,
in 51% of cases, diagnosis only appeared to be dependent on the ICD-9 definition and no
connection with the level of kidney function impairment could be made. Moreover, it cannot be
excluded that in the population without an ICD-9 diagnosis of CKD, renal impairment might
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still be prevalent given the fact that CKD is underdiagnosed in the
general population. The cohort might also not be representative
of the general population, given the relatively high prevalence of
end stage kidney failure (2.6%) and because the indication to
perform an ECG by itself will introduce selection bias, as the
prevalence of CKD is higher in patients with cardiovascular
disease. Still, despite these limitations, the fact that model per-
formance was similar in the population in which data on eGFR or
albuminuria were present, the consistency of the model perfor-
mance in different subgroups and comparable performance in the
external validation cohort provides confidence that the reported
data are sufficiently robust.

Subclinical cardiac abnormalities, such as myocardial fibrosis
and left ventricular hypertrophy, are frequently present in
patients with kidney dysfunction, even if it is mild5. In a
population-based cohort, reduced eGFR and albuminuria were
associated with an increase in the cardiac biomarkers troponin T
and I indicating cardiac damage6. In the same cohort, changes in
these cardiac biomarkers were associated with ECG alterations
suggestive of cardiac damage7. In more advanced stages of CKD,
ECG abnormalities were also related to cardiovascular mortality8.
The ability of deep learning models to detect CKD based on ECG
changes is therefore likely explained by the high prevalence of
these subclinical abnormalities, which result in subtle changes
that can remain undetected on routine ECG interpretation. In the
study by Holmstrom et al., ECG changes identified to be asso-
ciated with CKD were primarily observed in the QRS complex
and PR interval.

An important possible confounder in the interpretation of
ECG changes in patients with CKD are abnormalities in serum
potassium. Deep learning models based on ECG interpretation
have been validated for the detection of hyperkalemia9, and can
be predictive of other electrolyte imbalances10. While detailed
data on electrolytes were not available in the study of Holmstrom
et al., the accuracy of the model was similar in patients with and
without hyperkalemia in the subgroup where potassium levels
were available, which suggest that variations in potassium levels
did not have a major influence on the detection of CKD by
the model.

In support of the present study, another study by Kwon et al.
also assessed the prediction of CKD by ECG analysis using a deep
learning model based on convolutional neural networks4. In that
study, the model was trained to detect an eGFR level of <45 ml/
min/1.73 m2 (i.e. stage 3B or higher). Accuracy of the model was
higher in the study of Kwon et al., which might be due to the fact
that data on eGFR were available for all patients or that only
patients with a more pronounced decline in renal function were
included, with demographic features also included in the model.
This study did not, however, evaluate the detection of earlier stage
CKD, such as stage 3A disease that is less severe but nevertheless
still associated with increased cardiovascular mortality.

Machine learning models based on ECG analysis have also
been used in the detection of various types of heart failure, as
well as other chronic diseases such as diabetes mellitus11. As in
CKD, left ventricular hypertrophy and myocardial fibrosis are
also common in patients with diabetes and might induce com-
parable ECG changes. As detailed data on (pre)diabetic status
and blood pressure control were missing in the study by
Holmstrom et al., the question remains to which extent the
model in the study is specific for CKD. As the relation between
ECG changes and CKD is likely mediated by subclinical cardiac
injury, it may also miss patients with CKD without cardiac
damage. However, although this needs to be addressed in future
studies, the model may indicate those patients with CKD who are
at higher risk for adverse cardiovascular outcomes. Interestingly,
in a study where a deep learning model was applied to predict

hypo- or hyperkalemia from ECGs, the risk of mortality was
higher in those patients where the model indicated abnormalities
in serum potassium as compared to laboratory values12. This is
also relevant for patients with CKD, given the increased pre-
valence of hyperkalemia and the associated mortality risk in
these patients.

Both in the study of Holmstrom et al. as in the study by Kwon
et al.4, analysis of single lead (I)-ECG resulted in a comparable
model performance as compared to the 12-lead ECG. Twelve-lead
ECG provide a far more complete of the heart’s electrical activity
compared to a single-lead ECG, but is not available in a wearable
format. Their comparable performance in this study is of rele-
vance since some newer generation smartwatches are able to
perform single lead (I) ECG measurements13, which suggests it
might one day be possible to detect CKD with a smartwatch in
the general population.

At present, given the relatively low sensitivity and specificity,
detection of CKD by ECG features alone might not be suitable for
widespread implementation as a screening method. However,
predictive power may be improved by addition of data from other
sources. Recently, it was shown that a machine learning model
based on physiological measurements from wearable devices was
able to predict to some extent laboratory parameters including
blood urea nitrogen14. Artificial intelligence models that process
more granular data from different sources, including ECGs, might
be useful as prescreening tools15. These could be followed by
more detailed measurements of health status, including blood
pressure, and measurements of glucose, renal function and
albuminuria.

The remaining question is how, with further validation, the
models developed by Holmstrom et al. and Kwon et al. could find
their way into future clinical practice. A relatively straightforward
way would be to incorporate the model into automated analysis
of 12-lead ECG, indicating the need for further analysis in a
patient identified at risk of CKD. As ECGs are generally per-
formed for a specific reason, patients have already entered the
healthcare system and adding another analysis step might not be
too difficult, providing patients have provided consent for this. A
different scenario is the one described above, in which data from
wearable devices, which may include single lead ECG measure-
ments, are used to identify persons at risk in a general population.
In this case, the number of false positive cases is likely high and
may be associated with health anxiety and a larger demand on the
healthcare system. Moreover, there may be concerns with digital
and societal equity as smart wearables may have substantial costs
and therefore not be accessible for all socioeconomic groups. For
smartwatch-based detection of atrial fibrillation, various ethical
and data privacy concerns have also been raised, such as under-
representation of minority groups in the training data and storage
of medical data by commercial parties16.

In conclusion, the application of deep learning to detect CKD
based on ECG data, as proposed by Holmstrom et al., is an
interesting application of a widely used technology will need to be
followed by additional validation studies, which should consider
integration of different data types. These studies should be per-
formed both in high-risk patients as well as in population-based
cohorts, and in patients of different sexes or genders, ethnicities
and from different geographical locations. As CKD, even in high-
risk populations such as patients with hypertension, remains
underdiagnosed, new methods such as the one described in
Communications Medicine may be a welcome aid by prompting
the subsequent use of conventional screening tools. However,
even with successful validation, applying these tools on a popu-
lation basis using wearable sensors would introduce additional
ethical, societal, and regulatory challenges that would need to be
carefully considered.
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