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Earlier spring greening in Northern
Hemisphere terrestrial biomes enhanced
net ecosystem productivity in summer
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Kim Pilegaard 6, Tianyao Yang7, Sheng Wang 8, Wenping Yuan 7 & Atul K. Jain 9

The northern terrestrial biomes are being remarkably altered by climate change. Higher springtime
temperature induces the earlier greening of vegetation, which may further influence ecosystem
functions during the subsequent season. However, the response of summer net ecosystem
productivity to spring vegetation greenness and phenology changes has not yet been quantified. To
understand the impact of such phenological changes on terrestrial carbon sink of the following
season, here we integrate remotely-sensed vegetation data andmodel simulations of carbon fluxwith
an explainablemachine learning approach.We find that the lagged effects ofwidespread earlier spring
greening are increasing the summer ecosystem carbon sink across the northern vegetated areas (30°
to 90°N) from1982 to 2015. In particular, response disparities exist in non-agricultural biomes, and the
vegetation with moderate tree coverage is more sensitive to earlier spring greening. Furthermore,
modest tree restoration can strengthen the beneficial effects of earlier spring greening. This study
improves our understanding of interseasonal vegetation-climate-carbon coupling that drives the key
ecological feedback within climate change projections.

Global environmental change is altering vegetation phenology, thereby
disturbing the terrestrial carbon cycle balance1.Northernmid-high latitudes
show a substantial warming trend in spring due to anthropogenic warming
and Arctic amplification2. Simultaneously, the seasonal landscape in boreal
vegetated regions where temperature is a prominent limiting factor, has
experienced a noteworthy shift. As a result, the advancement in leaf
unfolding date and increase in spring vegetation productivity (referred to as
earlier spring greening, ESG) are widespread phenomena in the Northern
Hemisphere (30° to 90°N)3,4. These changes in phenological stages5 and
seasonal thermal conditions6 influence the pattern of interseasonal
vegetation-carbon coupling. This interaction has been corroborated by in-
situ observation of carbon fluxes, and suggests potentially immense impacts
on large-scale ecological functions and the global carbon cycle7–9. However,
it remains uncertain how vegetation phenology change during the spring-
time has affected ecosystem productivity later in the annual cycle.

Previous studies10–15 have centered on seemingly contradictory
hypotheses that the contrasting lagged effects of spring-warmth may either
beneficially or adversely influence the terrestrial vegetation productivity in
subsequent seasons. Under the theoretical framework of ecological
memory16, those lagged effects can be encapsulated as exogenous (envir-
onmental) and endogenous (biological) components of memory. It essen-
tially emphasizes the impact of antecedent conditions on current ecological
dynamics, involving multiple aspects of hydrological processes and plant
physiology. For instance, escalated extreme climate risk causedby enhanced
summerwater stress fromtheESG(e.g., higher evapotranspiration12 and soil
moisture deficit17) may result in the excess losses of carbon, and increased
ecosystem respiration in the autumn may offset carbon uptake18,19. Con-
versely, the endogenous vegetation growth carryover (VGC) effect, which
plays a crucial role in the seasonal vegetation dynamics, can continuously
induce additional vegetation activity after a warmed spring, versus the
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aforementioned exogenous climatic legacy effect15. In particular, the strong
VGC effect can neutralize the adverse abiotic effects induced by the ESG to
preserve the lush gross primary productivity (GPP) of the resilient
ecosystem15,20. The core of these foundational hypotheses rests in which
of the memory effects dominates the interseasonal vegetation-climate-
carbon coupling. Although progress has been made in the evaluation for
summer GPP, a comprehensive understanding that quantifies the response
of summer net ecosystem productivity (NEPsummer) to the ESG is still
lacking.

Here, we hypothesized that the lagged effects of ESG exert a vital
function in modulating summer ecosystem carbon sink. To do so, we
integrated a long-term satellite-based vegetation index, three explicit esti-
mates of carbon flux, and essential hydrometeorological variables to char-
acterize interseasonal (spring-to-summer) ecosystem carbon feedback.
These carbon flux datasets include (1) dynamic global vegetation models
(DGVMs) obtained from TRENDY21 version 9, (2) two atmospheric CO2

inversions (ACIs), i.e., CAMS22 and Jena CarboScope23, and (3) in-situ eddy
covariance measurements from the global FLUXNET24 network. We first
investigated the spatial pattern of partial correlation between the spring leaf
area index (LAIspring, which served as a proxy of vegetation greenness and
phenological metric25) and two gridded independent NEPsummer estima-
tions from 1982 to 2015, and unveiled their non-local linkages in space and
time by lagged maximum covariance analysis (MCA). In addition, we
conducted an analysis based on flux-towermeasurements to further test the
overarching hypothesis and introduced a tree-based machine learning
model in combination with an explainable AI approach (i.e., SHAP26,27) to
quantify this process (more details in Methods). Last, we explored the
relationship between the sensitivity of summer carbon sink to the ESG and
reforestation potential. Our study applied the boreal climatological defini-
tion for spring and summer, i.e., spring is the period of March-April-May
(MAM) and summer is the period of June-July-August (JJA).

We demonstrated that the lagged effects of ESG are increasing simu-
lated biomass production in summer across the northern vegetated areas
from 1982 to 2015. In terrestrial biomes, we found response disparities that
forest is stimulated more strongly by the ESG than grassland. Additionally,
these findings are reconciled with the results from the atmospheric
observation-based estimates and eddy covariance measurements of carbon
flux. This study highlights the impacts of spring phenology and vegetation
changes on summer carbon sink.

Results
Evidence of enhanced summer carbon sink induced by earlier
spring greening (ESG)
By removing the covarying effects of summer temperature and precipita-
tion, partial correlation analysis shows a prevailing positive correlation
pattern between LAIspring and simulated NEPsummer from TRENDY across
the northern mid-high latitudes (70.2% of study area, Fig. 1b), and the
correlation is significant (p < 0.05) in western North America, Siberia,
Central Asia, and southern Europe (Supplementary Fig. 1). This is direct
statistical evidence of the possible promoting effects of ESG on summer net
carbon sink. In addition, a conspicuousnegative correlationpattern is found
over the croplandofCentralNorthAmerica,whichmaybepurely attributed
to the non-climate-driven agricultural management effects, i.e., intensified
agriculture practice, including the expansion of cultivation and planting of
new crop variants28. Considering the potentially ambiguous consequences
of anthropogenic regulation on crop phenology and productivity, our
subsequent focus will be solely on non-agricultural vegetation areas.

With the increasing forest and grassland coverage, their partial cor-
relation coefficients vary conversely (Fig. 1c). Due to the higher resistance to
enhancedwater stress and stronger endogenous (biological)memory effects
relative to exogenous (environmental) memory effects, forest tends to show
an increase in correlation coefficients15,29. By contrast, exogenous memory
effects dominating the response of grassland to the ESG, particularly in
drylands, and the notable vulnerability of herbaceous plants to climate
extremes (e.g., drought) lead to decreased correlation coefficients for

grassland15,17,29,30. As a result, after excluding agricultural samples, the
average partial correlation coefficients show a clear increase with increasing
tree coverage (Fig. 1d), which is in agreement with results shown in Fig. 1c.
This trend is less apparent within relatively low tree coverage, since the
related grid samples are a mixture of the other two biome types (namely
shrubland and savanna), which present non-robust linear variation.

To further reveal the non-local connection between the ESG and
summer ecosystem carbon sink, we employed a laggedMCA to explore the
spatiotemporal coupling relationship between LAIspring and simulated
NEPsummer. Overall, the annual time expansion coefficients (refer to
Methods) associated with the two data fields correlate significantly (r = 0.93,
p < 0.001, Supplementary Fig. 3), indicating that strong coupling exists in
their leadingmodes.We found that the spatial patterns of the paired leading
modes show relatively broad consistency in anomalies across northern areas
(30° to 90°N, Fig. 2a, b). Generally, in line with partial correlation analysis,
the results based on the lagged MCA are robust evidence for the positive
response of NEPsummer to the ESG. It is noted that the corresponding
anomaly patterns of LAIspring andNEPsummer are contrary in parts of North
America, where the negative partial correlation is observed in Fig. 1b. This is
explained by the large-scale opposite phenomenon (i.e., spring phenology
delay and browning occurrence; Fig. 1a), and drier summer induced by
covarying climate oscillations (e.g., ENSO)11.

The dominantly positive anomalies in the overall distribution of the
standardized singular vectors (refer toMethods) for LAIspring and simulated
NEPsummer further support the comparatively unified conjunction of spring
vegetation greening and summer carbon sink increase (Fig. 2c). Subse-
quently, we examined the distinction in the responses of four vegetation
types by comparing their singular vector distributions (Fig. 2d). The
synergetic LAI-NEP coupling pattern of the forest is found, i.e., the positive
LAIspring anomalies in singular vectors are followed by more positive
NEPsummer anomalies, which differs from grassland. As seen by partial
correlation analysis, this also embodies the converse responses between
forest and grassland. The patterns of LAIspring anomalies are near zero for
shrubland and savanna, whose NEPsummer anomalies are predominantly
positive, implying another kind of completely different response pattern.

To obtain more reliable insights into the interseasonal vegetation-
carbon coupling, we further conducted similar analyses using atmospheric
observation-based estimates of summer net ecosystem productivity (i.e.,
ACI NEPsummer) to compare with the above results from DGVMs. It is
noteworthy that the spatial resolution of NEPsummer estimated by ACIs is
much coarser than that of satellite-based LAIspring, which prevents calcu-
lating the precise partial correlation coefficients for each grid (Supple-
mentary Fig. 5a). Nonetheless, the trends of mean correlation coefficients
with the increasing fraction of forest, grassland and tree coverage exhibit
overall conformity with DGVMs (Supplementary Fig. 5b, c). In addition, at
a larger spatial scale, there is better agreement in the spatial patterns of
standardized singular vectors as identified byMCA (Supplementary Fig. 6).
These results suggest that the lagged effects of ESG on NEPsummer are also
identifiable with atmospheric observations. Thus, multiple lines of evidence
collectively support the notion that vegetation conditions related to green-
ness andphenology during springtime likely contribute to the enhancement
of summer carbon sink.

Site-based observations confirm our hypothesis
We further assessed the observation-based interseasonal connections
between the ESG features (namely LAIspring and the start of the growing
season, SOS) and NEPsummer across 45 available FLUXNET sites. By using
the Theil-Sen slope estimator and theMann-Kendall test, we calculated the
trends and statistical significance in each observational time series. It is
found that the trends of LAIspring and SOS correlate with that of site-based
NEPsummer significantly (r = 0.41, p = 0.009 for LAIspring, r =−0.34,
p = 0.041 for SOS, respectively; Fig. 3a, b). Theseweak cross-site correlations
may be dissembled by biome-dependent sensitivity to long-term climate
effects31. On the other hand, those sites with significant increasing trends in
spring greenness and significant advancing trends in SOS demonstrate
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higher level of NEPsummer trends, compared to sites with non-significant
trends in LAI and SOS (Fig. 3c). We also discovered a strong negative
correlation between pr(LAIspring - NEPsummer) and pr(SOS - NEPsummer)
(r =−0.46, p = 0.008; Fig. 3d), reflecting a certain consistency within the
ESG features. Despite the sparse spatial distribution of in-situ observed sites
and the limited length of instrumental records, the overall agreement
between these observations and the results from process-basedmodels and
atmospheric inversions enhances our confidence in the parallel findings.

Explainable machine learning confirms our hypothesis
To test the hypothesis on the distinct responses of four vegetation types and
quantify the effects of ESG, we implemented an explainable machine
learningmodel that is a combination of a tree-basedmodel (XGBoost) with
SHAP algorithm26,27. First, we used two ESG features (LAIspring and SOS) as
analyzed in the previous sections, as well as summer LAI and seven
hydrometeorological factors as potential drivers, and simulated NEPsummer

as the targetedpredicted variable (moredetails inMethods). Second,webuilt
an overall model based on all samples from the non-agricultural vegetated
areas, and separate models for four vegetation types (forest, shrubland,
savannaandgrassland).WeutilizedSHAPvalues todistinguishbetween the
positive and negative effects of ESG. In the testing phase, the coefficient of
determination (r2) is 0.86 for the overall model and ranges from 0.59 to 0.71
for each separate models, indicating the high reliability of our established
models in capturing the spring-to-summer vegetation-carbon coupling
(Supplementary Fig. 7).

The analyses identified that the influence of spring greenness on
summer carbon sink shows mixed effects, whereas the influence of spring
phenology is consistent across four vegetation types (Fig. 4). In terms of
forest, the samples having beneficial effects cluster in the quadrant with
positive LAIspring anomalies (or negative SOS anomalies) and positive
NEPsummer anomalies, and vice versa (Fig. 4a, e). The response patterns of
the other vegetation types are somewhat similar to those of the forest.

Fig. 1 | Partial correlation between observed LAIspring and simulated NEPsummer

from 1982 to 2015. a widespread earlier leaf unfolding date and spring greening in
themid-high latitudes of theNorthernHemisphere (30° to 90°N) from 1982 to 2015.
The horizontal and vertical axes of the color legend are the linear trends of LAIspring
and the start of the growing season (SOS), respectively. Their spatial patterns are
shown in Supplementary Fig. 2. b the spatial distribution of partial correlation
coefficients between GIMMS LAIspring and TRENDY NEPsummer. c the changes of

mean partial correlation coefficients with the increasing fraction of forest or grass-
land in pixels. d the changes of mean partial correlation coefficients with the
increasing tree coverage in pixels. The error bars indicate a 95% confidence interval.
The fraction of forest and grassland and the tree coverage is collected from
MOD12C1 and MOD44B products, respectively.
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However, for shrubland and savanna, we discovered that vegetation over-
browning in springtime can also play a relatively notable role in boosting
summer vegetation productivity (Fig. 4b, c). There is a possible explanation
that this weak spring plant growth constrained by temperature can act as
strong negative feedback to enhance interseasonal vegetation-soil moisture
interaction towards elevating peak season activity15,32,33. In addition, the
response patterns of grassland are less concentrative in contrast to the forest
(Fig. 4d, h). These findings provide valuable insights into the impact of ESG
features on summer carbon sinks across different biomes, thus contributing
to a comprehensive understanding and reconciling previous assessments.

We next used the overall model to calculate the marginal effects (refer
toMethods) for the ESG features to quantify the magnitude of their isolate
and conjoint effects, by adjusting the inputs of LAIspring and SOS with the
additive perturbation of one standard deviation (std). Across the northern
mid-high latitudes, the summer ecosystem carbon sink tends to be

reinforced by the ESG widely (73.5% of the study area; Fig. 5a). It is an
important signal for the future changes of natural terrestrial carbon stocks
under the scenario that anthropogenic warming alters spring vegetation
dynamics continually.Wealso examined theNEPsummer sensitivities to each
ESG feature, which exhibit widespread positive patterns in space, particu-
larly for spring phenology (Supplementary Fig. 8). In general, the overall
beneficial effects of ESG on NEPsummer are found in all non-agricultural
vegetation types (Fig. 5b). Specifically, spring phenology advancement
exerts a stronger influence on the summer carbon sink than vegetation
greening. This is because vegetation greenness predominantly manifests
mixed effects as seen in Fig. 4. Moreover, we found that shrubland and
savanna biomes are more sensitive to the ESG in contrast to forest and
grassland. This may be explained by the intrinsic water-use efficiency of
shrubland and savanna can rapidly rise when exposed to enhanced water

Fig. 2 | Maximum covariance analysis (MCA) between observed LAIspring and
simulated NEPsummer from 1982 to 2015. a, b the spatial patterns of MCA leading
modes of GIMMS LAIspring and TRENDY NEPsummer, respectively. The squared
covariance fraction (SCF) between the two fields is 45%. A two-tailed Student’s t-test
of heterogeneity regression confidence level is conducted to show the significance

distribution (Supplementary Fig. 4). c the overall distribution of the leading modes’
singular vectors of LAIspring and NEPsummer. d the divergence of the leading modes’
singular vectors of four vegetation types. The extent of the box indicates the 25th and
75th percentiles.
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stress, with the prerequisite of summer soil moisture drying induced by the
ESG17,30,34.

Implications of our study for reforestation efforts
The northern forest biome stands at the forefront of efforts to mitigate
climate change35. As indicated above, the different sensitivities of biomes to
the ESGmotivate us to analyze whether reforestation could further amplify
the beneficial effects of ESG. We found that the hotspots for reforestation36

(Supplementary Fig. 9) spatially collocate with the regions emerging with
high marginal effects, such as east and central Siberia, and northwest
America. The total area with coincidental tree restoration potential and
positive marginal effects is roughly 1.5 × 106 km2, accounting for 35.8% of
the non-agricultural vegetated areas. This suggests that tree restoration
could reinforce the extra gain from the ESG.Another important implication
is that the areaswith greater tree restorationpotentialwill gainmorebenefits

from the stronger ESG, which are apparently higher than that of zero-
planting areas (Fig. 6). However, these benefits will diminish when the tree
restoration potential exceeds 40%, whichmay be attributed to the objective
fact that those regions are still in low tree coverage constrained by envir-
onmental factors, e.g., water supply and solar radiation. Generally, the
presented results show that regions with moderate level of total tree
restoration have the largest potential for summer carbon sink enhancement
after a warmed spring (Supplementary Fig. 10).

Previous work37,38 has reported that vegetation greening and pheno-
logical dynamics collectively impactbothplant productivity and respiration,
leading to the uncertain trade-off of ecosystem carbon sequestration. Our
findings offset this concern by demonstrating that summer net carbon sink
benefits from the spring-to-summer VGC effect. Furthermore, it should be
noted that our study only focuses on the impact of ESG on summer above-
ground biomass changes. Across the northern areas, climate change

Fig. 3 | Relationship of site-based summer carbon sink with two ESG features.
a the partial correlation between the trends of satellite-based LAIspring and site-based
NEPsummer, denoted as pr(LAIspring - NEPsummer). b the same as a but for pr(SOS -
NEPsummer). c trends of NEPsummer in sites with different significant levels of
LAIspring and SOS trends. Sig. + (−) and Non-sig. + (−) indicate significant and

non-significant increasing (decreasing) trends. d scatterplot of pr(LAIspring-
NEPsummer) versus pr(SOS-NEPsummer). The observations of NEPsummer are col-
lected from 45 flux-tower FLUXNET sites. The extent of the box indicates the 25th
and 75th percentiles. The envelope indicates a 95% confidence interval.
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threatens an unknown quantity of carbon stockswhich aremassively stored
in permafrost and peatlands39,40. Accelerated underground carbon releases
can also be triggered by anthropogenic warming and vegetation dynamics,
versus the increased carbon uptake in vegetated areas. Future research is
encouraged to make critical advances in the evaluation of the imbalance
between carbon gain and loss concerning the seasonal vegetation-car-
bon coupling. This will provide a deeper understanding of the complex
dynamics and interactions involved, ultimately contributing to more
accurate assessments of carbon sequestration potential and the impacts of
environmental changes on ecosystem carbon balance.

In summary, our work provided robust evidence that vegetation
dynamics in springtime act to increase summer vegetation productivity,
based on the parallel results from the process-based and atmospheric
observation-based estimates of carbon flux. We further exploited site-
derived eddy covariancemeasurements and amachine learning approach
to elucidate the effects of ESG toward a better understanding of the bio-
physical process associated with greenness and phenology. These time-
lagged effects vary with vegetation types due to themutually independent
ecosystem functions. Specifically, the forest biome maintains a consistent
and positive relationship with the ESG, revealing its relatively stable
functioning on carbon sequestration. By contrast, grassland in arid and
semi-arid regions is weakly stimulated, as indicative of increasing risks of
declining carbon sink in summer. Finally, we found that terrestrial biomes
have a predominantly positive sensitivity to the ESG over the mid-high
latitudes of the Northern Hemisphere, particularly for shrubland and
savanna. These findings underscore the importance of investigating the
spring-to-summer vegetation-climate-carbon interaction under global
warming.

Methods
Experimental framework design
In this study, we first used satellite-based LAIspring (as a proxy of vegetation
greenness andphenology) and three explicitNEPsummer estimates toprovide
the evidence for enhanced summer ecosystem carbon sink from ESG, by
partial correlation analysis andMCA.Thesemethods enable us to reveal the
complex spatiotemporal coupling relationships that underlie them. Subse-
quently, we built explainable machine learning models to gain the process
understanding of interseasonal vegetation-carbon coupling. For this mod-
eled analysis, we complemented the start of the growing season to better
characterize spring phenological dynamics, which moderately correlated
with LAI (r =−0.43, p < 0.001).

Vegetation index and phenological metric
Vegetation indices are key parameters of vegetation structure and function
to study global change. Here, LAI was used as an observational proxy of
vegetation greenness and phenological metric. The LAI dataset was derived
from the Global Inventory Monitoring and Modeling Studies (GIMMS)
LAI3g product, which uses the GIMMSNDVI3g andModerate Resolution
Imaging Spectroradiometer (MODIS) LAI dataset as input and is assimi-
lated based on an Artificial Neural Network model41. This global satellite
product has a spatial resolution of 8 × 8 km2 at biweekly intervals and has
beenwidely applied in environmental science.We calculated the spring LAI
average for the period 1982-2015.

The growing-season vegetation dynamics and regional carbon budget
have a close relationship with the surface freeze/thaw state, in particular for
mid-high latitudes, which can serve as a natural representation of both
commence and cease of biological activities11,42. Therefore, we extracted the

Fig. 4 | Response patterns of NEPsummer on the ESG features for different vege-
tation types from 1982 to 2015. Four types of vegetation were analyzed and
compared, including forest in a, e, shrubland in b, f, savanna in c, g and grassland in

d, h. The results were from tree-based models combining the SHAP algorithm. The
beneficial (adverse) effects on model output were classified by positive (negative)
SHAP values.
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date of spring phenological metric (i.e., SOS) by using a daily satellite
microwave freeze/thaw record archive from theMaking Earth SystemData
Records for Use in Research Environments (MEaSUREs) program at a
25 × 25 km2 spatial resolution43. Despite this coarse resolution is subject to
inherent limitations which lie in the potential loss of spatial details and the
local-scale variations of phenological state, this dataset still well serves our
research purpose as other datasets used for investigating SOS impact share

similar spatial resolution. Specifically, we prescribed the SOS based on the
criteria of at least 12 days in thaw status out of consecutive 15 days, and this
condition should be satisfied in the next 60 days11. Note that the leaf-out
time of forest species is driven by various factors including light (e.g., beech
trees) and temperature, whereas it is not possible to distinguish between
temperature-driven and light-intensity-driven forest types with the tech-
nique used in this paper.

Ecosystem carbon fluxes
To estimate the summer ecosystem carbon sequestration, we used three
independent carbon flux datasets for the period of 1982 to 2015. The first is
eight dynamic global vegetation models ensemble from TRENDY21 v9,
including CABLE, IBIS, SDGVM, DLEM, ISAM, LPJ, ORCHIDEE, and
VISIT. Note that we only included the models with a spatial resolution of
0.5°, while omitting the models with coarser resolution44. These models are
forcedunder the simulation2 (varyingCO2andclimate). Thenet ecosystem
productivity is represented as the difference between GPP and terrestrial
ecosystem respiration (the sum of autotrophic respiration and hetero-
trophic respiration). The second dataset of carbon flux is two long-term
atmospheric inversions ensemble from CAMS version 17r122 and Jena
CarboScope version s76oc_v2022 (ref. 23), which both assimilated surface-
to-atmosphere CO2 measurements and their spatial resolutions are
1.9° × 3.75° and 4° × 5°, respectively.We remapped them to regular gridded
outputs with a spatial resolution of 1° × 1°. In addition to TRENDY and
ACIs, we also collected the eddy covariance measurements derived from
FLUXNET 2015 dataset24. We selected the EC carbon flux tower sites that
provide at least 7 years of observational records, and are overall free from
low-quality measurements (e.g., missing values). We also excluded those
sites dominated by cropland. Finally, 45 sites (Supplementary Table 1) were
included for the investigation of the seasonal vegetation-carbon
relationship.

Fig. 6 | Implications of the tree restoration potential and enhanced NEPsummer.
The tree restoration potential36 indicates the maximum carrying capacity per pixel
for tree restoration. The zero-planting means that the tree restoration potential is
close to zero (Supplementary Fig. 7). The error bars indicate a 95% confidence
interval.

Fig. 5 |Marginal effects of ESG features onNEPsummer based on themachine learningmodel. a the spatial pattern of themarginal effects onNEPsummer with concurrently
perturbing 1 standard deviation (std) in LAIspring and SOS. b the heterogeneity of the marginal effects of four vegetation types. The error bars indicate ±1std.
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Hydrometeorological data
The root-zone soil moisture (SM) data were collected from GLEAM v3.2a45.
The GLEAM algorithm assimilates microwave-based surface soil moisture
into the soil profile to correct for random errors in forcing datasets. The
generated surface hydrological elements from GLEAM have been proven
effective in land-atmospheric interaction studies46.Themonthlydownwelling
shortwave radiation (Srad) with 0.5° × 0.625° spatial resolution was obtained
from Modern-Era Retrospective analysis for Research and Applications
(MERRA) v2 global reanalysis product47. Themonthly temperature (Temp),
precipitation (Prec) and vapor pressure deficit (VPD) are collected from the
Climatic Research Unit Time Series (CRU TS) v4.05 dataset48 with a spatial
resolutionof 0.5°.TheVPD is represented as thedifference between saturated
vapor pressure (SVP) and actual vapor pressure, and the SVP is calculated
based on the empirical equation using air temperature.

Land cover map, vegetation continuous fields and tree restora-
tion potential
Divergent vegetation is highly heterogeneous in the aspect of ecosystem
functioning, thereby resulting in different responses to ESG. Hence, we
considered vegetation types and composition structures to discern these
responses. For vegetation types, we primarily investigated forest, shrubland,
savanna, and grassland from the MODIS land cover map (MCD12C1) in
2011 according to the International Geosphere-Biosphere Programme
(IGBP) classification scheme. Note that cropland is a land-use type exten-
sively impacted by human activities (e.g., tillage, irrigation), and is therefore
excluded from this study. Moreover, we supplemented the analysis using
vegetation continuous fields data, which is derived from MODIS global
surface vegetation cover product (MOD44B) in 2011. This dataset includes
the percentages of three components in each grid cell, i.e., tree cover, non-
tree, and non-vegetated cover. We focused on the distinctive responses of
tree cover percentage to carbon sink. In this study, both datasets mentioned
above refer to a specific year (2011) because the coarse spatial resolution can
offset the impacts induced by their potential temporal changes during our
study period. In addition, the tree restoration potential dataset36 was col-
lected to represent the realizable scenario of large-scale tree recovery. All
data setswere resampled tomatch the twogridded carbonfluxdatawith 0.5°
and 1° spatial resolutions, and unified to cover the time span from 1982 to
2015 (information summarized in Supplementary Table 2).

Maximum covariance analysis (MCA)
MCA separates multiple independent coupling modes from two data fields
(left field Q nð Þ and right field P nð Þ), and reveals their spatial relationship in
the temporal domainby applyingSingularVectorDecomposition (SVD)on
the maximum covariance matrix C Q; Pð Þ49. The correlation of two data
fields’ time expansion coefficients denotes the level of their coupling
strength. In this study, MCA is used to explore the coupling pattern of
LAIspring and NEPsummer. Mathematically, we defined two data matrixes
Q i× n½ � and P j× n

� �
, whereQ and P indicate the normalized LAI andNEP

weighted by the square root of the cosine of the corresponding latitude17,
respectively, i and j indicate the number of pixels, and n indicates the
number of samples (34 years). The covariancematrixC Q; Pð Þ is represented
as a sum of orthogonal SVD modes:

C ¼
XN

m¼1

σmqmp
T
m ð1Þ

Where qm and pm indicate the m-th modes of the left and right fields
corresponding to the eigenvalue σm, respectively, and N indicates the
number of decomposed dimensions. The time expansion coefficients (am
and bm) are calculated as:

Q nð Þ ¼
PN

m¼1
am nð Þqm; P nð Þ ¼

PN

m¼1
bm nð Þpm

am nð Þ ¼ qTmQ nð Þ; bm nð Þ ¼ pTmP nð Þ

ð2Þ

Machine learning method and interpretability
Extreme Gradient Boosting (XGBoost) is an advanced supervised tree-
based model that has proved its excellent performance in carbon flux
prediction50,51. Owing to its flexible framework50 and inherent
interpretability52, XGBoost is a trustworthy method to fulfill the task of this
study. We used two factors describing spring phenology and greenness
(namely SOS and LAI), summer LAI and seven hydrometeorological con-
trolling factors (namely Temp, Prec, SM, VPD and Srad in summer, as well
as Temp andPrec in spring) asmodel inputs, andNEPsummer as the targeted
predicted variable. To get the optimal model configuration, we randomly
split all samples into four parts: training set (75%), validation set (10%),
optimization set (10%) and test set (5%). We first trained an initial model
and exploited a validation set for early stopping. Then, we applied a specific
incremental search algorithm to tune the hyperparameters with the opti-
mization set, and evaluated the model performance in the testing phase.
Here, we embedded an explainable approach (i.e., SHAP algorithm27) into
the XGBoost Model to deepen our understanding of interseasonal ecosys-
temcarbon feedback. Inparticular,we appliedTreeSHAP26 and integrated it
into XGBoost modeling. TreeSHAP builds theoretical knowledge on pre-
vious model-agnostic work based on classic game theory (Shapley values),
aiming to improve the interpretability of tree-based models26,53. From the
perspective of application in machine learning, interpretability means that
themodel canuse input features as an information source todetermine their
positive or negative effects on model output. Generally, we exploited this
SHAP value to decipher the impacts of each model feature on the target
prediction. For instance, the negative SOS anomalies inputs (Fig. 4e) pro-
duce positive SHAP values accompanied by positive NEPsummer anomalies,
which indicates beneficial signals captured by the model between the input
and output.

In the sensitivity analysis, we calculated the mean values of each
variable from1982 to 2015, and perturbated each variable by adding one std
for LAIspring and subtracting one std for SOS. Then, the overall tree-model
was run to predict NEP (NEPpre) in different situations. The sensitivity of
NEP to LAIspring is calculated using Eq. (3), and it is the same for SOS. We
also calculated the marginal effects (ME) to assess the changes of summer
carbon sink induced by ESG, according to Eq. (4).

NEPsensitivity ¼
NEPpre;þ1std LAIð Þ � NEPpre

stdðLAIÞ
ð3Þ

ME ¼ NEPpre;þ1 stdðLAIÞ&�1stdðSOSÞ � NEPpre

stdðNEPÞ
ð4Þ

Data availability
The Advanced Very High-Resolution Radiometer GIMMS LAI3g is avail-
able from Dr. Zaichun Zhu (zhu.zaichun@gmail.com). The freeze/thaw
record fromMEaSUREs is available at https://nsidc.org/data/NSIDC-0477/
versions/4. The temperature, precipitation, vapor pressure from CRU TS
v4.05 are available at https://crudata.uea.ac.uk/cru/data/hrg/. The down-
welling shortwave radiation fromMERRA2 is available at https://goldsmr4.
gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/. The root-zone soil
moisture from GLEAM v3.2a is available at https://www.gleam.eu/. The
outputs of dynamics vegetation globalmodels generatedbyTRENDYv9 are
available fromDr. Stephen Sitch (s.a.sitch@exeter.ac.uk) upon request. The
eddy covariance measurements FLUXNET 2015 data are available at
https://fluxnet.org/. The land cover from MOD12C1 is available at https://
lpdaac.usgs.gov/news/modisterra-land-cover-types-yearly-l3-global-
005deg-cmg-mod12c1/. The vegetation continuous field fromMOD44B is
available at https://lpdaac.usgs.gov/products/mod44bv006/. The tree
restoration potential dataset is available from Dr. Jean Francois Bastin
(bastin.jf@gmail.com). The data used to create the figures can be found at
https://doi.org/10.6084/m9.figshare.25195502.v1.
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Code availability
Codes used to generate main figures are available on request from the
authors.
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