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Increases in the temperature seasonal cycle
indicate long-term drying trends in Amazonia
Paul D. L. Ritchie 1✉, Isobel Parry1, Joseph J. Clarke1, Chris Huntingford 2 & Peter M. Cox 1

Earth System Models project a wide range of rainfall changes in the Amazon rainforest, and

hence changes in soil moisture and evapotranspiration. Hydrological changes are hetero-

geneous, meaning local measurements are too sparse to constrain projections of large-scale

hydrological change. Here we show that changes in the amplitude of the temperature sea-

sonal cycle are strongly correlated with annual mean evaporative fraction (surface latent heat

flux as a fraction of surface net radiation) changes, across reanalyses and Earth System

Model projections. We find an increase in annual temperature amplitude of 1 °C is associated

with a reduction in evaporative fraction of up to 0.04. The observed temperature seasonal

cycle amplitude increase (0.4 °C) over the last three decades implies Amazon drying,

determined in the absence of soil or energy flux measurements, matches Earth System Model

simulations of the recent past. Additionally, Earth System Models predict further temperature

seasonal cycle amplitude increases, suggesting drying will continue with future climate

change.
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The Amazon rainforest has historically been one of the
largest carbon pools on Earth, storing up to 200 petagrams
of carbon (PgC)1. Furthermore, the Amazon rainforest has

acted as a strong carbon sink, whereby from 1990–2007 the
rainforest had an annual carbon uptake of 0.42–0.65 PgC yr−1 2,3,
helping to offset CO2 emissions caused by the human burning of
fossil fuels. However, due to climate change and deforestation, the
Amazon rainforest could already have changed from a carbon
sink to a carbon source4. Further warming, and more impor-
tantly, drying, could potentially trigger the system into tipping to
an alternative state5,6. Although the possibility of Amazon die-
back has been strongly debated and previously considered to be
model dependent7, there is evidence to suggest a greater agree-
ment amongst the latest CMIP6 generation of climate models. In
particular, 5 of 7 CMIP6 models with dynamic vegetation display
localised abrupt areas of dieback over the Amazon region caused
by warming and drying associated with elevated CO2 levels alone
(and not changes in land use)8.

The length of the dry season over southern Amazonia has
increased in recent decades9,10, and has been accompanied by a
prolonged fire season11. Specifically, the frequency of dry days has
increased with a reduction in rainfall during September-
November12. Hot extremes show an increasing trend as does
the number of consecutive dry days13. The observed drying has
been found to be outside the range of trends due to natural
variability and is instead caused by elevated greenhouse gas
levels and deforestation14. Importantly, tropical tree growth links
strongly to dry season rainfall15. Therefore, as a result of these
drier and longer dry seasons, over three-quarters of the rainforest
has been reported as losing resilience since the early 2000’s,
consistent with an approaching critical threshold16.

Drying of Amazonia will be revealed by changes in evaporation.
Evaporation can be measured with eddy covariance17, but there is
a paucity of such sites across South America, and those available
are often limited in their period of operation18. However, changes
to evaporation level also alter near-surface meteorology. More
than half of the precipitation that falls in the Amazon basin is
created by its own evaporation and transpiration19. Due to these
high levels of evaporation, tropical rainforests tend to be cooler
than more open land despite their lower albedo20. For that reason,
we hypothesise that changes to the amplitude of the temperature
seasonal cycle, defined as the difference in minimum and max-
imum monthly means for the year, will reveal changes to water
availability especially in the dry season.

The previous generation of CMIP5 climate models have shown
increases in temperature variability that are associated with

decreases in evaporative fraction (the fraction of the surface net
radiation which is returned to the atmosphere as the latent
heat flux due to evapotranspiration), especially in the southern
hemisphere21. Other studies22,23 have also linked temperature
variability with the evaporative fraction. A strong negative cor-
relation has previously been established in CMIP5 models,
between the ratio of the change in the annual hottest day relative
to the change in the local average temperature, and the eva-
porative fraction for the Amazon24. However, the CMIP5 models
show a large range in temperature variability over the Amazon,
typically with a substantial positive model bias compared to
reanalyses21. An improvement to the temperature seasonal cycle
amplitude bias25, as well as improved representation of evapo-
transpiration over the Amazon region in the latest CMIP6 gen-
eration of climate models26, provides motivation to establish
similar relationships in this study. A further extension in this
study is to apply the derived relationships with observational
temperature data, for which records are of greater temporal and
spatial resolution, to estimate the amount of Amazon drying
since 1900. We base our analysis on projections by a large
ensemble of CMIP6 climate models and data from the ERA5
reanalysis product27, which acts as our source of observationally-
derived data.

Results
We first consider time series data from the ERA5 reanalysis of the
evaporative fraction and temperature seasonal cycle amplitude for
the period 1979–2020 (Fig. 1). We divide the Amazon basin into
the four regions used by the IPCC AR628,29, namely; North West
South America (NWS), North South America (NSA), North East
South America (NES), and South American Monsoon (SAM), see
map. For three of the four regions the 10-year running means
(solid curves) show clear decreasing trends in the evaporative
fraction (blue) indicating a drying over the Amazon in recent
decades. These decreasing trends in the evaporative fraction are
accompanied with increasing trends in the temperature seasonal
cycle amplitude (red). Individual years can also be identified
(dashed timeseries), such as 2015 in the NSA region – an extreme
drought event caused by a strong El Niño30. Here the anom-
alously high-temperature seasonal cycle amplitude coincided with
an anomalously low evaporative fraction. The NWS region is the
exception where there appears to be no overall trend in the
temperature seasonal cycle amplitude or evaporative fraction.
However, this region contains many coastal grid points and
therefore evaporation is less likely to be limited by soil drying.

Fig. 1 Trends in ERA5 reanalysis of evaporative fraction and temperature seasonal cycle amplitude. Timeseries of recent annual mean values of
temperature seasonal cycle amplitude and evaporative fraction for four Amazon regions (NWS–North-West South America, NSA–North South America,
NES–North-East South America, SAM–South American Monsoon) depicted in the map (normalised values are also used in Fig. 3). Dashed lines are the
annual values, and continuous lines are the 10-year running means.
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We calculate the annual anomalies in both the temperature
seasonal cycle amplitude and evaporative fraction relative to the
first year of the ERA5 data, 1979. These anomalies are plotted in
Fig. 2, where the points are annotated by the year of the anomaly.
The best fit linear regressions are given by the black dashed lines.
Consistent with Fig. 1 we find a negative correlation (r=−0.61),
between temperature seasonal cycle amplitude anomalies and
evaporative fraction anomalies, in the NSA region, which covers
the majority of the Amazon basin. Similarly, negative correla-
tions are also observed for the other three regions. In the NWS
and NES regions, where evaporation is less limited by soil drying
due to the proximity of coastal points and the Andes Mountain
range, the correlations are weaker. The slope of the regression
line for the NSA region implies an approximate 0.02 drop in EF
for a 1 oC increase in temperature seasonal cycle amplitude.
Identical analyses are performed for three alternative reanalysis
products (see Figs. S1–S3 and Table S1), which also show
negative correlations (r <−0.45) for the NSA region except for
JRA-55. The slopes for the NSA region range between a 0.01 to
0.07 decrease in EF for a 1 oC increase in the temperature sea-
sonal cycle amplitude.

Having identified correlations between EF and the temperature
seasonal cycle amplitude in the reanalysis products, we perform
the same analysis for the CMIP6 dataset (Fig. 3). The added
advantages of using the CMIP6 dataset is twofold. Firstly, the
ability to use an ensemble of models as opposed to a single cli-
mate realisation represented by reanalysis products. Secondly, to
check the EF versus temperature seasonal cycle amplitude rela-
tionship over a larger anomaly range by concatenating historical
simulations with climate change projections for each model (here
we use the historical and SSP5-8.5 scenarios, spanning
1900–2099, similar correlations are obtained using either the
historical and SSP2-4.5 scenarios, or the idealised run of
increasing CO2 by 1% per year, see Figs. S4 and S5). For

comparability, the anomalies are calculated against the same
reference year of 1979, as used for ERA5.

Fitting a linear regression to the CMIP6 models (black dashed
lines) shows a clear negative correlation (r=−0.75) in the NSA
region. The slope of the regression for the NSA region is
approximately double that derived from the ERA5 data (silver
dashed line), although falls comfortably within the range of all
reanalysis products. For the other three regions, stronger corre-
lations are found in the CMIP6 dataset than for ERA5 (and
generally across all reanalysis products). However, the CMIP6-
derived slopes of the other three regions are notably shallower
compared to the NSA region and these results are consistent
irrespective of the model experiment used, as summarised by the
results in Table S1. Individual CMIP6 models provide robust
correlations regardless of the amount of projected drying across
Amazonia. Specifically, 23 of the 25 CMIP6 models have a cor-
relation of −0.5 or stronger (and 17 of 25 have a correlation of
−0.7 or stronger), as shown in Table S2.

Figure 4 disaggregates this analysis onto individual grid points
to investigate how the correlations vary across the regions, for
both the ERA5 data and CMIP6 models. The ERA5 data shows
substantial heterogeneity in the correlation between EF and tem-
perature seasonal cycle amplitude across grid points. In central
and eastern Amazonia, there is a cluster of grid points with high
negative correlations. However, there are also grid points that
provide positive correlations, particularly in the NWS and NES
regions but also for some points in the NSA and SAM regions.
Many of these positive correlations are located close to the ocean
where evaporation is less likely to be limited by soil drying. The
low correlations in the west of the Amazon may be indicative of
the sparse distribution of observational stations in this area31.

In contrast, the correlations derived from the CMIP6 models
are much more homogeneous. The vast majority of grid points
display the expected negative correlation between evaporative

Fig. 2 Correlations between evaporative fraction and temperature seasonal cycle amplitude in ERA5 reanalysis. Annual mean anomalies from 1979 until
2020 in temperature seasonal cycle amplitude and evaporative fraction calculated relative to the reference year 1979. Years are marked as annotated, and
for the four Amazon regions of interest (NWS, NSA, NES, and SAM). Dashed lines are the best fit regression and correlation coefficients (r) are as
annotated.
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fraction and temperature seasonal cycle amplitude. The ocean still
weakens the correlation in coastal regions due to the reduced
impact of soil drying on evaporative fraction, but correlations
remain high (r <−0.5) at the grid point level over the majority of
the Amazon basin.

Using the relationships derived in Fig. 3 we can now recon-
struct the approximate change in EF. In Fig. S6, we use the

HadCRUT5 observational temperature dataset (maroon) to
reconstruct the evaporative fraction anomaly (grey) back to 1900
(before 1900 data is incomplete across the Amazon basin), rela-
tive to 1979. We compare this against the CMIP6 models EF
ensemble mean given by the blue line and the shaded region
indicates plus and minus one standard deviation from the mean
(the same is provided in red for the CMIP6 models temperature

Fig. 3 Modelled relation between seasonal cycle amplitude in temperature and evaporative fraction. For the four main Amazon regions (NWS, NSA,
NES, and SAM), and for ESM projections of both the historical period since 1900 and future projections under SSP5-8.5 up to 2099, we present annual
anomalies (relative to the reference year 1979) in evaporative fraction as a function of near-surface temperature seasonal cycle amplitude. Each ESM uses
a different combination of colour code and symbol. For each ESM, each mark is a yearly anomaly between 1900 and 2099. The black dashed line is the
fitted regression across every marked point (i.e. calculated using data for each ESM and year). The overall goodness-of-fit is described by the correlation
statistic, r, as annotated. The light dashed line is the regression based on ERA5 data from Fig. 2.

Fig. 4 Regional variation in the correlation between evaporative fraction and temperature seasonal cycle amplitude. Spatial maps of correlation
coefficients for ERA5 data (left) and CMIP6 models (right). All data is based on yearly anomalies relative to the reference year 1979. ERA5 covers the
period 1979–2020, and CMIP6 models 1900–2099, which is comprised of the historical period and the SSP5-8.5 scenario. The four Amazonian study
regions are marked as shown.
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seasonal cycle amplitude). However, this is dependent on the
emissions scenario and gives high uncertainty partly caused by
CMIP6 models having differing climate sensitivities. Therefore, in
Fig. 5 we choose instead to plot against global warming over the
historical period (see Methods for further details). The recon-
structed evaporative fraction anomaly (smoothed over 10 years)
shows a decrease under global warming in the recent past. For all
four regions, the reconstructed HadCRUT5 evaporative fraction
agrees well with the CMIP6 model ensemble. Furthermore, using
only the temperature seasonal cycle amplitude from the CMIP6
ensemble mean, we can reconstruct the EF (light blue line) under
future climate change. In all regions the CMIP6 reconstructed EF
(and CMIP6 ensemble mean EF) show a clear continued drying
under future global warming. For the NSA region, the recon-
structed EF agrees remarkably well with the CMIP6 ensemble
mean EF and indicates a substantial drying (approximate
decrease in EF of 0.05) at 3 oC global warming. The EF in the
NWS region is also well approximated, although for the NES and
SAM regions the reconstructions slightly underestimate the dry-
ing according to the CMIP6 ensemble mean.

Discussion
Dieback of the Amazon rainforest, as a result of regional drying
and warming under anthropogenic climate change32, has long
been touted as a potential tipping element in the climate

system5,6. However, previous climate model generations have
failed to agree on the magnitude or even the sign of the future
rainfall change in Amazonia33. Here we have presented strong
evidence of a robust drying of Amazonia in the latest CMIP6
Earth System Models (ESMs), which is broadly consistent with
some other recent independent assessments34–36. Consistent
drying in the ERA5 climate reanalysis is also observed.

Our study has focused on the Evaporative Fraction (EF) as a
dimensionless measure of surface moisture availability - reduc-
tions in EF are indicative of drying of the land surface. In the
Amazon basin we find downward trends in EF in both the ERA5
climate reanalysis, and also in the historical simulations of
CMIP6, for the overlapping period of 1979–2020. Furthermore,
we have found a strong correlation between reductions in the
annual mean EF and increases in the amplitude of the tempera-
ture seasonal cycle amplitude (mean temperature of warmest
month minus mean temperature of the coolest month), which is
consistent with reduced evaporative cooling in longer and more
intense dry seasons in Amazonia37. Importantly, the relationship
remains in both idealised runs, which do not prescribe land use
changes, as well as alternative shared socioeconomic pathway
scenarios, see Table S1.

Importantly, there is agreement across the CMIP6 models on
correlations between the temperature seasonal cycle amplitude
and EF. The vast majority of models (23 out of 25) show a cor-
relation of −0.5 or stronger in the NSA region (Table S2). The

Fig. 5 Reconstructed evaporative fraction anomaly from the temperature seasonal cycle amplitude anomaly against global warming. Reconstruction of
the evaporative fraction anomaly (calculated from the HadCRUT5 (grey) and CMIP6 model ensemble mean (light blue) temperature datasets (maroon and
red respectively) using regressions calculated in Fig. 3) compared with CMIP6 model ensemble evaporative fraction mean (blue) against global warming
relative to pre-industrial. Shaded regions indicate +/− one standard deviation from the CMIP6 model ensemble mean. Values are presented for the four
main Amazon regions (NWS, NSA, NES, and SAM), and anomalies (relative to period 1979–88) are 10-year sliding window means plotted at the centre of
the window.
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two models which display weak correlations also project the
greatest wetting over the NSA region (note 22 of 25 models
project drying), and under those circumstances we should indeed
expect evaporation to be less limited by soil moisture, and
therefore for the relationship between the temperature seasonal
cycle amplitude and the EF to be much less obvious. Multiple
CMIP6 models share similar components and therefore it is
possible that the long-term drying trends observed could be
caused by systematic bias36. However, to partly mitigate against
this issue, in our analysis we select only one model per modelling
centre. Additionally, the slopes of the linear regressions between
the temperature seasonal cycle amplitude and EF are found to be
within the range of slopes derived from the different reanalysis
products.

Establishing such a strong and robust correlation has allowed
us to reconstruct historical changes in EF from much longer
records of near-surface temperature, indicating a continuous
downward trend in EF from 1900 to the present. CMIP6 model
projections suggest that this drying trend will continue with
global warming, with evaporative fraction decreasing by as much

as 5% at 2 oC of global warming. Regrettably, the evidence we
present gives reasons to be concerned about long-term drying in
Amazonia and the potential for climate change-driven Amazon
forest dieback.

Materials and methods
Data sources. For this study, we utilise data from state-of-the-art climate models,
reanalysis products, and observations.

We use the recently released ERA5 reanalysis data (Hersbach et al. 2020).
Reanalysis datasets such as ERA5 are often considered to be the closest
representation of observations, given the large number of weather station
measurements that the reanalysis product entrains. However, the number of
weather stations across the Amazon is relatively sparse31, and therefore their
accuracy in the Amazon region is still limited. Hence, we compare the relationship
between evaporative fraction and temperature seasonal cycle amplitude in the
NCEP-DOE R238, MERRA-239, JRA-5540 reanalysis products as well (see
Figs. S1–S3 and Table S1).

Observational near-surface temperature from the HadCRUT5 dataset is used
for reconstruction of the historical evaporative fraction anomaly41. Due to the
increased number of measurements across the Amazon basin, historical
temperature observational records are used from 1900 up to the end of 2020.

The climate models used are from the 6th Phase of the Coupled Model
Intercomparison Project CMIP642. See Table 1 for a full list of CMIP6 models used.

Table 1 List of CMIP6 models used.

Model Institute Model Institute

ACCESS-ESM1-5 Australian Community Climate and Earth System
Simulator, Australia

IITM-ESM Indian Institute of Tropical Meteorology Pune, India

AWI-CM-1-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and
Marine Research, Germany

INM-CM5-0 Institute for Numerical Mathematics, Russia

BCC-CSM2-MR Beijing Climate Center, China IPSL-CM6A-LR Institut Pierre Simon Laplace, France
CanESM5 Canadian Centre for Climate Modelling and

Analysis, Canada
KACE-1-0-G National Institute of Meteorological Sciences/Korea

Meteorological Administration, South Korea
CAS-ESM2-0 Chinese Academy of Sciences, China MCM-UA-1-0 University of Arizona, USA
CESM2-
WACCM

National Center for Atmospheric Research, Climate and
Global Dynamics Laboratory, USA

MIROC-ES2L JAMSTEC (Japan Agency for Marine-Earth Science
and Technology); AORI (Atmosphere and Ocean
Research Institute); NIES (National Institute for
Environmental Studies); R-CCS (RIKEN Center for
Computational Science), Japan

CIESM** Tsinghua University, Japan MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany
CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti

Climatici, Italy
NESM3 Nanjing University of Information Science and

Technology, China
CNRM-ESM2-1 CNRM (Centre National de Recherches Meteorologiques);

CERFACS (Centre Europeen de Recherche et de Formation
Avancee en Calcul Scientifique), France

MRI-ESM2-0 Meteorological Research Institute, Japan

E3SM-1-1* LLNL (Lawrence Livermore National Laboratory); ANL
(Argonne National Laboratory); BNL (Brookhaven National
Laboratory); LANL (Los Alamos National Laboratory); LBNL
(Lawrence Berkeley National Laboratory); ORNL (Oak
Ridge National Laboratory); PNNL (Pacific Northwest
National Laboratory); SNL (Sandia National
Laboratories), USA

NorESM2-LM CICERO (Center for International Climate and
Environmental Research); MET-Norway (Norwegian
Meteorological Institute); NERSC (Nansen
Environmental and Remote Sensing Center); NILU
(Norwegian Institute for Air Research); UiB
(University of Bergen); UiO (University of Oslo); UNI
(Uni Research), Norway.

EC-Earth3-Veg AEMET, BSC, University of Santiago de Compostela, Spain;
CNR-ISAC, ENEA, ICTP, Italy; DMI, Denmark; FMI,
University of Helsinki, Finland; Geomar, KIT, Germany;
ICHEC, Met Eireann, University College Dublin, Ireland;
IDL, IPMA, Portugal; IMAU, KNMI, NLeSC, surfSARA,
Utrecht University, Vrije Universiteit
Amsterdam,Wageningen University, The Netherlands;
Lund University, SMHI, Stockholm University, Uppsala
University, Sweden; NTNU, University of Bergen, Norway;
Oxford University, UK; Unite ASTR, Belgium; University of
Copenhagen, Denmark

SAM0-
UNICON**

Seoul National University, South Korea

FIO-ESM-2-0 First Institute of Oceanography, China TaiESM1 Research Center for Environmental Changes, Taiwan
GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, USA UKESM1-0-LL Met Office Hadley Centre, UK
GISS-E2-1-G Goddard Institute for Space Studies, USA

Models are used for all three scenario runs (SSP5-8.5, SSP2-4.5, 1%CO2) unless otherwise stated. *E3SM-1-1 used only for SSP5-8.5, alternative version E3SM-1-0 used for 1%CO2. **CIESM has errors in
initialisation of SSP runs; SAM0-UNICON only has data available for 1%CO2 runs.
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For consistency with the historical observations we use climate model output from
1900-2100, consisting of historical runs spanning 1900-2014 inclusive, which are
combined with the no climate mitigation Shared Socioeconomic Pathway SSP5-
8.543 to the end of the 21st century. A medium emissions scenario SSP2-4.5 and an
idealised run with a prescribed 1% per year increase in atmospheric CO2, are also
analysed to demonstrate the robustness of the derived relationship between
evaporative fraction and temperature seasonal cycle amplitude anomalies, see
Figs. S4 and S5 and Table S1.

All data is linearly interpolated onto a universal 1ox1o grid to allow direct
comparison amongst CMIP6 models, reanalysis products, and observational data.

Temperature seasonal cycle amplitude. For the purposes of this study, the
temperature seasonal cycle amplitude is defined as the difference between the
minimum and maximum monthly means of each calendar year.

Evaporative fraction. In addition to the near-surface temperature, land-
atmosphere energy flux exchanges are used to derive the evaporative fraction.
Specifically, the evaporative fraction, EF, is defined as the ratio of latent heat, LE, to
the available energy, which is equal to the sum of latent heat and sensible heat, H:

EF ¼ LE
LEþH

Obtaining reconstructed evaporative fraction from the temperature seasonal
cycle amplitude and linking to global warming. In this section, we provide a
detailed description of the method used to generate the reconstructed evaporation
fractions and subsequent links to global warming, as plotted in Fig. 5. First, we
calculate annual anomalies (relative to year 1979) for the local temperature
seasonal cycle amplitude, for both the HadCRUT5 data set and each CMIP6
model. We similarly calculate the local annual evaporative fraction anomalies for
the individual CMIP6 models. Additionally, to assess predictive capability, we
generate reconstructions of the evaporative fraction anomalies (for both Had-
CRUT5 and individual CMIP6 models). This reconstruction uses the relevant
annual temperature seasonal cycle amplitude anomalies and linear regressions
derived for each region in Fig. 3 (the black dashed lines). All anomalies, in
temperature seasonal cycle amplitude and evaporative fraction are subsequently
smoothed over a 10-year sliding window with a running mean and can be plotted
as a time series (using the CMIP6 model mean and standard deviation for range)
as shown in Fig. S6. However, presentation in this form is dependent on the
selected modelled future GHG scenario and furthermore, produces a large
uncertainty range partly because CMIP6 models have substantially different cli-
mate sensitivities and therefore warm at different rates. To reduce these depen-
dences and to make our results more relevant to the Paris global climate targets,
we plot changes in South American temperature seasonal cycle amplitude and
evaporative fraction against global warming (as opposed to year) in Fig. 5. Our
analyses employ the measurement dataset HadCRUT5, and CMIP6 models for
projections, both of which have data for both the Amazon and globally, so this is
relatively straightforward to do. Specifically, we calculate global warming
anomalies relative to the period 1850-1900 inclusive, for each 10-year sliding
window for HadCRUT5 and the individual CMIP6 models. Applying a nearest
neighbour interpolation generates local anomalies of temperature seasonal cycle
amplitude and evaporative fraction on a universal array of global warming levels.
This array of global warming ranges between −1 and +4 in steps of 0.05 and is
used for each dataset (either HadCRUT5 or individual CMIP6 model). Impor-
tantly, no extrapolation is performed and so if a global warming level lies outside
of a given dataset then no value is provided. Similarly, no values are provided for
the CMIP6 ensemble mean and standard deviation banding if there are less than
10 CMIP6 model entries.

Data availability
The datasets analysed during this study are available online: CMIP6 model output [https://
esgf-node.llnl.gov/search/cmip6/], ERA5 reanalysis output [https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5], HadCRUT5 observational data [https://www.
metoffice.gov.uk/hadobs/hadcrut5/], NCEP-DOE reanalysis output [https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis2.html], MERRA2 reanalysis output [https://disc.gsfc.
nasa.gov/datasets/M2TMNXFLX_5.12.4/summary?keywords=MERRA-2], JRA-55
reanalysis output [https://rda.ucar.edu/datasets/ds628.0/].

Code availability
Code for reproducing the main plots of the manuscript is publicly available at
https://github.com/PaulRitchie89/CEE_code.
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