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Abstract

Background Observational studies have linked adiposity and especially abdominal adiposity

to liver fat accumulation and non-alcoholic fatty liver disease. These traits are also associated

with type 2 diabetes and coronary artery disease but the causal factor(s) underlying these

associations remain unexplored.

Methods We used a multivariable Mendelian randomization study design to determine

whether body mass index and waist circumference were causally associated with non-

alcoholic fatty liver disease using publicly available genome-wide association study summary

statistics of the UK Biobank (n= 461,460) and of non-alcoholic fatty liver disease (8434

cases and 770,180 control). A multivariable Mendelian randomization study design was also

used to determine the respective causal contributions of waist circumference and liver fat

(n= 32,858) to type 2 diabetes and coronary artery disease.

Results Using multivariable Mendelian randomization we show that waist circumference

increase non-alcoholic fatty liver disease risk even when accounting for body mass index (odd

ratio per 1-standard deviation increase = 2.35 95% CI= 1.31–4.22, p= 4.2e−03), but body

mass index does not increase non-alcoholic fatty liver disease risk when accounting for waist

circumference (0.86 95% CI= 0.54–1.38, p= 5.4e−01). In multivariable Mendelian rando-

mization analyses accounting for liver fat, waist circumference remains strongly associated

with both type 2 diabetes (3.27 95% CI= 2.89–3.69, p= 3.8e−80) and coronary artery

disease (1.66 95% CI= 1.54–1.8, p= 3.4e−37).

Conclusions These results identify waist circumference as a strong, independent, and causal

contributor to non-alcoholic fatty liver disease, type 2 diabetes and coronary artery disease,

thereby highlighting the importance of assessing body fat distribution for the prediction and

prevention of cardiometabolic diseases.
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Plain language summary
Non-alcoholic fatty liver diseases

(NAFLD) affects around 25% of

adults worldwide. NAFLD occurs

when fat accumulates in the liver.

Individuals with an elevated body

weight are at higher risk of accumu-

lating liver fat and developing cardi-

ometabolic diseases such as NAFLD.

Here, we show that people who

inherit an increased likelihood to

store fat inside the abdomen are at

higher risk of liver fat accumulation

and cardiometabolic diseases such as

NAFLD, type 2 diabetes, and cor-

onary artery disease. Conversely,

individuals who store fat outside the

abdomen may be at lower risk of liver

fat accumulation and NAFLD. Based

on these results, we conclude that

the amount of fat in the abdomen

rather than total body weight may be

a key risk factor for cardiometabolic

diseases.
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Non-alcoholic fatty liver disease (NAFLD) is characterized
by hepatic lipid accumulation ranging from steatosis
(>5% of liver weight is lipids) to non-alcoholic steatohe-

patitis (NASH, presence of inflammation)1. Although liver stea-
tosis may be relatively benign in most cases, more severe forms of
NAFLD such as NASH and hepatic fibrosis can lead to liver
cirrhosis and hepatocellular carcinoma. Approximately 25% of
the adult population globally is affected by NAFLD with the
prevalence rapidly increasing and potentially becoming the
leading cause of liver failure in the United States by 20252,3.
Adiposity and body fat distribution are closely linked with
NAFLD4. In observational studies such as the INSPIRE ME study,
a large international imaging study using computed tomography,
waist circumference was closely associated with liver fat accu-
mulation independently of body mass index (BMI)5.

Studies have also shown that both liver fat accumulation/
NAFLD and waist circumference are associated with CAD and
T2D6–9. However, whether liver fat accumulation is a causal
factor of CAD and T2D remains to be elucidated and, more
importantly, whether or not agents aimed at targeting NAFLD
will ultimately decrease the risk of either T2D or CAD is
unknown. In a previous investigation, we showed a strong genetic
correlation between NAFLD, waist circumference, T2D, and
CAD10. However, little is known about the directionality of these
relations and whether NAFLD lies in the causal pathway linking
abdominal adiposity and T2D/CAD.

In order to gain insight about the causality and directionality of
these associations, causal inference methods such as Mendelian
randomization (MR) have been developed11. MR uses genetic
variants (which are randomly distributed at meiosis) such as
single-nucleotide polymorphisms (SNPs), as instruments to infer
causality. This method is in many ways comparable to a rando-
mized control trial in which participants are naturally rando-
mized based on the presence or absence of genetic variants that
influence traits of interest11. In previous MR studies, a body fat
distribution pattern consistent with low peripheral/subcutaneous
fat accumulation and high intra-abdominal fat accumulation as
estimated by the waist-to-hip ratio (WHR) adjusted for BMI was
strongly associated with T2D and CAD12,13. However, we do not
know if similar associations exist for NAFLD.

Extensions of the MR design, such as bidirectional MR and
multivariable MR (MVMR), help in clarifying causal relations.
Bidirectional MR refers to an analysis where both traits are alter-
nately evaluated as exposure and outcome. This method has the
potential to remove reverse causation bias by asserting the direc-
tionality of the relationship14. Multivariable MR can be used when
multiple genetic variants are associated with two or more exposures.
It conditions the effects of the SNPs of each exposure together to
assess the effect of each exposure independently on the outcome.
This method allows to test for mediation when two exposures share
genetic variants as if they had been adjusted for one another15.

Here, we used a MVMR study design to investigate the
respective causal contributions of adiposity (defined using BMI)
and abdominal adiposity (defined using waist circumference and
the waist-to-hip ratio adjusted for BMI [WHRadjBMI]) to liver
fat accumulation and NAFLD. Second, using a similar strategy,
we aimed to determine if abdominal adiposity and liver fat
accumulation are independent causal risk factors for T2D and
CAD. Taken together, our triangulation of MR methods identify
waist circumference as a strong, independent, and causal con-
tributor to NAFLD, type 2 diabetes, and coronary artery disease.

Methods
Study populations. Information on the cohorts used in this MR
framework is presented in Supplementary Data 1. Briefly, we

combined data from publicly accessible GWAS summary statis-
tics of European ancestry in a two-sample MR setting. BMI and
waist circumference: The summary statistics of BMI and waist
circumference were obtained from the UK Biobank from 461,460
and 462,166 individuals respectively. The GWAS was performed
by the MRC IEU open GWAS project16. GWAS summary sta-
tistics from the GIANT consortium were also included to repli-
cate the estimates obtained with the UK Biobank. These summary
statistics for BMI were obtained from a meta-analysis of up to 125
GWAS for 339,224 European individuals17. Summary statistics
for waist circumference were obtained from a meta-analysis of
232,101 individuals18. Measures of BMI and waist circumference
were self-reported or measured in a laboratory or in a healthcare
setting. Measures were corrected for age, age squared, sex,
ancestry-based principal components, and study sites. The
resulting residuals were inverse ranked normal transformed with
standard deviation (SD) of 1. WHR adjusted for BMI: WHR
adjusted for BMI was calculated as the ratio of waist and hip
circumferences adjusted for BMI in 485,486 Europeans in the UK
Biobank19. Measures of WHR and BMI were self-reported,
measured in a laboratory or measured in a healthcare setting.
Measures of WHRadjBMI were corrected for age, age squared,
sex, principal components, and study site. The resulting residuals
were transformed to approximate normality with SD of 1 using
inverse normal scores. We also included GWAS summary sta-
tistics for WHRadjBMI from 210,088 Europeans from the
GIANT consortium18. In that study, WHRadjBMI was adjusted
for age, age-squared, study-specific covariates and then inverse
ranked normal transformed prior to genome-wide analysis.
NAFLD: We performed a GWAS meta-analysis for clinical
diagnosis of NAFLD (8434 cases and 770,180 controls) of Eur-
opean ancestry from four cohorts, as previously described10.
Briefly, we performed a fixed effect GWAS meta-analysis of The
Electronic Medical Records and Genomics (eMERGE) network20,
the UK Biobank, the Estonian Biobank and FinnGen using the
METAL package21. NAFLD was defined using electronic health
record codes or hospital records. Logistic regression analysis was
performed with adjustment for age, sex, genotyping site and the
first three ancestries-based principal components. Liver Fat:
GWAS summary statistics for liver fat were obtained from a
GWAS of 32,858 white British participants from the UK
Biobank22. Magnetic resonance scans were annotated by trained
radiologists following a standard procedure. Using this training
dataset, deep learning algorithms were then applied to estimate
liver fat. The resulting dataset comprises 32,860 liver fat quanti-
fication. Liver fat was regressed using BOLT-LMM on gene car-
rier status, adjusted for genetic sex, age, age2, the first 10 principal
components of genetic ancestry, scaled scan date, scaled scan
time, and study center as fixed effects and genetic relatedness as a
random effects term. The resulting residuals were inverse normal
transformed prior to GWAS. Coronary artery disease: GWAS
summary statistics for CAD were obtained from a GWAS on
122,733 cases and 424,528 controls from CARDIo-
GRAMplusC4D and UK Biobank23. Samples from CARDIo-
GRAMplusC4D were drawn from a mixed population
(Europeans, East Asian, South Asian, Hispanic and African
American), with the majority (77%) of the participants from
European ancestry. Case status was defined by CAD diagnosis,
including myocardial infarction, acute coronary syndrome,
chronic stable angina, or coronary stenosis. We also used a dif-
ferent dataset GWAS summary statistics from the CARDIo-
GRAMplusC4D excluding UK Biobank (60,801 CAD cases and
123,504 controls)24. Type 2 diabetes: GWAS summary statistics
for type 2 diabetes were obtained from the DIAbetes Genetics
Replication and Meta-analysis (DIAGRAM) consortium and UK
Biobank (74,124 cases/824,006 controls)25. Case status was
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defined by electronic health records, self-reports, or laboratory
derived clinical diagnostics of T2D. We also used a different
dataset from the DIAGRAM consortium excluding UK Biobank
(26,676 T2D case and 132,532 controls)26.

Some of the study samples used to derive our study exposures
and outcomes included summary statistics from the UK Biobank,
which lead to sample overlap. In univariable MR, sample overlap
will bias the estimated results towards the null only when weak
instrument is present. In MVMR, the direction of the bias is
unclear but will occur only in the presence of weak instrument
bias27. We included in our primary MR analysis the UK Biobank
to increase power and included sensitivity analysis excluding the
UK Biobank to remove sample overlap. All GWAS summary
statistics were publicly available and accessible through URL. For
all included genetic association studies, all participants provided
informed consent, and study protocols were approved by their
respective local ethical committee. Ethical approval was not
required to conduct this study as it only used anonymized GWAS
summary statistics.

Selection of genetic variants and variants harmonization. For
univariable MR analysis, we selected all genome-wide significant
SNPs (p-value < 5e−8). We then ensured the independence of
genetic instruments by clumping all neighboring SNPs in a 10Mb
window with a linkage disequilibrium r2 < 0.001 using the Eur-
opean 1000-genome LD reference panel. SNPs and relevant
association statistics can be found for each exposure in Supple-
mentary Data 2. For multivariable MR analyses, we first extracted
all genetic instruments that were previously selected for uni-
variable MR analysis. We then pooled these SNPs to the lowest p-
value corresponding to any of the exposures, using the same
parameter setting as the univariable MR (r2= 0.001 window=
10Mb). We also included results of two other sensitivity analysis
approaches: (1) prioritizing variants with lowest p value for BMI;
(2) prioritizing SNPs with lowest p value for waist circumference.
When NAFLD was used as an exposure in MVMR, we pooled the
combined list of SNPs by selecting the SNP with the lowest p-
value for NALFD. This procedure was implemented to select a
maximum number of strong genetic instruments, as fewer genetic
instruments are available for NAFLD exposure. SNPs in a 2Mb
window of the HLA, ABO, and APOE genetic regions were
excluded due to their complex genetic architecture and their
widespread pleiotropy (in GRCh37 6:28909037-30913661,
9:135130951-137150617, and 19:44409011-46412650, respec-
tively). Exclusion of pleiotropic genetic regions satisfies the
exclusion restriction and the exchangeability assumptions of
instrumental variable analyses and strengthen inference of MR
analyses. Harmonization was performed by aligning the effect
sizes of different studies on the same effect allele. All GWAS
summary statistics were reported on the forward strand. When a
particular SNP was not present in the outcome datasets, we used a
proxy SNPs (r2 > 0.6) obtained using linkage disequilibrium
matrix of European samples from the 1000 Genomes Project.
Instrument strength was quantified using the F-statistic28, and the
variance explained was quantified using the r229. We calculated r2
for each individual SNP. For binary exposures, we calculated r2
using equation 10 in Lee et al., 201230 used in the get_r_from_lor
function in the TwoSampleMR package. We calculated the F
statistics following the formula F ¼ ðn�k�1

k Þð R2
1�R2Þ. Where n is the

sample size, k is the number of instruments used and R2 is the
sum of the individual r2 of each SNP. These statistics can be
found in Supplementary Data 3.

Statistical analyses. For univariable primary MR analysis, we
performed the inverse variance weighted (IVW) method with

multiplicative random effects with a standard error correction for
under dispersion31. MR must respect three core assumptions
(relevance, independence, and exclusion restriction) for correct
causal inference. MR estimates bias occurs if the genetic instru-
ments influence several traits on different causal pathways. This
phenomenon, referred to as horizontal pleiotropy, can be
balanced by using multiple genetic variants combined with robust
univariable MR methods32. To verify if pleiotropy likely influ-
enced the primary univariable MR results, we performed 6 dif-
ferent robust MR analyses: MR Egger33, the MR-Robust Adjusted
Profile Score (MR-RAPS)34, the contamination mixture35, the
weighted median, the weighted mode and the MR-PRESSO36,
each making a different assumption about the underlying nature
of the pleiotropy. Consistent estimates across methods provide
further confirmation about the nature of the causal links. All
continuous exposure estimates were normalized and reported on
a SD scale. For dichotomous traits (i.e., diseased status on
NAFLD, T2D and CAD), odds ratios were reported. Univariable
MR analyses were performed using the TwoSampleMR V.0.5.6
package37.

For multivariable primary MR analysis, we conducted the IVW
method38. The use of MVMR is analogous to the inclusion of
measured covariates in a multivariate linear regression. MVMR
uses a set of overlapping genetic instrument to estimate the direct
effect of an exposure on an outcome. As robust MVMR analyses,
we used the multivariable MR-Egger39, the multivariable median
method, and the multivariable MR-Lasso method40. Similar to
robust univariable MR analyses, each method makes different
assumptions about the underlying nature of the pleiotropy and
consistent estimates give confidence in the robustness of the
causal findings. Multivariable MR analyses were performed using
the MendelianRandomization V.0.5.1 package41. Conditionnal
F-statistics were calculated with formula developed by Sanderson
et al., in the MVMR V.0.2.0 package42. Percentage of mediation
was quantified using the formula (1� θ2

θt
) Where θ2 is the direct

effect estimated with IVW-MVMR and θt is the total effect
estimated with univariable IVW-MR43.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Causal effect of general and abdominal adiposity to NAFLD
and liver fat accumulation. We first investigated the causal effect
of adiposity (defined by BMI or waist circumference) on NAFLD
using Inverse Variance Weighted (IVW)-MR and other robust
analyses described in the “Methods” section. Results from all uni-
variable MR methods (Fig. 1 and Supplementary Data 4) including
Egger’s intercept (Supplementary Data 5) suggest that BMI and
waist circumference are both causally associated with NAFLD. Using
370 SNPs (r2 = 0.05; F-statistic = 60), a one SD-higher waist cir-
cumference had an odds ratio (OR) of 1.98 (95% confidence interval
[CI]: 1.73–2.27, p= 6.6e−23) for NAFLD. Using 449 SNPs (r2 =
0.06; F-statistic = 68), a one SD higher BMI had an OR of 1.66 95%
CI= 1.49–1.85, p= 2.3e−20. Similar associations were found when
exposures were derived from the Genetic Investigation of Anthro-
pometric Traits (GIANT) consortium (Supplementary Fig. 1) and
when liver fat accumulation was used as the outcome (Fig. 1).

To evaluate the effect of body fat distribution, we investigated
the association of WHRadjBMI with NAFLD and liver fat
accumulation using multiple univariable MR methods.
WHRadjBMI is associated with an elevated waistline and lower
BMI. A high WHRadjBMI is a marker of preferential intra-
abdominal/visceral adipose tissue accumulation13. Using an
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instrument of 216 SNPs (r2 = 0.03, F-statistic = 74), a higher
genetically predicted WHRadjBMI was associated with NAFLD
across all univariable MR methods (OR = 1.42 95%
CI= 1.24–1.62, p= 4.7e−07) (Fig. 1). Higher genetically pre-
dicted WHRadjBMI was also associated with liver fat accumula-
tion across all univariable MR methods. Results were similar
when deriving WHRadjBMI from GWAS summary statistics
from GIANT. Altogether, these analyses provide evidence that
body fat distribution patterns consistent with higher visceral fat
accumulation is an important determinant of NAFLD.

To further investigate the impact of body fat distribution
patterns on liver fat accumulation and NAFLD, we evaluated the
direct causal effect of abdominal obesity irrespective of general
adiposity in a MVMR analysis. BMI and waist circumference
shared 114 instruments. When BMI and waist circumference
were assessed together in MVMR, only waist circumference (2.35
95% CI= 1.31–4.23, p= 4.2e−03) retained a robust association
with NAFLD. The effect of BMI on NAFLD upon adjustment for
waist circumference was inconclusive (0.86 95% CI= 0.54–1.38,
p= 5.4e−01) (Fig. 2). Conditional F-statistics for this MVMR
analysis were low (1.54 and 1.55 for WC and BMI respectively).
However, results were significant and consistent across all robust
MVMR analyses and multivariable Egger intercept did not differ
from zero indicating that pleiotropy is unlikely to have affected
the results (Supplementary Data 6). Similar associations were
found when liver fat accumulation was used as the outcome and
when using GWAS summary statistics from the GIANT
consortium as study exposures for waist circumference and
BMI (Supplementary Fig. 2).

To confirm the impact of body fat distribution indices on liver
fat accumulation and NAFLD, we investigated 159 adiposity-
related genetic variants derived from ~322,154 subjects from the
GIANT consortium12. These variants were previously classified
into three groups based on the direction of their effects on BMI
and WHR: those with positive (p < 0.05) association with BMI

and positive (p < 0.05) association with WHR (BMI+WHR+),
negative (p < 0.05) association with WHR (BMI+WHR−) or null
(p > 0.05) association with WHR (BMIonly+)12. Group-specific
univariable MR using the 80 BMI+WHR+ instruments in the
UK Biobank BMI revealed that BMI was positively associated
with NALFD risk (OR= 1.61, 95% CI= 1.32–1.98, p= 4.3e−06).
However, using the 24 BMI+WHR- SNPs, BMI was negatively
associated with NAFLD (OR = 0.23, 95% CI= 0.09–0.56,
p= 1.4e−03). Using the 25 BMIonly+ SNPs the effect of BMI
on NAFLD was null (OR = 1.10, 95% CI= 0.66–1.86, p= 7.1e
−01) (Fig. 3). These results were consistent in robust univariable
MR analyses and when evaluating liver fat as the outcome and
when using the GIANT consortium as exposure (Supplementary
Data 7). Altogether, these results corroborate the univariable and
MVMR analyses and provide additional support that intra-
abdominal adiposity is a key driver of liver fat accumulation and
NAFLD.

Contributions of abdominal adiposity and liver fat to type 2
diabetes and coronary artery disease. Since abdominal adiposity,
NAFLD, T2D, and CAD are highly phenotypically correlated, we
next explored the causal effect of abdominal adiposity and
NAFLD/liver fat on cardiometabolic diseases. In univariable
IVW-MR, using 374 SNPs (r2 = 0.05; F-statistic = 60), a 1-SD
increment in waist circumference increased T2D risk (OR= 3.65
95% CI= 3.25–4.1, p=1.8e−106) (Fig. 4) and CAD risk (OR =
1.61 95% CI= 1.5–1.73, p= 4.3e−40) (Supplementary Data 4).
Using 4 SNPs (r2 = 0.0005; F-statistic = 2), there was evidence
for causal effect of NAFLD on T2D, but not CAD (Supplemen-
tary Data 4). Since only four SNPs were associated with NAFLD
at the genome-wide significance level (p < 5e−8), we investigated
the relationship between NAFLD and T2D and CAD using a
more lenient threshold (p < 5e−6). This analysis confirmed that
genetically predicted NAFLD was associated with T2D but not

Fig. 1 Causal effect of genetically-predicted anthropometric traits on non-alcoholic fatty liver disease (NAFLD) and liver fat accumulation. Inverse-
variance weighted Mendelian randomization (IVW-MR) and robust MR analyses were performed to assess the impact of one SD increase body mass index
(BMI), waist circumference, and the waist-to-hip ratio adjusted for BMI on NAFLD and liver fat accumulation. Error bars are 95% confidence interval.
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CAD (Supplementary Data 8–9). The binary factor NAFLD,
which is diagnosed when liver fat percentage is above 5%, is akin
to a dichotomization of the underlying continuous factor “liver
fat”. We therefore estimated the causal effect of the continuous

variable “liver fat” on cardiometabolic diseases, as
recommended44. Using 10 SNPs (r2 = 0.04; F-statistic = 165), a
1-SD increase in liver fat increased the risk of T2D (OR= 1.26
95% CI= 1.08–1.47, p= 3.8e−03), but the effect on CAD was

Fig. 2 Causal effect genetically predicted waist circumference and body mass index (BMI) on non-alcoholic fatty liver disease (NAFLD) and liver fat
accumulation using univariable and multivariable Mendelian randomization. The association between waist circumference and body mass index (per
1-SD increase) and NAFLD and liver fat accumulation is presented using univariable inverse-variance weighted MR and multivariable MR using multiple
robust methods. Error bars are 95% confidence interval.

Fig. 3 Effect of body mass index (BMI) variants on non-alcoholic fatty liver disease (NAFLD) and liver fat accumulation using group-specific
Mendelian randomization. A total of 159 genetic instruments categorized based on their association with BMI and waist-to-hip ratio (WHR): Left panel
BMI+WHR+ (nominal significant effects on BMI and WHR with consistent directions), center panel BMI+WHR− (nominal significant effects on BMI and
WHR with opposite directions) and right panel BMIonly+ (nominal significant effects on BMI only).
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inconclusive (OR = 0.90 95% CI= 0.75–1.10, p= 3.0e−01)
(Fig. 4 and Supplementary Data 3). These causal effects were
consistent for all robust univariable MR methods (Fig. 4). Of
note, T2D increased liver fat accumulation and NAFLD while
there was no evidence for an effect of CAD on liver fat accu-
mulation and NAFLD (Supplementary Data 3).

Since our results have shown that waist circumference
increased liver fat and that both traits increased the risk of
T2D, we evaluated their respective causal contributions to T2D
using MVMR. When waist circumference and liver fat were
assessed together in MVMR, waist circumference (OR = 3.27
95% CI= 2.89–3.69, p= 3.8e−80) and liver fat (1.31 95%
CI= 1.2–1.42, p= 8.3e−10) increased the risk of T2D. Results
from robust MVMR methods were consistent with a causal effect
of both waist circumference and liver fat on T2D (Fig. 4).
Mediation analysis suggests that the impact of abdominal
adiposity on T2D is 9% mediated by liver fat. In MVMR, the
effect of waist circumference on T2D is 4.44 times larger than the
effect of liver fat on T2D. The results were similar when deriving
waist circumference instruments from GIANT (Supplementary
Fig. 3) and when excluding the UK Biobank dataset from the
outcome (Supplementary Data 4–5). Results of this analysis
revealed that abdominal adiposity is a causal risk factor for CAD
and T2D and that the effect of abdominal adiposity on T2D is
only modestly (9%) mediated by liver fat.

Discussion
In this study, we explored the relationships between general and
abdominal adiposity and NAFLD using univariable and multi-
variable MR. We found that general and abdominal adiposity
were causally linked to liver fat accumulation and NAFLD.
Results of our multivariable MR analysis suggest that waist cir-
cumference is causally linked to liver fat accumulation and
NAFLD regardless of BMI, while BMI is not causally linked with
NAFLD once waist circumference is taken into account. Having
established a causal role of abdominal adiposity on NAFLD and
given the results of previous studies linking NAFLD to cardio-
metabolic diseases such as T2D45,46 and CAD47,48, we explored
whether liver fat accumulation lies in the causal pathway linking
abdominal adiposity to T2D and CAD. Using MVMR, our results
support that the effect of abdominal adiposity on T2D is sub-
stantially larger than the effect of liver fat on T2D. We also
showed that the association between abdominal adiposity and
CAD is independent of liver fat, thereby highlighting the causal
role of abdominal adiposity in the etiology of NAFLD, T2D, and
CAD (Fig. 5).

Observational studies have documented similar associations49.
Liu et al. used bidirectional MR to explore the relationship
between NAFLD, adiposity, T2D, and lipid traits46. They found
that both adiposity and abdominal adiposity had a causal effect
on NAFLD. Our study provides additional support for a causal

Fig. 4 Causal effect of 1-SD increase of waist circumference and liver fat accumulation on type 2 diabetes (T2D) using univariable and multivariable
Mendelian randomization (MR). The effect of genetically-predicted waist circumference and liver fat accumulation on T2D using multiple robust MR
methods is presented in the top panels and the effect of genetically-predicted waist circumference and liver fat accumulation on T2D using multiple robust
multivariable MR methods is presented in the bottom panels. Error bars are 95% confidence interval.
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effect of abdominal adiposity on NAFLD using a larger study
sample size for the study outcome (NAFLD) and multiple MR
methods. Our study is, to our knowledge, the first to report using
MVMR a causal association between abdominal adiposity and
NAFLD that is independent of the BMI. In their MR investiga-
tion, Liu et al. also showed that NAFLD had a causal effect on
T2D (OR: 1.3, 95% CI: 1.2, 1.4, p= 8.3e−14)46. They used 2
genetic instruments for NAFLD, making it impossible to perform
pleiotropy robust MR analyses. In our analysis, NAFLD and liver
fat was similarly associated with T2D and robust univariable MR
analysis were consistent with a causal association. The association
was slightly decreased when we accounted for abdominal adip-
osity using MVMR, suggesting that part of the effect of liver fat
on T2D could be attributable to variants influencing primarily
abdominal fat accumulation. On the other hand, the point esti-
mate of waist circumference on T2D also only slightly decreased
when we accounted for liver fat accumulation, suggesting that the
effect of waist circumference on T2D is modestly mediated by
liver fat accumulation.

The inability of subcutaneous fat to expand by hyperplasia may
partly explain why visceral fat accumulation occurs in genetically
predisposed individuals50. These excess lipids are then stored in
lean tissues such as the liver, heart, and skeletal muscle promoting
insulin resistance4,51. The mechanisms by which visceral fat
contributes to NAFLD may also possibly be explained by the
“portal vein theory”52. Visceral fat is mostly drained by the portal
vein, which delivers its content to the liver and exposes it to high
concentrations of free fatty acids and adipokines53. These have
been hypothesized to lead to metabolic changes in the liver which

would ultimately lead to an increased production of VLDL par-
ticles, glucose, and inflammatory mediators as well as decreased
insulin extraction, potentially leading to T2D and
atherosclerosis50,52.

From a clinical perspective, results of this study support the
idea that previously reported associations between an elevated
BMI and NAFLD may be explained by preferential abdominal fat
accumulation reflected by higher waist circumference. Indeed, a
significant number of individuals with elevated BMI have excess
visceral fat increasing their risk of NAFLD46,54,55. Our results also
underline the limitations of the sole use of BMI in clinical practice
to assess the risk associated with obesity/ectopic fat distribution.
The failure of BMI to capture cardiometabolic risk had already
been suggested by observational and MR studies4,5,56. Our study
adds evidence supporting waist circumference as a simple tool to
assess obesity-related health hazards.

These results should encourage clinical interventions focused
on visceral fat reduction, not only overall body weight reduction,
to prevent cardiometabolic diseases such as NAFLD, T2D and
CAD. Visceral fat can be targeted with physical activity and
dietary interventions even in the absence of weight loss. A weight
loss of about 5% can result in a 15–25% visceral fat reduction57.
The Mediterranean diet as well as diets lower in fat and/or car-
bohydrate may be effective ways of reducing visceral fat, espe-
cially in physically active individuals4,58,59. There is also evidence
that thiazolidinediones (TZDs) such as pioglitazone and rosigli-
tazone, used in the treatment of T2D, increase subcutaneous
adipocytes’ storage capacity and lower T2D risk60. Results of the
VICTORY trial, a study aimed at assessing the safety and effi-
ciency of rosiglitazone on saphenous vein graft atherosclerosis
and the cardiometabolic risk profile, showed that rosiglitazone
treatment induced a 3 kg weight gain over 12 months and no
change in visceral adiposity61. Pioglitazone has also been shown
to reduce hepatic steatosis and inflammation in patients with
NASH62 thereby providing randomized clinical trial support to
our MR findings. Semaglutide, a glucagon-like protein-1 (GLP-1)
receptor agonist, has recently been shown to increase the rate of
NASH resolution compared with placebo63. Recent studies on
another GLP-1 receptor agonist liraglutide and a dual glucose-
dependent insulinotropic polypeptide (GIP) and GLP-1 receptor
agonist also recently provided evidence that this pathway may
induce a preferential loss in visceral adipose tissue and liver fat
accumulation57,64.

An important strength of the current study is the use of the
largest liver fat accumulation and NAFLD datasets available to
date. Additionally, the use of MVMR enabled the estimation of
the direct effect of closely related risk factors on cardiometabolic
outcomes while mitigating bias from confounding and reverse
causality compared to classic observational studies. Our study,
however, has limitations. The NAFLD GWAS included ~8000
cases and ~750,000 controls, but the population prevalence of
NAFLD has been estimated to 25%. Hence, it is probable that
some controls could have been misclassified. While it is impor-
tant to acknowledge this limitation, we believe that such mis-
classification could bias our results towards the null and
underestimate the strength of the reported associations. These
associations were also consistent when using liver fat accumula-
tion measured in 32,858 individuals, which better represents
population prevalence for this trait compared with NAFLD. In
contrast to adiposity-related traits, few genetic instruments were
available for NAFLD and liver fat when these traits were used as
exposures, making the assessment of pleiotropy more challenging.
Consequently, we used a more lenient p-value threshold when
NAFLD was used as the study exposure, increasing variance
explained with the drawback of having more chance of including
invalid or pleiotropic instruments. Another potential limitation to

Fig. 5 Schematic illustration of the main findings of the study. a Both
genetically-predicted body mass index and abdominal adiposity are
associated with non-alcoholic fatty liver disease (NAFLD) and liver fat
accumulation. However, the relationship between genetically-predicted
BMI and NAFLD/liver fat accumulation is entirely mediated by genetically-
predicted abdominal adiposity. b Genetically-predicted abdominal adiposity
and NAFLD/liver fat accumulation are both associated with type 2 diabetes
(T2D) and their associations with T2D are largely independent from one
another. Genetically-predicted T2D is also associated with NAFLD/liver fat
accumulation. c Genetically-predicted abdominal adiposity, but not
genetically-predicted NAFLD/liver fat accumulation is associated with
coronary artery disease (CAD). The association between genetically-
predicted abdominal adiposity and CAD is not mediated by NAFLD/liver fat
accumulation.
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this work is that a binary trait (NAFLD) was used as an exposure.
This could have led to the violation of the exchangeability
assumption44. For this reason, we only tested the causal null
hypothesis, instead of attempting to calculate the causal estimate.
We also used the underlying continuous risk factor “liver fat
accumulation” to estimate causal estimates. Finally, although the
instrument strength was adequate to perform univariable MR
analyses, waist circumference and BMI had low conditional
F-statistics in MVMR, making these instruments vulnerable to
weak instrument bias. Robust MR analyses and egger intercept
indicated that other assumptions were likely to be satisfied.

In conclusion, results of this MVMR investigation suggest that
independently of BMI, waist circumference is a strong and causal
contributor to NAFLD. Also, the association between waist cir-
cumference and T2D and CAD is largely independent of liver fat.
Altogether, the results are consistent with the hypothesis that
abdominal adiposity may represent a root cause of cardiometa-
bolic diseases. Clinical interventions targeting ectopic lipid
deposition may be the key to the treatment of cardiometabolic
diseases such as NAFLD, CAD, and T2D.

Institutional review board approval. All GWAS summary sta-
tistics were publicly available and accessible through URL. For all
included genetic association studies, all participants provided
informed consent and study protocols were approved by their
respective local ethical committee.

Data availability
Source data and GWAS summary statistics can be found following the following links:
GWAS summary statistics for anthropometric traits from GIANT are available at:
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_
data_files GWAS summary statistics for BMI from UKB are available via the MR Base
GWAS catalog at id “ukb-b-19953”. GWAS summary statistics for waist circumference
from UKB are available via the MR Base GWAS catalog at id “ukb-b-9405”. GWAS
summary statistics for T2D are available at: http://diagramconsortium.org/downloads.
html GWAS summary statistics for CAD are available at: https://www.cardiomics.net/
download-data. GWAS summary statistics for NAFLD are available at: https://www.ebi.
ac.uk/gwas/studies/GCST90091033. We make accessible a small subset of these summary
statistics to reproduce the figures and the results on our GitHub65.

Code availability
The code used to perform the analysis can be found on GitHub65. The TwoSampleMR
package is available at: https://github.com/MRCIEU/TwoSampleMR The
MendelianRandomization package is available at: https://github.com/cran/
MendelianRandomization The data.table package is available at https://github.com/
Rdatatable/data.table The tidyverse package collection is available at: https://github.com/
tidyverse/tidyverse.
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