
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01286-x

Methane emissions decreased in fossil
fuel exploitation and sustainably
increased in microbial source sectors
during 1990–2020

Check for updates

Naveen Chandra 1 , Prabir K. Patra 1,2,3 , Ryo Fujita4, Lena Höglund-Isaksson 5,
Taku Umezawa 6, Daisuke Goto7, Shinji Morimoto3, Bruce H. Vaughn8 & Thomas Röckmann 9

Methane (CH4) emission reduction to limit warming to 1.5 °C can be tracked by analyzing CH4

concentration and its isotopic composition (δ13C, δD) simultaneously. Based on reconstructions of the
temporal trends, latitudinal, and vertical gradient of CH4 and δ13C from 1985 to 2020 using an
atmospheric chemistry transportmodel, we show (1) emission reductions fromoil and gas exploitation
(ONG) since the 1990s stabilized the atmospheric CH4 growth rate in the late 1990s and early 2000s,
and (2) emissions from farmed animals, waste management, and coal mining contributed to the
increase in CH4 since 2006. Our findings support neither the increasing ONG emissions reported by
the EDGARv6 inventory during 1990–2020 nor the large unconventional emissions increase reported
by the GAINSv4 inventory since 2006. Total fossil fuel emissions remained stable from 2000 to 2020,
most likely because the decrease in ONG emissions in some regions offset the increase in coal mining
emissions in China.

Methane (CH4) abatement has emerged as a top priority for addressing
climate change in the short term; a reduction of 40–45% inCH4 emissions
by 2030 could prevent nearly 0.3 °C of global warming by the 2040s1.
Recognizing this, 110 countries have recently committed to reduce global
anthropogenic CH4 emissions by 30% from 2020 levels by 2030 through
the “Global Methane Pledge” initiative, launched at the United Nations
Climate Change Conference, COP26 in Glasgow. This pledge aims to
support the Paris Agreement’s goal of limiting global warming to below
2 °C, preferably 1.5 °C, above the pre-industrial average. Developing
effective strategies to mitigate CH4 emission necessitates a meticulous
understanding of the magnitude and spatiotemporal variability of source
sectors.

CH4 emission studies employ bottom-up and top-down approaches.
While bottom-up approaches provide detailed insights into specific CH4

sources (Figs. 1, S1) by accounting activity data and emission factors for
anthropogenic sectors (e.g., oil and Gas (ONG), coal, landfills, enteric

fermentation and manure management (ENF-MNM) etc.)2–4 and utilizing
environmental factors in process-basedmodels for natural emission sectors
(e.g., wetlands, termites etc.)5, discrepancies often arise when comparing
total emissions (sum of all sectors) to atmospheric observations6–8. This
incongruence can arise from imprecise emission factors and activity data
(e.g., fugitive fossil fuel sector2,3,9), or by process-based models that perform
poorly due to a host of environment factors (e.g., wetland models rely on
wetland inundation maps, biogeochemical process parameterizations and
knowledge of carbon availability6). Top-down methods use inversion
techniques to refine total bottom-up estimates (sum of all emission sector
contributions) by aligning them with observations of the atmospheric
growth rate and latitudinal gradient10–17. However, these methods lack
granularity and have limited ability to distinguish between individual CH4

sources, resulting in multiple plausible emission scenarios. Although
advancements in satellite observations refined point sources detection
capability18, in addition to improved inversion techniques19–22, discerning
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individual CH4 source contributions using only atmospheric CH4 obser-
vations remains a challenge8.

The isotopic composition of CH4 offers insights into atmospheric CH4

origins since different sources emit CH4 with characteristic stable carbon
and hydrogen isotopic ratios (δ13C = ([(13C/12C)sample / (

13C/12C)standard]−1;
hydrogen isotopic ratio (δD) is likewise defined)23–25). The global mean
atmospheric δ13C source value ranges between −54‰ and −52‰, and
turns approximately −47‰ with effects of chemical sink corrected25. The
δ13C-CH4 signatures of microbial sources (−55‰ to−70‰), for example,
are lower than the atmospheric δ13C value (approximately −47‰), while
thermogenic sources have higher δ13C-CH4 values (−35‰ to −45‰)24–26.
Previous 3D inversion13,14,27 and box model28–33 studies have incorporated
measurements of atmospheric δ13C-CH4 as an additional constraint for
better source attribution of the global CH4 emissions. Yet, they suggest
diverse conclusions about the cause of the observed CH4 growth rate
change10,13,14,16,26–32,34–40. Some emphasize increased emissions from
microbial sources13,28,29,35,41, while others suggest competing contributions
from both microbial and fossil fuel sources10,14,30. The studies that
emphasize large contributions from microbial sources typically conclude
that there has not been a rise in fugitive fossil fuel emissions in the past two
decades. Yet, the steadyupward trends in fossil fuel emissions are reported
in emission inventories, caused by the rise in the unconventional gas
production since 2006, coal mining resurgence, and growth of the Asian
economies2,3,42,43.

The discrepancies in previous conclusions may have arisen due to
various factors. For instance, the results fromsimplifiedboxmodels couldbe
influenced by potential biases stemming from factors such as overlooked
spatial emissions, uncertain δ13C-CH4 source signature information, and the
absence of real atmospheric 3D transport and chemical processes. Addi-
tionally, the current sampling networks might introduce biases to the

hemispheric averages44. Furthermore, δ13C source signatures and kinetic
isotope effects (KIEs) of chemical sinks are associated with considerable
uncertainties45–47. When these uncertain parameters are integrated in a
complex 3D inversion and box modeling system, they can interact and
impact the simulated composition of the atmospheric CH4 in very complex
ways. Importantly, when δ13C-CH4 observations are incorporated into 3D
inversions (as opposed to box-model studies), the spatio-temporal CH4

constraint greatly outweighs the information from the relatively sparse
δ13C-CH4 observations, leading to varying results based onmodeling choice
(e.g., Basu et al.13 choose to optimize emission sectors, while Thanwerdas
et al.14 optimize δ13C source signatures).

As a complementary effort to δ13C-CH4 inversions, this study
examines forward simulations to assess the current understanding of the
CH4 budget. We use the MIROC (version 4)-based atmospheric
chemistry-transport model (MIROC4-ACTM)48 for simulating the his-
tory of δ13C-CH4 and δD-CH4 alongside CH4 from 1970 to 2020. The
simulations integrate diverse data sources, including emission inventories,
KIE values, chlorine fields, and region-specific source signatures (detailed
in the Methods section and Table 1, S1). Analyzing extensive sets of
simulations, we propose sector-specific emission changes that align best
with observations. Specifically, the simulation results are compared to
balloon-based verticalmeasurements up to the stratosphere and to surface
observations covering latitudes and past decades. The simulations are
tested rigorously against various benchmarks (e.g., choice of initial
atmospheric CH4 and δ13C-CH4 values (Fig. S4) and drift in tracer mass
conservation in simulating δ13C-CH4 (Fig. S5)), which are detailed in the
Methods section. While δD-CH4 simulations are valuable for assessing
vertical profiles and broadly global trend (Fig. S6), they are excluded from
sub-hemispheric analyses (Fig. 2) due to limited coverage of observation
and source signatures data.

Fig. 1 | CH4 emission distributions across various
source sectors. Temporal (a), latitudinal (b), and
spatial (c–e) variation in CH4 emissions for different
sectors used to prepare the baseline scenario (E0;
details in Table S1). The solid lines and shaded areas
in the latitudinal plot (b) represent the mean and
±1σ (standard deviations) for 1970–2020. The
symbols in maps represent observation locations
operated by INSTAAR/NOAA (square for CH4

89

and plus for δ13C-CH4
90) and Tohoku University

(TU) / National Institute of Polar Research (NIPR)
(green circles for both CH4 and δ13C-CH4

91). The
observation sites falling in the three latitude bands
(as shown in Figs. 2, 4), separated by lines on the
maps, were used to calculate the mean CH4 and
δ13C-CH4 time series in respective latitudinal bands.
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Results
Decadal trends of atmospheric CH4 and its stable isotopic
composition
Theobservations showedadecline in theCH4growth rate andan increase in
δ13C-CH4 during the 1990s, followed by a plateau until 2006 (Fig. 2).
However, since 2007, there has been a substantial increase in atmospheric
CH4 levels, while δ

13C-CH4 turned its trend to negative (i.e., a decrease in
δ13C). The base simulations, based on emission scenario E0 that uses
increasing fossil fuel and microbial emissions from EDGARv6 and the
VISIT model2,5 (details in Table 1 and “Method” Section), reproduces the
observed CH4 growth rate well (represented by bars in Fig. 2) in 1985–1989
and to some extent in 1990–1999 (bars agree within the error bars). How-
ever, after 2000, the E0 simulation overestimates the observed growth rate,
particularly in the NHL and TrP regions, due to a rapid increase in input
emissions (Fig. 1a). Additionally, the δ13C-CH4 simulations based on the
same E0 scenario shows a sustained increase from 2000 to 2020, contra-
dicting the observed trend of an initial steady state followed by a decrease in
themid-2000s and 2010s (r < 0.4), respectively. These discrepancies suggest
gaps in our understanding of the total and sectorial emissions used in the E0
scenario (Fig. 2). Previous studies adjusted bottom-up CH4 emissions to
match global atmospheric CH4 increases and to satisfy global mass balance
of δ13C-CH4 using the mass-balance equation13,16,35. However, such adjust-
ment implicitly assumes that CH4 emissions from bottom-up estimates are
more uncertain than source signature estimates and KIE values. In reality,
each term of the isotopic mass balance of CH4 includes notable uncer-
tainties. In this study, we used several bottom-up CH4 estimates from dif-
ferent inventories, which are more realistic based on varying statistics but
suffer from observation-based validation4.

The joint comparison of observed CH4 and δ13C-CH4 and baseline
simulations trend in Fig. 2 hints at the most plausible potential emission
sector that need to be changed in the E0 scenario. Reducing emissions from
microbial (MiB) sectors (e.g., wetlands, landfills, ENF&MNM, etc.) could
help to reduce the overestimation of CH4 in the E0 emission scenario.
However, this would not reverse the rising δ13C-CH4 trend in E0, as
decreasing isotopically lightMiB emissions would shift the global δ13C-CH4

signal towards even higher values. Although emissions from biomass
burning (BB) are strongly enriched in 13CH4 (δ

13C-CH4 ~−26‰) com-
pared to other sources, these emissions are relatively small globally (~34 Tg-
CH4 yr

−1 for 1990–2020: Table S1), and thus adjusting them would have a
little effect on the modeled CH4 growth rate but largely impact δ13C-CH4

trend32,49,50. Conversely, reducing proportions of 13CH4-enriched fugitive
fossil fuel (FF) sector (coal, ONG, and geological), the second-largest con-
tributor in the E0 (Fig. 1 and Table S1), is likely the most plausible way to
align with both CH4 and δ

13C-CH4 observations simultaneously, especially
given the substantial uncertainties in the EDGARv6 inventory for major
emitters9.

Balancing theCH4and
13CH4budgetby revising fugitive fossil fuel

emissions
Fugitive fossil fuel emissions from theONG sector are highly uncertain and
exhibit noteworthy discrepancies between the EDGARv6 and GAINSv4
inventories regarding their magnitude (exceeding 35 Tg CH4 yr−1) and
trend (Fig. 3a)4. Thesediscrepancies arise fromvariations in emission factors
associated with the venting and flaring of associated gas during ONG
extraction, which differs across various ONG fields worldwide (further
details are provided in theMethods section).Meanwhile, trend inmicrobial
emission sources, such as ENF-MNM, landfills, wetlands, show smaller
discrepancies among different inventories and process-based models than
fossil fuel emissions2,4, offering less scope for change. To address themodel-
data discrepancy, we prepared an ensemble of emission scenarios based on
GAINSv4 fossil fuel estimates and other suggested estimates in the literature
(details provided in the Method Section). In these scenarios, we assumed
that microbial/biomass burning (BB) emissions, depleted/enriched in
13CH4, align with the inventories.

The E1 scenario replaces ONG emissions trend in the E0 scenario with
the GAINSv4 inventory estimates (shown as “ONG_total” in Fig. 3a).
Though the E1 simulation replicates the CH4 growth rate shifts over the first
decades, it overestimates the post-2000 growth rate and fails to match the
δ13C-CH4 trend during the 2010s. The divergence (r < 0.4) likely results
from overestimated emissions after 2000, tied to overestimated coal

Table 1 | Details of sensitivity simulations (shown in Figs. 2 and 4) using different combinations of emission sectors from various
inventories and isotopic source signatures

Coal ONG Geological Wetland ENF & MNM LDF Biomass
Burning

Global mean (1990–2020)
δ13C-CH4 source sig-
nature (‰)

Sensitivity test using combinations of different sector emission for simulating observed CH4 and and δ13C-CH4 growth (Fig. 2)

E0

(base)
EDGARv6 37Tg yr−1 VISIT EDGARv6 GFEDv4 /GISS/

Mac-City
−54.99

E1 EDGARv6 GAINSv4 −54.77

E2 EDGARv6
China coal
scaled

GAINSv4 – unconventional gas
emissions excluded from USA

−54.99

E3 EDGARv6
China coal
scaled

GAINSv4 – unconventional gas
emissions excluded from USA

19Tg yr−1 −55.27

E4 Same as E3, but EDGARv6 ONG spatial distribution scaled to ONG estimate from GAINSv4 in E3 −55.27

Sensitivity test for improving the simulated δ13C-CH4bias (basedongeographically varying (Map) andglobal invariant source signatures in‰) (Fig. 4). The emissions are kept
same as E3

Coal ONG Geological Wetland ENF&MNM LDF Biomass
Burning

Global mean (1990–2020)
δ13C-CH4 source signature

E3_const −3525,49 −4424,25 −49.459 −61.336 −65.424 −5549 −26.224 −55.27

M-all Map Map Map Map Map Map −55.05

M2 Map Map −54.55

M2_Hgeol-ong −4049 −4049 Map Map −53.72

M3_Hgeol-ong Map −4049 −4049 Map Map −54.15

The δ13C source signature maps include the country/regional-specific source signatures based on the updated sample size35. The E3_const used the globally averaged value for all sectors. We show only
those sectors that are changed for different scenarios as compared to the base scenario (details are given in “Methods” section).
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emissions in China after 200010,42,43 and unconventional shale gas extraction
primarily driven by hydraulic fracturing and horizontal drilling in the USA
since around 2005. Several studies have indicated that the rates of these
emission increases are highly uncertain across inventories and inconsistent
with atmospheric observations and regional inversions10,11,15,42,51–53. Addi-
tionally, the higherCH4 increase rates simulated at the sites close to theUSA
(a downwind area for Bermuda) and China (source area for Mongolia)
also support higher emission increase rates in E1 scenario over these
regions (Fig. S9).

To reconcile observed discrepancies, we designed the E2 scenario,
excluding 15Tg emission increase (representing an extreme case) from
unconventional US gas extraction since 2006 (Fig. S10b), as this rise is not
evident in satellite and surface observations20,51,54. The uncertainty in leakage
rate55–58 used for calculating the emissions from shale gas production, could
skew the estimation by inventory. The E2 scenario also aligns China’s coal
emissions with regional trends from a previousMIROC4-ACTM inversion
study10. The simulations using the E2 scenario align well with both the CH4

and δ13C-CH4 trends (R > 0.85 forCH4andR > 0.7 forδ13C-CH4).However,

a noticeable consistent bias remains between simulated and observed CH4,
indicating that adjusting emissions from any time-invariant source might
reduce this systematic offset without altering the overall trend. The global
emission strength of geological CH4 remain uncertain, with estimates
varying from 2 TgCH4-yr

−1 to 76 TgCH4-yr
−1 based on various measure-

ments and estimates7,59–61. As there is no discernible trend in these emissions
on the timescale of our simulation, which is relatively short from the per-
spective of geologic processes59, we have revised the global geological
emissions down to 19 TgCH4-yr

−1 in scenario E3. The simulations based on
this scenario aligns closely with the observed CH4 magnitude and trend
across all latitudinal bands.

We also validate the total CH4 emissions from the E3 scenario using
inversion estimates (“Inv”; black line in Fig. 3c) based on observed atmo-
sphericCH4growth asdiscussed inChandra et al.

10.While thedecadalmean
of E3 emissions aligns with the inversion estimates, slight discrepancies
appear in the early 2000sgrowth rate,whichwas also evident in theE3-based
simulated growth rate for that period (Fig. 2). The high emission growth in
E3 emission scenario between 2000 and 2006 as compared to inversion

Fig. 2 | Evaluating the simulations of long-term atmospheric CH4 and
δ13C-CH4 trend.Model (solid lines) and observation (symbol) comparison of long-
term trend and growth rates (± standard error) (bars) of atmospheric CH4 (in ppbv)
from 1985 to 2020 (a–c) and δ13C-CH4 (in‰) from 1998 to 2020 (d–f). The growth
rates were calculated as the time derivative of long-term trends (detail in Chandra et
al.10) and averaged for different periods (defined in the top of panels in “a” for CH4

and in “d” for δ13C-CH4). The time series are based on an average of atmospheric
CH4 and δ13C-CH4 measurements and corresponding simulations from multiple
stations in the marine boundary layer of three respective latitude bands shown in
Fig. 1. Individual site comparisons for CH4 and δ13C-CH4 are presented in Figs. S7,
S8. The root-mean-square error (in‰) and correlation coefficients (obs vs model)
for different simulation cases are shown for δ13C-CH4 in legends.
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estimates, indicates some emission sectors (e.g., coal mines, landfills, etc.)
could still have high growth during this period. It is noteworthy that our
results arise solely from forward simulations, and further improvement in
emission inventories could help to refine the remaining changes in emis-
sions. Although the E3 scenario closely matches the observed CH4 and
δ13C-CH4 trend, the δ13C-CH4 absolute value is more negative than the
observations. We undertook additional sensitivity analysis to address the
source of δ13C-CH4 simulation bias.

Uncertainty in δ13C-CH4 simulations due to the representation of
atmospheric chemistry
The mean atmospheric δ13C-CH4 represents a flux-weighted average of all
emissions, as well as isotopic fractionation due to sinks of CH4. The bias in
simulated δ13C-CH4 values could therefore be attributable to the repre-
sentation of atmospheric chemistry and different specifications of δ13C-CH4

source signatures. In this section, we focus on uncertainty due to atmo-
spheric chemistry, specifically the role of the Cl sinks and isotopic fractio-
nation or KIE for OH (KIEOH) in the troposphere (mainly).

The role of the active Cl sink in the troposphere is poorly constrained
due to a lack of consensus on the strength and distribution of the tropo-
spheric Cl sink and trend62–66. Including extra tropospheric Cl via a recently
proposed photocatalytic mechanism on mineral dust-sea spray aerosols

could help to reduce the negative bias in δ13C-CH4 simulations66. To assess
the effect of the Cl sink onmodeled CH4 and δ

13C-CH4, we ran simulations
using the cyclostationary Cl field fromWang et al.65 (Cl_wang) in addition
to a control Cl field (Cl_ctrl; Takigawa et al.67). The Cl_ctrl field has higher
stratospheric concentrations than the Cl_wang field, with a mean value of
2.1 × 105 molec. cm−3. The primary difference in both fields is the repre-
sentation of tropospheric reactive chlorine chemistry through the treatment
of sea salt aerosol and its chloride mobilization. The Cl_wang field includes
this representation, but Cl_ctrl does not. Simulations with the Cl_wang
fields increased the offset in δ13C-CH4 simulations by 0.6‰ compared to
Cl_ctrl-based simulations, but the trends remained unchanged (Fig. S11).
These sensitivity tests had a negligible impact on CH4 simulations. The
Cl_ctrlfielddoesnot include a parameterization for atomicCl production in
marine environments, as the spatial distribution and interannual variability
of marine Cl are highly uncertain, which is an interesting target for
future study.

OH oxidation is the dominant sink for atmospheric CH4 (~90%).
Consequently, KIEOH values could greatly influence the δ13C-CH4 simula-
tions. The literature suggests notably different values for KIEOH; Saueressig
et al.45 reported a low KIEOH value (L-KIEOH: 1.0039) compared to Cantrell
et al.46 (H-KIEOH: 1.0054) and recently Whitehill et al.47 (1.0061). Previous
studies have adopted either values (L-KIEOH vs H-KIEOH) based on their

Fig. 3 | Global CH4 emissions change under dif-
ferent emission scenarios. Panel (a) displays global
coal and ONG emissions used for sensitivity and
baseline (E0; EDGARv6) simulations. Sensitivity
simulations include total ONG emissions from
GAINSv4 (E1; ONG_total

4), ONG emissions from
GAINSv4 after excluding unconventional emissions
from the USA (ONG_wUnc), and scaled China coal
emissions (Scaled_coal) from 2000–2020 based
previous inversion study10 (E2; ONG_wUnc + Sca-
led_coal), as well as reduced geological emissions
(E3) (detailed in Table 1). In (b), we compare the
most plausible total fugitive fossil fuel andmicrobial
emissions of this study, which are able to reproduce
atmospheric CH4 and δ13C-CH4 history, with inde-
pendent studies using a box model by Schwietzke et
al.29. Panel (c) compares global total CH4 emissions
used for baseline (E0) and sensitivity simulations
(E1, E2, E3 shown in Fig. 2) with the independent
inversion-estimated global total emission10.
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preference14,16,28,29,32,34–36,39,49,50,64. Since we cannot determine the relative
merits of the reported OH fractionation, we tested both (L-KIEOH,
H-KIEOH) values in the sensitivity simulations. Simulations with H-KIEOH
and L-KIEOH differed by approximately 1.2‰, however the impact on the
temporal δ13C-CH4 trend was negligible (Fig. S12).

Improving the δ13C-CH4 bias and trend using varying source
signatures
Our knowledge of δ13C-CH4 signatures is incomplete because of the sample
biases (including over- and under-representation of source regions) and
limited δ13C databases for specific source categories24,29,68. Along with this,
the globally uniform δ13C-CH4 source signature used in simulations (shown
in Fig. 2 and “E3_const” scenario in Fig. 4) does not account for regional/
geographical variations in CH4 sources (as depicted in Fig. S13). For
example, the wetland isotope signature varieswith temperature, resulting in
a latitude gradient36,69. Ruminant emissions and biomass burning signatures
alsodependon factors like thediet (C3 orC4) andburningmaterial types (C3

or C4)
24,35. To assess the overall uncertainty in modeled δ13C-CH4, we ran

simulations using 32 ensemble scenarios based on the commonE3 emission
scenario and Cl_ctrl field, as well as different combinations of δ13C-CH4

source signatures and two KIEOH values (Tables 1 and S2). The δ13C sig-
nature maps for coal and ONG were derived from country-specific values,
while those for ruminants and biomass burning were based on regional C3/
C4 fraction maps35. The wetland signature was determined considering
different wetland subtypes (e.g., bog, fen, and mineral wetlands with C3/C4

pathways)36.With theMIROC4-ACTMsimulations,wehave quantified the
contribution fromglobally invariant vs. geographically varying signatures of
individual sectors to the simulated δ13C-CH4 value and trend (Figs. 4,
S14, S15).

The global mean source signature of CH4 varies temporally due to
regional isotopic variations in CH4 sources (Fig. S14g). The ENF&MNM
source signature, for example, has become less negative from −66.4‰ in
1990 to−66‰ in 2020 because of expanded agriculture in tropical regions
like India, South America, and Tropical Asia24; the prevalent C4 vegetation

Fig. 4 | Evolution of δ13C-CH4 simulations under different scenarios based on
isotopic signatures and KIEOH. All sensitivity runs use the most likely emission
scenarios (“E3”), but different combinations of source signatures and KIEs. The
simulations presented in the left column (a–c) and right column (d–f) correspond to
H-KIEOH (1.0054: Cantrell et al.46) and L-KIEOH (1.0039: Saueressig et al.45),

respectively. This sensitivity run proceeds to improve the growth rate and difference
between modeled and observed δ13C-CH4. The numbers root-mean-square error
(RMSE) and correlations (R) between observed and δ13C-CH4 simulations are
shown in the legends. See Fig. S8 for the comparison of individual sites used for
preparing the mean.
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diet at lower latitudes would result in higher δ13C-CH4 signature of the
ENF&MNM source (Fig. S14d). When these variations are incorporated in
simulations (MENF), δ

13C-CH4 values reduced by about −0.2‰ compared
to E3_const, while the growth rate remains relatively stable (Fig. S15).
Biomass burning and wetland signatures show yearly variability (IAV)
without a clear trend (Fig. S13d, f). Incorporating the ~10‰ latitudinal
difference between the NHL (mean−67.8‰) and tropical (mean –56.7‰)
wetland signature, using a spatial map of isotope signatures, improves the
latitudinal gradient and seasonal cycle (obs:model; r = 0.85) and growth rate
as compared to scenario E3_const (Fig. 4). Still, the model underestimates
the seasonal amplitude, which could be enhanced by incorporating a sea-
sonal variation in the wetland signature36,69. Updated biomass burning
signatures (based on amap) increased δ13C-CH4 values by 0.1‰ compared
to E3_const but had no effect on the trend.

With spatially varying source signature, global coal emissions signature
transitioned from less negative value in 1970 to more negative post-2011
(Fig. S14a). The shifts are primarily due to changes in China’s coal
emissions42, whose δ13C-CH4 signature is relatively high (−36‰) compared
to the global average (−44.6‰).Accounting for these signatures, simulation
led tomore negative trend compared to the E3_const simulations and slight
improved growth rate, while the inter-annual variability remained
unchanged (Mcoal in Fig. S15). Yet, this experiment underscores the sig-
nificance of China coal emission and its δ13C-CH4 signature in shaping the
global δ13C-CH4 trend, albeit not clearly quantified in previous studies due
to competing contributions of different sources.

Employing all available source signature maps in the M-all scenario
notably improves the seasonal cycle and interannual variability (IAV)
(r > 0.85) in the NHL (Fig. 4). The observed δ13C-CH4 growth rate change
during 2010s across latitudinal bands was also closely replicated (Fig. 4).
However, discrepancies remain between simulated and observed atmo-
spheric δ13C-CH4 (1.4‰ in L-KIEOH, and 0.5‰ in H-KIEOH). By adjusting
ONG and geological signatures to less negative (−40‰) as suggested in

previous studies34,49,70, the discrepancies were reduced from 0.5‰ in M-all
(using H-KIEOH) to within ±0.2‰ (M2_Hgeol-ong: +0.2‰, M3_Hgeol-
ong:−0.2‰), falling well within the uncertainty range of the observed data
(Fig. 4a–c). Importantly, these sensitivity experiments suggest that the
geographical variations inwetland, biomass burning, and coal signatures are
crucial in simulating the IAV, seasonal cycle, and latitudinal gradient of
δ13C-CH4 (Fig. 4).

Evaluating the vertical and geographical distribution of CH4 and
δ13C-CH4 simulations
Before attributing emission changes to observed CH4 and δ13C-CH4, it is
essential to evaluate themodel’s dynamical and chemical processes.We use
simulated vertical profiles as indicators of the model’s proficiency in cap-
turing intricate processes, such as stratospheric chemistry and vertical
transport (stratosphere – troposphere exchange)71. Consequently, beyond
analyzing long-term trends, we assessed model’s efficacy in representing
stratosphere-troposphere exchange by comparing simulated and vertical
profile observations of CH4, δ

13C-CH4, and δD-CH4 distributions from
balloonflights over theKiruna, Sweden (polar region) andHyderabad, India
(subtropical region)71.

Simulations under the E3 emission scenario,M2_Hgeol-ong signature,
Cl_ctrlfield, andH-KIEOH (most plausible to reproduceCH4 and δ

13C-CH4

long-term trend in Figs. 2, 4) demonstrated excellent agreement (r > 0.9)
with observed profiles, indicating the model’s capability in representing
complex processes like chemical loss and transport (Fig. 5). The comparison
suggests that while the KIEOH introduces offsets (seen from Cl_ctrl_H-
KIEOH andCl_ctrl_L-KIEOH inFig. 5), the primary influencer of the vertical
gradient is the Cl distributions (seen from Cl_ctrl_H-KIEOH and
Cl_wang_H-KIEOH in Fig. 5). Cl_ctrl simulations depict a pronounced
vertical gradient above 25 kmdue to higherCl concentrations, corroborated
by observed δ13C-CH4 and δD-CH4 gradients from the tropical site
Hyderabad. Conversely, a reduced vertical gradient observed over the polar

Fig. 5 | Validating model results (transport and
chemistry) using balloon-borne measurements.
Comparisons of CH4, δ

13C-CH4, and δD-CH4

simulations (lines) with balloon measurements (fil-
led circles) over Kiruna (a–c) and Hyderabad
(d–f)55. Model simulations are sampled at the date
and time of the observations. Themodel simulations
are shown for two different Cl (Cl_Ctrl67; and
Cl_Wang65;) fields using the E3 emission scenario
and M2_Hgeol-ong source signature scenario. The
sensitivity simulations based on different KIEOH (H-
KIEOH

46, L-KIEOH
45) values are additionally shown

for δ13C-CH4. The δD-CH4 simulations are adjusted
by a constant offset of 15‰ to focus on the gradient.
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site Kiruna aligns with the Cl_Wang field. It is important to note that the Cl
fields cannot be validated solely based on these limited observations, but
they provide insights into the associated uncertainty.

We further evaluated our δ13C-CH4 based emission attribution by
comparing the observed and simulated latitudinal gradient (Fig. 6) and the
north-south gradient (expressed as “N-S gradient”; the difference between
NHL and SHL: Fig. S16)10. Among the scenarios, E3 consistentlymatched the
observed CH4 latitudinal distribution (Fig. 6a, d, g). The observed N-S gra-
dient of CH4 decreased from 1985–1989 to the 1990s (1990–1999) and sta-
bilized afterward (Fig. S16a) due to a southward emission shift10. Yet, E0 (total
FF emission 142 ± 15 TgCH4 yr

−1 for 1990–2020) showed an inconsistent
increase in this gradient, primarily driven by rising fossil fuel emissions in the
NHL.Whereas theE3 scenario,which includedaflat fossil fuel emission trend
(by reducing coal emission growth rate over China and excluded rapidly
increasing unconventional gas emissions after 2006 from the USA) and
reduced geological emissions, mirrored the observed changes in the N-S
gradient with a slight overestimation in magnitude. Comparing ONG esti-
mates, GAINSv4 showed higher emissions than EDGARv6 in the NHL
(Fig. S17). To address this slight overestimation, we introduced E4 scenario,
where theEDGARv6ONGmapwas scaled toGAINSv4global total estimate.
Although both scenarios had the same global emissions, E4 reduced the
overestimation of the observed N-S CH4 gradient by 10% compared to E3,
indicating better agreement with EDGARv6 emission spatial patterns in the
Northern high latitude regions (Fig. S16). Additionally, E4 aligned well with
the long-term variation of CH4 in the NHL (Fig. S18a).

During 1998–2020, the latitudinal distribution of δ13C-CH4 showed
morenegative values in theNHLcompared to the SHL.Thiswasprimarily
due to the prevalence of emissions in the north and subsequent fractio-
nation through reaction with OH during transport to the Southern
Hemisphere. The E3_const scenario (Fig. 6b–i), which used globally
uniform source signatures, reasonably captured the observed δ13C-CH4

gradients south of 30°N but overestimated them in the north (>30°N).
Incorporating geographically varying δ13C-CH4 source signatures, espe-
cially from boreal wetlands with lower δ13C-CH4 signatures, improved the
simulated gradient in the north. Notably, the choice of KIEOH values also
influenced the latitudinal δ13C-CH4 gradient (Fig. S16b, c), suggesting
uncertainty ties to both KIEOH values and source signature and the best
different combinations may yield to similar model results. For example,
M-all scenario in the case of L-KIEOH values, as well as “M2_Hgeol-ong”
and “M3_Hgeol-ong” scenarios in the case of H-KIEOH values reproduce
the observed N-S gradient (Fig. 6). Recently, Whitehill et al.47 even
reported a higher KIEOH value of 1.0061, near to H-KIEOH value used in
this study that align well with observed variation, supporting our findings
that a greater KIEOH value is a possibility to reproduce the observed long-
term trends, vertical distributions, and north-south gradients. Overall, the
simulated and observed global N-S gradients of CH4 and δ13C-CH4 at
remote background sites add a spatial source attribution constraint. On
the basis of simulated scenarios, we find that. the E3 emission scenario
combined with M2_Hgeol-ong source signatures is consistent with the
observed global N-S gradient.

Fig. 6 | Evaluating geographical CH4 emissions and δ13C-CH4 source signatures.
Comparison of the observed and modeled latitudinal gradient of CH4 (a, d, e) and
δ13C-CH4 using different emission scenarios andKIEOH (H-KIEOH: b, e,h; L-KIEOH:
c, f, i) values for three periods. Only a few cases are shown for clarity. All simulations
are adjusted to the SPO observation to highlight the latitudinal gradient. All the

δ13C-CH4 simulations use common E3 emissions but different combinations of
source signatures, shown in Fig. 4 (detailed in Table 1). Please note that here the
number of sites is different from sites used for the long-term trend shown in Figs. 2, 5.
Also, the total number of sites for CH4 and δ13C-CH4 are different (side codes used
for δ13C-CH4 plot are shown below y-axis in the bottom panel).
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Discussion and conclusions
Reconciling the global CH4 budget remains an under-constrained problem
with multiple sources of uncertainty from sectoral emission sources (both
anthropogenic and natural), loss mechanisms (e.g., OH, Cl etc.), isotope
signatures, KIE values, and limited global CH4 and δ

13C-CH4 observations.
These uncertainties have complicated modeling of the atmospheric CH4

changes and resulted in diverse conclusions. Our study refines the under-
standing of atmospheric CH4 drivers by uniquely leveraging diverse
inventory estimates, accounting the impact of isotope parameter (KIE
values and source signature) uncertainties, and incorporating balloon and
surface observations within a 3D ACTM forward modeling approach.

Instead of hypothetically adjusting bottom-up emissions to fit global
CH4 increments and to satisfy the global mass balance of δ13C-CH4, we
prioritized use of emission estimates from different inventories to check
their alignment with long-term and vertical observations using MIROC4-
ACTM. Our primary focus was on fugitive fossil fuel sectors (notably ONG
and coal) due to substantial uncertainties in their reported trends across
inventories like EDGARv6 and GAINSv4. The distinction between con-
ventional and unconventional ONG emissions in GAINSv4 was pivotal in
analyzing unconventionalONGemission trends in theUSA,which is oneof
the most conflicting and debated topics and important for the policy
measures. Although wetland emission estimates can be contentious, the
utilizedVISITwetland trends alignwithmost of other process-basedmodel
estimates and hence do not alter our primary conclusion on long-termCH4

growth rate change drivers. However, we recognize the presence of wetland
magnitude uncertainties in the relative contribution of mean emissions to
the total CH4, which will be explored in future studies.

Additionally, this study utilized diverse isotope signatures from the
literatures and experimentally distinctKIE values to quantify their influence
on simulated δ13C-CH4 values and trends. Our finding indicates that the
choice of the KIE values has notable impact on both the simulated mag-
nitude and latitudinal gradient of δ13C-CH4, but not on the long-term
δ13C-CH4 trend (Figs. 4, 6). Notably, changes in the latitudinal signature of
sources, such as wetlands, could improve the mismatch between simulated
and observed latitudinal gradient without requiring emissionmodifications
as widely done by inverse modeling (Fig. 6). These experiments underscore
the importance of correct KIE and source signature values when trying to
distinguish relative contribution of sources (e.g., Fossil fuel, Microbial,

Biomass Burning) in total emissions. Such knowledge is crucial when cor-
recting emissions using inverse modeling of δ13C-CH4.

In summary, consistent increases inmicrobial and fossil fuel emissions,
as indicated by the EDGARv6 inventory (E0 emission scenario in Table 1
and Fig. 1), did not align with observed atmospheric CH4 and δ13C-CH4

trends during 1985–2020.However, theGAINSv4 inventory,which showed
declining fossil fuel emissions from1990–2004 and stability thereafter (after
removing unconventional emissions from 2006) (E3 emission scenario;
Fig. 3b), successfully replicated observed trends and latitudinal/vertical
distribution of atmospheric CH4 and δ

13C-CH4 (Figs. 5–7). Although some
studies13,16,29,35 have suggested stable fossil fuel emissions in recent decades,
our study further elucidates potential underlying causes in the fossil fuel
sector. Specifically, the decline in emissions from the ONG sector during
2000–2010, combined with the rise and subsequent fall in coal emissions
during 2000–2012, contributed to the stable fugitive fossil fuel trend
(Fig. 3b). Our ONG estimates for the USA (~7Tg for 2018–2020), after
removing unconventional emissions, is very close to an independent esti-
mate by the GFEIv2 inventory (8.1 Tg) based on UNFCCC data72, but
slightly lower than the result of an inversion study (12.6 Tg) based on the
TROPOMI data19. In addition to this, the global coal estimate from this
study (~30 Tg) closely matches with the TROPOMI data-based inversion
estimate (~32 Tg) and UNFCCC data (32.8 Tg) during 2018–202072.While
the total fossil fuel emission trend in E3 seems reasonable in reproducing
observed CH4 and δ

13C-CH4 trend, this study does not assess the validity of
zero unconventional emissions (an extreme case considered in E3 scenario).
Nevertheless, our assessment is constrained by the application of a uniform
source signature for both conventional and unconventional emissions,
which presents limitations in distinguishing their respective contributions
to the observed δ13C trend. So, instead, it quantifies the change in the overall
ONG, coal, and total fossil fuel emissions required to match the observed
CH4and δ

13C-CH4 trends. It is plausible that someunconventional shale gas
emissions exist, but other ONG emissions might have decreased further to
compensate for fracking emissions. Furthermore, it is possible that any
reduction in CH4 emissions resulting from improvements in the natural gas
industry’s management practices and equipment replacement could be
offset by increased natural gas production20,73.

The total CH4 emissions from fossil fuels (FF) in the most plausible E3
scenario decreased by about 6TgCH4 yr

−1 (from129 ± 7TgCH4 yr
−1 (mean

Fig. 7 | Attributing the drivers for global CH4 and
δ13C-CH4 trends. The emissions are plotted for
three subcategories i.e., Microbial, Fossil Fuel and
Biomass burning based on the most plausible E3
emission scenario. The budget imbalance is deter-
mined from total sources minus total loss due to
reactions withOH, atomic Cl, excited oxygenO(1D),
and oxidation by bacteria in aerobic soils. The
monthly mean CH4 (circle for observations and line
for model simulations based on most plausible sce-
nario E3) values represent the Southern Hemi-
sphere, as shown in Fig. 2c. For δ13C-CH4, we have
plotted observations and the “M2_Hgeol-ong” case
based on H-KIEOH for northern and southern sur-
face baseline stations, Ny‐Ålesund, Svalbard and
Syowa, Antarctica, operated by Tohoku University
(TU) and National Institute of Polar Research
(NIPR)91.
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±1σ stdev) in the 1990s to 123 ± 4 Tg-CH4 yr
−1 in the 2000s) due to decline

in ONG emissions, while concurrently microbial and biomass burning
emissions are increased by roughly 17 TgCH4 yr−1 and 4 TgCH4 yr−1,
respectively (Figs. 3, 7). The reduction in ONG emissions is attributed to
decreasedoil productionafter the SovietUnion’s collapse in the 1990s3,4, and
reduced oil extraction emissions resulting from efficiency improvements,
such as increased recovery rates and decreased venting of associated pet-
roleum gas, mainly in Russia and parts of Africa3. These factors contributed
to the slowdown in atmospheric CH4 growth from 1990 to 2005. Previous
studies based on δ13C-CH4 observations provided conflicting results on
changes in FF emissions27,49, with only Bousquet et al.27 suggesting FF
emission reductions for 1988–2002. In our study, between 2000s and 2010s,
CH4 emissions from FF and biomass burning remained relatively stable at
around 124 TgCH4 yr

−1 and 33 TgCH4 yr
−1 (Figs. 1, 3), respectively. This

stable fossil fuel emission trend is consistent with previous studies, however
the magnitude differs13,28,29,35. Meanwhile, microbial emissions increased by
about 27TgCH4 yr

−1 during the sameperioddue to expanding cattle rearing
in Latin America and increased waste emissions in developing regions like
China, India, Southeast Asia, Latin America, and Africa (Figs. 7, S19, S20).
The wetland accounted for approximately 16% of the total increase in
microbial emissions from1990s to 2010s. The decadalmean of E3 emissions
aligns with the inversion estimates using surface observations10 (Fig. 3c),
which indirectly validate the most plausible emission scenario (E3) from
this study.

This study acknowledges certain limitations, particularly in system-
atically exploring the uncertainties of individual components ofCH4 budget
because the number of uncertain parameters (e.g., emission sectors such as
wetland, fossil fuel, KIE, OH trend, Cl sink, etc.) outweigh the available
constrains (CH4 and δ13C-CH4 measurements). For microbial emission
trends, we rely on the agreement between multiple data sources, including
inventories and process-based models. Uncertainty in magnitude of
microbial emissions, like wetlands, could influence the selection of our
optimal KIE value, source signatures and relative contribution of fossil fuel
emissions to balance the δ13C mean value. The magnitude of wetland
emissions estimated by VISIT is close to the ensemble mean of the Global
Carbon Project’s (GCP)wetlandmodels, showing consistent variability and
trends (e.g., recent study for northern high latitude regions74). Therefore,
integrating results from alternative wetlandmodels will likely lead to similar
results, in contrast to the different fossil fuel scenarios that we have used. If a
more robust estimation ofKIE becomes available, it could resolve part of the
uncertainties in assigned values, allowing for more definitive conclusions
about the relativemagnitudeof fossil fuel andmicrobial emissions, but again
a change in the absolute value of the KIE will not affect the temporal trends
(Fig. S12). Further, due to lack of consensuses on atmospheric OH trend
from global models constrained by emissions75 versus observationally
constrained inversion methods17,76,77 over 1990–2018, as detailed in the
recent IPCC-AR6 report78, this study presumes no long-term changes in
atmospheric OH sink, in line with methyl chloroform gradient and
concentration76,79. Yet, we recognize that short-term interannual OH
variabilities76,77 can influence on atmospheric CH4 growth rate80. While we
have primarily examined the impact of Cl uncertainty in δ13C-CH4 simu-
lations, we plan to address emerging evidence of additional tropospheric
sources66 in future studies. In conclusion, the findings of this study suggest
that the increase in microbial emissions, primarily agriculture and landfills,
has substantially contributed to the atmospheric CH4 trend over the past
three decades. These findings enhance the global effort to reduce methane
emissions by offering a clearer understanding of historical emission trends,
which is crucial for developing effective future reduction strategies.

Materials and methods
Atmospheric chemistry transport model
Atmospheric CH4 mole fractions, δ13C-CH4, and δD-CH4 were simulated
from January 1, 1970, to December 31, 2020, using the JAMSTEC’s Model
for Interdisciplinary Research on Climate, version 4, based Atmospheric
Chemistry Transport Model (MIROC4-ACTM)10,48. We ran the model

globally at a resolution of approximately 2.8125° × 2.8125° over 67 hybrid
vertical pressure levels extending from the Earth’s surface to 0.0128 hPa
(~80 km). The MIROC4-ACTM simulated horizontal winds (u and v) and
temperature (T) are nudged to the JapanMeteorological Agency reanalysis
fields81 at 2–61 vertical levels for better representation of synoptic-scale
transport features. The model’s interhemispheric and vertical transport is
validated using SF6 simulations in the troposphere and the CO2-derived age
of air in the troposphere and stratosphere10,48.

CH4 emission sources and scenarios
Methane (CH4) emissions can be broadly classified into three categories:
fossil fuel exploitation (FF), microbial processes (MiB), and biofuel and
biomass burning (BB). The FF category includes emissions from indus-
trial sources (IFF) (such as coal, oil, and natural gas (ONG)), and natural
geological sources. The IFF mainly emits CH4 through extraction,
transport, and use, while natural FF sources release CH4 through terres-
trial and marine seeps, mud volcanoes, and other geological processes.
TheMiB category includes emissions fromwetlands, rice paddies, enteric
fermentation, and manure management (ENF&MNM), and waste/
landfills (LDF). CH4-generating microbes (methanogens) in anaerobic
environments produce these emissions. BB emissions result from the
incomplete combustion of biomass and soil carbon during wildfires and
biofuel burning.

We prepared four different CH4 emission scenarios, based on bottom-
up emission estimates (Tables 1, S1). These scenarios are further evaluated
using the long-term trends and latitudinal gradients of CH4 and δ

13C-CH4.

Baseline scenario (E0)
We obtained emissions data from various sources to create the baseline
scenario (E0). For estimates of emissions from IFF sources, we used data
from the Emissions Database for Global Atmospheric Research
(EDGARv6.0)2. EDGARv6 provides yearly/monthly emissions at a resolu-
tion of 0.1° × 0.1° for the period of 1970–2018. We extrapolated the emis-
sions for the years 2018–2020 by calculating the rate of change in previous
years. For emissions from natural geological sources, we used gridded data
from Etiope et al.59. We used the same geological emissions for each year by
assuming no IAV during our study period, as suggested by previous
studies59. For MiB emissions, we used data from the process-based model
VISIT(based on Cao scheme)5 for wetlands and rice paddies, and from
EDGARv6 for ENF&MNM and LDF emissions. For emissions from bio-
mass burning (BB), we used inter-annually varying emissions from the
Global Fire Database (GFEDv4s) for the period of 1999–202082. For resi-
dential burning (RCO), we used data from EDGARv6. We used annually
repeating emissions from the Goddard Institute for Space Studies (GISS)
scaled by ×0.315, as an estimation of biofuel burning. For the period of
1970–1998, we obtained inter-annually varying fire emissions data from the
Mac-City inventory83. To maintain the same spatial distribution, we used
GFEDv4s seasonal climatology for the period of 1999–2020 and scaled the
annual emissions to the Mac-City inventory estimate for the period of
1970–1998. We used monthly GFEDv4s emissions from 1998 to 2020. For
emissions from ocean and termites, we used data from Weber et al.84 and
Saunois et al.8, respectively.

E1 emission scenario
To prepare the E1 scenario, the ONG emission in the E0 scenario was
replaced with estimates from the GAINSv4 model4. The GAINS model,
developed by the International Institute for Applied Systems Analysis
(IIASA), is amultipollutant emission estimationmodel that uses bottom-up
emissions estimates and futuremitigationpotentials basedon any externally
given energy sector scenario.

EDGARv6 and GAINSv4 provide different estimates of ONG
emissions, with a difference of over 35 TgCH4 yr−1, and also show
discrepancies in emission trends from 1990–2018 (Fig. 3a). EDGARv6-
suggests a consistent increase in ONG emissions during 1990–2018,
while GAINSv4 suggests a decline from 1990–2006 and a slight increase
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afterward. These differences arise from varying emission factors related to
the venting andflaring of associated gas duringONGextraction, which vary
across different ONG fields worldwide. GAINSv4 uses country-specific
information on associated petroleumgas generation, recovery, and venting/
flaring rates, calibrated to satellite image estimates of volumes of gas flared.
By combining information on the associated gas flow from published
sources with inter-annual variations in observed flaring of associated gas
from the Visible Infrared Imaging Radiometer Suite (VIRS) satellite-based
nighttime fire imagery3, GAINSv4 estimates country-specific annual CH4

emissions from flows of associated gas. On the other hand, EDGARv6
estimates emissions from venting based on national GHG inventories
reported to theUNFCCC.However, it is unclear how the latter is reflected in
emission estimates. National GHG inventories reported to the UNFCCC
typically apply close to constant default emission factors across historical
years, making production quantities the main driver for emissions. This
may explain the relatively stable emission factors reflected over time in
EDGARv6. The GAINSv4 estimates of ONG emissions are available for
1990–2020, and for 1970–1989, the scaled EDGAR emissions were used at
the annual global total of GAINS estimates in 1991.

E2 emission scenario
Based on the GAINSv4 estimate, CH4 emissions from the oil production
sector have shown a consistent decline (Fig. S10). However, this decline is
offset by a substantial increase (~19Tg) in emissions fromunconventional
gas, mainly shale gas, in the USA from 2006 to 2020 (Fig. S10b). The
substantial increase in emissions from the unconventional gas sector over
theUSA is highly debatable and atmospheric observations of CH4 around
the USA contradict these findings51,54. Despite the increase in CH4 pro-
duction over the USA, a recent study did not support a large ONG
emissions72 as well as concomitant large increase in total ONG emissions
(including shale gas) because of the decrease in CH4 intensity (emissions
per unit CH4 gas production) from 2010 to 201920. Furthermore, the
estimates of coal emissions in China provided by EDGAR (used in E0
and E1) are subject to debate, as regional bottom-up estimates
and inversions suggest varying rates of increase after 200010,11,42,43,53.
Therefore, in the E2 emission scenario, we have revised the estimates of
ONG and coal emissions and other sectors are the same as in the E1
scenario. Specifically, we have excluded unconventional gas emissions
from the total ONG emissions of USA and adjusted the coal emission
growth in China based on regional emission trends from a MIROC4-
ACTM inversion study10.

E3 emission scenario
We conducted a study to test two hypotheses related to geological CH4

emissions. These hypotheses were based on recent debates in the scientific
literature regarding the total magnitude of geological CH4 emissions59–61.
Some of the studies suggests that natural geological sources contribute
largely to the atmospheric CH4 budget59, while others argue that con-
temporary natural geological emissions have been overestimated based on
paleo-radiocarbon estimates60,61. The previous scenarios (E0, E1, and E2)
used the global geological estimates 37 TgCH4 yr

−1. Additionally, we con-
sidered scenario E3 in which global geological emissions in E2 were reduced
to the value of 19 TgCH4 yr

−1. This allowed us to prepare a consistent CH4

budget and test the impact of different geological emission scenarios on the
overall budget that was consistent with observed CH4 and δ

13C-CH4 trend
and growth rates, simultaneously.

Methane loss processes and fractionation in MIROC4-ACTM
Atmospheric CH4 has four loss mechanisms: atmospheric oxidation by
hydroxyl radicals (OH) and chlorine (Cl) throughout the atmosphere,
destruction by electronically excited atomic oxygen (O(1D)) in the strato-
sphere and consumption by microbes in upland soils (Table S1). The CH4

consumption by bacteria in soils, taken from the process-based terrestrial
ecosystem model, VISIT5, is modeled as a negative flux at the surface. The
loss by chemical reactions is calculated online in the model using the

following equations.

CH4 þ OH�!CH3 þH2O ðkOH ¼ 2:45× 10�12 expð�1775=TÞÞ
ðR1Þ

CH4 þ Cl�!CH3 þHCl ðkCl ¼ 7:3× 10�12 expð�1280=TÞÞ ðR2Þ

CH4 þ Oð1DÞ�!Products ðkOð1DÞ ¼ 1:5× 10�10Þ ðR3Þ

The temperature-dependent reaction rates (k; units: cm3 molecule−1

s−1) were taken from the JPL synthesis of chemical kinetics, also used in the
TransCom-CH4 intercomparison experiment85. The reaction rates differed
between the CH4,

13CH4, and CH3D which is characterized by a distinct
kinetic isotope effect (KIE). KIE is quantified using the ratio of reaction rate
constants for the light and heavy isotopologue of a certain species, e.g.,
13CKIEj = kj(

12CH4)/kj(
13CH4); j = OH, Cl, O1D (Table S1). The loss of the

heavier methane isotopologues (e.g., 13CH4, and CH3D) is slower than the
destruction of 12CH4, which is quantified by a kinetic fractionation factor.
Each loss process has a different KIE (summarized in Table S1). CH4 losses
due to reactions with Cl and O(1D) are small compared to the total loss, but
the strong isotopic fractionations (Table S1) in these reactions greatly
impact the isotopic budget45,86.

Methane loss fields and lifetime
The inter-annually varying soil sink of CH4 is used from the process-based
VISIT model. The climatological monthly variations of stratospheric OH
and the tropospheric and stratospheric control Cl (Cl_ctrl) fields are used
from an output of the ACTM’s stratospheric model run, and O(1D) is
calculated online based on a climatological O3 field

67. The monthly mean
three-dimensional tropospheric OH field is provided here for online cal-
culation in themodel from Spivakovsky et al87 after scaling by 0.92 tomatch
the decay rate of methyl chloroform (CH3CCl3: MCF) in the Earth’s
atmosphere79. This study did not consider the long-term trend in OH as
previous research has ruled out anOH-driven explanation for the growth in
CH4

10,13,76,77,88.
The chemical lifetime of CH4 is calculated by τ = Burden / Total

chemical loss. Despite the climatological OH, Cl, and O(1D) fields, the
modeled chemical lifetime of CH4 shows a decreasing trend (~1% -
decade−1). The decreasing trend could be due to inter-annually varying
temperatures, as CH4 loss due to OH and Cl increases as temperature
increases (Eqs. R1, R2). The average CH4 chemical lifetime during
1985–2020 is 9.59 ± 0.04 years, with a total lifetime of 8.98 ± 0.06 years
including the soil sink. These estimations agree with the recent IPCC AR6
estimation.

Model’s spin-up and mass conservation
Modelingδ13C-CH4andCH4mole fractions arehighly sensitive to the initial
condition. We used the initial CH4 distributions from a 32-year simulation
(1985–2016) based on a previous study by Chandra et al.6 to obtain the
initial distributions of CH4 on January 1, 1970, for this study. To obtain the
initial distributions of CH4 on 01 January 1970 for this study, the ratio of
observed atmospheric CH4 values from ice core data and simulations at
Syowa (a clean representative site of global air mass) were calculated. Then
the three-dimensional (3-D) distribution in January 1970 was derived by
globally multiplying the distributions in Jan 2016 by the ratio. To derive the
initial 3-D δ13C-CH4, we applied Rayleigh fractionation equations

16,39 to the
3-D total CH4 distributions in January 1970. Since we start from atmo-
sphericCH4and δ

13C-CH4fields basedonobservations, the time required to
relax to a steady statewill not bemore than a fewCH4 lifetimes.We spun up
our model for 15 years (1970–1984) and selected 1985–2020 for the CH4

analysis. For δ13C-CH4, we used 25 years (1970–1994) as the spin-up period
and used 1995–2020 for the analysis.

To validate our initialization approach, we conducted multiple
simulations with fixed emissions, but different initial CH4 mixing ratios

https://doi.org/10.1038/s43247-024-01286-x Article

Communications Earth & Environment |           (2024) 5:147 11



ranging from 1100 ppbv to 1500 ppbv and δ13C-CH4 ranging from
−48.5‰ to−50‰ (Fig. S4). TheCH4 simulations converged to less than a
5% difference from its initial values, while δ13C-CH4 simulations con-
verged at ~0.02‰ difference, which is small enough to have a negligible
impact on their long-term trend analysis. We conducted an additional
evaluation to assess the tracer mass conservation capability of MIROC4-
ACTM in simulating δ13C-CH4. To accomplish this, we disabled fractio-
nation (i.e., KIE = 1) and emissions on January 1, 2000. The results reveal a
consistent δ13C-CH4 value after disabling the sink fractionation and
emissions (Fig. S5). This indicates that the drift in tracer mass is incon-
sequential when simulating δ13C-CH4 in MIROC4-ACTM for the trend
analysis.

Atmospheric measurements
We evaluated the performance of model simulations using observations
from background stations in the NOAAGlobal Greenhouse Gas Reference
Network / Institute for Arctic and Alpine Research (INSTAAR) and two
sites of Tohoku University (TU)/National Institute of Polar Research
(NIPR) located in the northern and southern polar regions (as shown in
Fig. 1). The NOAA observed molar fraction values were reported on the
WMO-X2004A scale89. The INSTAAR δ13C-CH4 data were measured in a
subset of air samples collected from NOAA’s Global Greenhouse Gas
Reference Network90. TU/NIPR measurements of CH4 mole fractions and
δ13C-CH4 were taken at Ny-Ålesund (NAL; since August 1991 for CH4,
sinceMarch1996 for δ13C-CH4), andSyowa (SYO; since 1983 forCH4, since
March 1995 for δ13C-CH4). Details of these measurements are described in
previous studies16,91.

We used the measurements from all available sites to prepare the
latitudinal profile of CH4 and δ13C-CH4 for evaluating the latitudinal dis-
tribution of emissions, as shown in Fig. 4. In addition, we used vertical
observations of CH4, δ

13C-CH4, and δD-CH4 from balloon flights over the
polar region (Kiruna, Sweden) and the subtropical region (Hyderabad,
India)71. The balloon observations were used to validate the model’s ability
to accurately simulate the troposphere-stratosphere exchange of these
species, which are affected by different factors in different atmospheric
layers.

It is worth noting that δ13C-CH4 measurements at different labora-
tories showed systematic offsets due to variations in instrument settings,
correctionmethods, and traceability to referencematerials92. For this reason,
the δ13C-CH4 values measured by NOAA/INSTAAR and TU/NIPR have
offsets that impede direct combination for model evaluations. To address
this, the time series was harmonizedwith the TU scale by applying an offset
of −0.20‰ to the NOAA/INSTAAR measurements92. This offset was
determinedbasedonmeasurements of cylinders,flasksfilled fromcylinders,
and co-located sample data92.

Data processing
Themodel simulations are sampled at the timeof theobservations andat the
nearest grid point to the measurement locations. To analyze the long-term
trend, we fitted themeasured and simulated daily/weekly time series at each
station using digital filter techniques93.We used six harmonics to extract the
sinusoidal component (i.e., seasonal cycle) and applied aButterworthdigital
filter with a cut-off length of 24 months to determine the long-term trends.
The growth rate is calculated by taking the time derivative of the long-term
trend, expressed in units of ppb yr−1 for CH4 and‰ yr−1 for δ13C-CH4.

Our primary interest is in the multi-year trends on a large scale, so we
selected only a subset of the global network sampling sites (as shown in the
spatial maps in Fig. 1) that are predominantly influenced by well-mixed
background air. These siteswere used to construct representativemean time
series and growth rates for sub-hemispheric latitudinal bands, as shown in
Fig. 1.Weonlyusedsites (a total of 11 forδ13C-CH4and18 forCH4) that had
full-time series available. The number of sites used for the CH4 and
δ13C-CH4 hemispheric averages are different. However, the latitudinal
profile uses observations from 50 sites for CH4 and 23 sites for
δ13C-CH4 (Fig. 6).

Data availability
The NOAA-GML and CU-INSTAAR ground-based CH4 and δ13C-CH4

observations are available from the NOAA GML FTP server (https://gml.
noaa.gov/dv/data), subject to their fair use policies. Atmospheric CH4 and
δ13C-CH4 data at NAL and SYO provided by Tohoku University (TU),
/National Institute of Polar Research (NIPR) are publicly available at the
WDCGG website (https://gaw.kishou.go.jp/search/station). Emission
inventories used in this study are publicly available, EDGARv6: https://data.
jrc.ec.europa.eu/dataset/97a67d67-c62e-4826-b873-9d972c4f670b,
GAINSv4: http://gains.iiasa.ac.at/models/gains_models4.html for public
access to emission inventories bymajor world regions. See also Supplement
dataset of Höglund-Isaksson et al.4. For access to global gridded CH4

inventory data, please contact L.H.I. (hoglund@iiasa.ac.at). All data used in
this study are available at https://doi.org/10.5281/zenodo.1053174994. The
Four-dimensionalmodel simulationdata are available freely from the leader
authors.

Code availability
The source code ofMIROC4-AGCM is archived at https://doi.org/10.5281/
zenodo.7274240 (Patra et al., 2022)with restriction because of the copyright
policy of the MIROC developer community.
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