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A flood-crest forecast prototype for river floods
using only in-stream measurements
Marian Muste1, Dongsu Kim 2✉ & Kyungdong Kim2

Streamflow forecasting generally relies on coupled rainfall-runoff-routing models calibrated

and executed with data estimated by monitoring protocols that do not fully capture the

dynamics of unsteady flows. This limits the ability to accurately forecast flood crests and

issue hazard warnings. Here we utilize directly measured datasets acquired for streamflow

estimation to develop a data-driven forecasting algorithm that does not require conventional

physically-based modeling. We test the potential of our algorithm using measurements

acquired at an index-velocity gaging station on the Illinois River, USA, between 2014 and

2019. We find that the forecasting protocol is able to deliver short-term predictions of flood

crest magnitude and arrival time. The algorithm produces better agreement with larger

events and is more reliable for single-peak storms possibly due to the prominence of hys-

teretic behavior in such events. We conclude that flood hazard can be forecast using directly

measured index-velocity and stage alone.
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The expectation of improved flood warnings has become
critical for many agencies and communities at a time when
flooding is increasingly severe and widespread1. Key

questions for flood crisis managers are still not adequately
answered: (a) How high will the river rise? (b) When will the river
reach its peak? (c) How long will flooding last? Addressing these
key questions requires understanding the science driving floods
over various spatio-temporal scales2–4, using adequate predictive
models5, and supplying accurate input datasets for the modeling
execution6. In addition to the quantitative precipitation forecasts
from numerical weather prediction models, the current stream-
flow forecasting is typically provided by coupled hydrological-
hydraulic models with input and boundary conditions provided
by direct measurements of water cycle variables. The reliability of
flood warnings depends on the models’ skills, the assumptions
used for the modeling scenarios, and the quality of the input data
used for the modeling. In general, flood warnings are still under
the desired level of accuracy as they accumulate uncertainties
generated by precipitation prediction, the runoff modeling itself,
routing methods, and setting boundary conditions for in-stream
flow simulations7–9.

The discussions in this paper revolve around one of the
components of predictive modeling: the unsteady channel flow
routing. Channel routing impacts the timing and magnitude of
the flood elevations at specific locations5,10. In turn, flood ele-
vations along the channel length determine the capacity of the
river to contain the flood discharge (which may vary in space and
time) as well as the flood extent over the floodplains11. Channel
routing models are calibrated, validated, and run with long-term
streamflow data that most often are based on streamflow mon-
itoring relationships (a.k.a. ratings) that overlook some aspects of
the stream dynamics during unsteady flow propagation. Knight12

points out that these relationships are not suitable for modern
hydraulic analysis. Moreover, these ratings display uncertainties
for the higher flow range because the calibration points are less
dense in this flow range13. In addition, the use of assumed rather
than observed boundary conditions in modeling unsteady flows
can produce uncertainties that can exceed those generated by
modeling itself14.

Most often, the streamflow monitoring relationships sup-
porting forecast modeling rely on stage-discharge and index-
velocity ratings derived empirically15,16. Their construction is
based on statistical analysis uniformly applied to extensive
datasets collected in steady and unsteady flows. These one-to-one
ratings are subsequently used for estimating steady and unsteady
flows, even though, in the latter case, the relationships between
flow variables are different for the rising and falling phases of the
flow hydrographs4. This non-single-valued dependence of the
relationships is labeled by the hydrometric community as hys-
teresis to indicate that the status of the flow at any given time is
dependent on its history in reaching that state. With the advent
of affordable and fast sampling rate pressure transducers, the
Continuous Slope-Area (CSA) method has also been tested for
continuous streamflow monitoring17,18. This method was ori-
ginally developed for extending the stage-discharge rating in
areas of high flows using high water marks left on the ground
after flood recess.

Hysteresis is inherent during the gradual propagation of flood
waves in lowland areas, regardless of the river size4. Flood wave
signature can affect up to 50% of the annual streamflow cycle in
many unregulated rivers19 and in even higher percentages in
regulated rivers20. Note that in some situations the hysteresis
effect on the monitoring methods is small. This is certainly the
case for fast flows propagating on larger streambed slopes.
However, for intermediate and lowland streams exposed to fast-
varying flows, the hysteretic behavior is prominent. In medium-

sized streams exposed to rapidly changing and unsteady flows,
differences of up to 30% have been found between streamflows
estimated with stage-discharge ratings and the actual flows20.
Currently, the United States Geological Survey (USGS) delivers
real-time discharge data for ~9000 sites across the nation, most of
them relying upon stage measurements and a stage-discharge
rating to estimate discharge in real-time. A recent evaluation by
the USGS of 5420 of its gaging stations that use stage-discharge
ratings found 67% of the stations are potentially moderately or
strongly affected by hysteresis21. Despite its ubiquitous presence
and considerable impact on data accuracy acquired with con-
ventional monitoring methods, there is no indication of sys-
tematic efforts to identify the sites prone to hysteresis and
account for hysteresis effects in real time.

Hysteresis is well documented in the canonical literature22,23

and known to monitoring agencies21,24. Actually, the stage-
discharge rating misses the hysteretic behavior altogether because
this rating is the same for the rising and falling limbs of the
hydrograph. Corrections or more complex semi-empirical ratings
can be applied to recover the hysteretic loop associated with the
flood wave. However, complex rating is only applied to rivers
located in major flood-prone areas, with the purpose of providing
more accurate data for streamflow forecasting models. Hysteresis
occurring in medium and small inland rivers is undocumented in
most cases, as the hydrometry community perceives that the
hysteresis impact is small and cannot be discerned from instru-
ment uncertainty21.

The index-velocity monitoring method is better at capturing
the unsteady flow dynamics as it adds the index velocity (a
kinematic flow parameter) to stage measurement (geometric flow
parameter). Consequently, the index-velocity method displays
loops in the relationships among the variables (quasi-circular
shapes when represented graphically). However, the construction
of the index-velocity ratings is based on statistical analyses
leading to one-to-one relationships like those for the stage-
discharge ratings, hence its accuracy is still under scrutiny18.
While the CSA method captures hysteresis and does not need
ratings, it is still rarely used (if at all) for continuous flow mon-
itoring at operational gaging stations. Currently, none of the
continuous monitoring methods are used to forecast streamflow
based only on the measured data.

The focal point of this paper is to reveal the hysteretic
behavior of flow variables as documented by in situ measure-
ments acquired with the index-velocity (mostly) and CSA
methods (for completeness), and to illustrate that, by exploiting
subtle features of hysteresis behavior, we can develop protocols
for forecasting the flood crest properties by relying only on
measured data, without having to make recourse to physically
based numerical modeling. Our discussions are relevant for
conditions where hysteresis is produced by unsteady flow acting
in isolation from other potential causes (e.g., effects of instream
vegetation, development of bedform-induced roughness, and
baseflow-stream interactions). Furthermore, we only consider
flows predominantly controlled by friction (channel control)
rather than bedform features (local control). For the present
context, we will limit the discussed hysteresis-related impacts to
in-bank flows as above the bankfull stage, the mass and
momentum exchanges between the main channel and flood-
plain generate additional flow complexities. Under these con-
ditions, the unsteady flow in natural channels can be described
by canonical open-channel equations22,25.

The paper starts by re-reviewing the governing equations for
unsteady open-channel flows to substantiate the hysteresis origin
and its impact on the flow variables measured in situ. The
methods portion of the paper describes the basis of a new fore-
casting algorithm and illustrates, using the index-velocity
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acquired at an existing gaging station, how this algorithm can
anticipate the flood crest characteristics. Finally, we highlight the
contributions brought by the proposed method and means to
further optimize some of its aspects.

Results and discussion
Relevant features of unsteady open-channel flow dynamics.
It is well known that flow variables are non-uniquely related
during the ascending and descending phases of gradual time-
varying flows4. While this statement is rarely proven with data
acquired in field conditions, there are several laboratory studies
that demonstrate this fundamental aspect of unsteady flow
dynamics26,27. Laboratory studies also found that the differences
between flow phases are more prominent for high flows and rate
changes28,29. For substantiating the origins of these differences,
we make reference to the Saint-Venant equations that are often
used in hydraulic modeling to describe unsteady flow propagation
in streams22. A convenient form of these equations for the pre-
sent context is the one offered by Knight12 where the unsteady
flow discharge, Q, is related to that in steady and uniform flow, Qs

ð1Þ

with

Qs ¼ ð1=nÞAR2=3
ffiffiffiffiffi

S0
p

¼ K
ffiffiffiffiffi

S0
p ð2Þ

where Q is the unsteady flow discharge, h is the flow depth, U is
the cross-section mean velocity, t is time, and x is the distance
along the channel direction. Note: flow depths in natural streams
are determined by measurements of free surface elevation (a.k.a.
stage), H. The steady-uniform flow discharge, Qs, is obtained with
Manning’s equation (see Eq. (2)), where n is the Manning’s
roughness coefficient, A the cross-sectional area, R the hydraulic
radius, S0 the bed slope, and K the channel conveyance (in metric
units)22. Previous use of Eq. (1) for channel flow routing has
shown that it is satisfactory for all flood wave propagation,
regardless of the wave type: kinematic, diffusion, or full
dynamic30–32. Eqs. (1) and (2) are strictly valid up to the bankfull
stage of a regularly shaped, prismatic, and straight channel (i.e.,
without changes of the streambed geometry in the vertical or
horizontal planes along the measurement reach) with quasi-
constant channel boundary roughness. Fortunately, most of the
above requirements are also recommended for selecting the
optimum location for the gaging stations15.

The type of dominant wave for a given situation is
determined by the relative contribution of the terms in Eq.
(1). These terms continuously change their magnitude and signs
(i.e., positive or negative) during the flood wave propagation,
commensurate with the slope of the streambed at the site, the
intensity of the propagating wave (i.e., its magnitude vs.
duration), and the flood wave propagation phase22,30. Given
that hysteretic effects are more pronounced for non-kinematic
waves, there is a need to anticipate the type of wave developing
for specific sites and events. The ability to identify the type of
wave that will develop at a specific site and flow situation is
critical for selecting the appropriate monitoring method and for
selecting the appropriate channel flow routing model. With this
intention in mind, Lee33 assembled a set of hysteresis diagnostic
formulas that identify thresholds and ranges for the flow
variables that are indicative of specific flood wave types
developing at a given site. For illustration purposes, Table 1
provides three out of a dozen methods identified by Lee33.
The diagnostic formulas can be tested for both new and existing

monitoring sites by analyzing the sites’ hydro-morphological
characteristics and streamflow records19.

Two main features ensue from Eq. (1). First, the relationship
between any pair of mean flow variables is distinct on the rising
and falling limbs of a flood wave, as illustrated by the loops in
Fig. 1a–c. Second, the hydrographs of variables used for
estimating the discharge are distinct, with their maximum values
(a.k.a. peaks) occurring in the following order: energy slope, bulk
flow velocity, discharge, and flow depth, as illustrated in Fig. 1d.
The discussion of the phasing of the mean flow variables in
unsteady flows has been brought only in a handful of previous
analytical34,35 and experimental26,28,36 studies. Note that if a
monitoring method captures hysteresis of flow variables, it also
reveals the hydrograph sequencing, and vice-versa4.

Until recently, hysteretic behavior has rarely been captured in
natural streams because of the historical lack of high-temporal
resolution instruments and of simultaneous measurement of at
least two flow variables. The introduction of the new generation
of acoustic-profilers at gaging stations enabled additional and
valuable insights into the dynamics of unsteady open-channel
flows. One such site, used as a case study herein, is the USGS
gaging station #05558300, located on the medium-sized Illinois
River, in Illinois, USA37. Before selecting this site for illustrating
hysteresis-related features, we explored 6 years of data recorded at
the station to diagnose the hysteresis presence. The implementa-
tion of the Dottori et al.24, Mishra and Seth38, and Fread39

diagnostic formulas to the available dataset have compellingly
confirmed the possibility of developing diffusion and full dynamic
waves even for storms that are relatively moderate in magnitude.

In order to illustrate the hysteresis behavior with field data,
we plot in Fig. 1e–g samples of directly measured stage and
index-velocity time series at the USGS gaging station #
05558300, along with the discharges estimated with the index-
velocity ratings, for the largest storm of the water year 2017
(retrieved from ref. 37) using the same format as in Fig. 1b–d. To
facilitate the identification of the variables’ peaks in the latter
figures, we applied a variable-span smoother based on local
linear fit40 to the 5-point average stage and index-velocity
dataset collected by a Horizontal Acoustic-Doppler Current
Profiler (HADCP). The visual inspection of the plots in Fig. 1e–g
reveals several notable aspects. First, we observe that the shape
of the loops in Fig. 1b and c and in Fig. 1e and f, respectively, are
similar. Note that the bulk flow velocities shown in Fig. 1b and
the index-velocities shown in Fig. 1e are related through a one-
to-one relationship (i.e., the index-velocity rating), hence, they
preserve the loop shapes. Second, Fig. 1g confirms the
separation of the variable hydrographs hinted at in Fig. 1d,
and their identical sequencing order.

To complete the illustration of hysteretic impact on flow
variables beyond the illustration in Fig. 1e–g, we add herein in-
situ measurements acquired with the CSA method that
capture flow dependencies not observable at an index-velocity
station. These measurements were acquired with commercially
available pressure sensors in a small lowland stream18. The CSA
monitoring entailed fast-sampled stage measurements at two
close locations to determine the free-surface slope that was
subsequently assimilated in Eq. (2). Like Eq. (1), the implementa-
tion of CSA using Eq. (2) is only valid for sites that are controlled
by friction forces over the measurement reach (i.e., quasi-constant
shape and straight channels). Figure 1h–j show the relationships
between free-surface slope (that is proportional to the energy
slope for short reaches) vs. stage; stage vs. discharge; and the
variable hydrographs phasing estimated with the CSA method for
one of the spring storms passing through the USGS site
#05454220 during the spring of 2017. These plots reveal
relationship shapes similar to those illustrated in Fig. 1a, c, and
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d, respectively. The separation in the stage–discharge relationship
in Fig. 1i is much smaller than that shown in Fig. 1f because of the
wide difference in river size (i.e., about one order of magnitude
difference in stream width) and the much narrower range for the
variation of the flow variables. Even for such small hysteretic
effects, we observed a difference of 16% in the discharge for
the same stage in the area of maximum loop thickness. The
time difference between the free-surface and stage peaks for the
smaller stream is 2.25 h (see Fig. 1j), much smaller than the
2.5 days observed in the larger stream (see Fig. 1g).

The plots of the direct measurements illustrated in Fig. 1e–j
reveal that sampling the flow variables in situ with high-temporal
resolution measurements allows to capture the hysteresis
associated with the gradual propagation of flood waves,
regardless of the river size. Measurements utilizing the CSA
method also indicate that, for small streams and small flood wave
propagating through the measurement site, the effect of
hysteresis might be detected with commercially available
instruments. More importantly, the phasing of the hydrographs,
which is the basis of the forecasting approach discussed herein, is
substantiated when using direct measurements of more than one
flow variable as is done for both index-velocity and continuous-
slope area methods.

Results
The triggering point for the proposed forecasting protocol stems
from the inspection of the time series for stage and index-
velocities recorded over 6 water years at the hysteresis-prone
USGS #05558300 station19. The inspection highlighted a persis-
tent trend in the index-velocity and stage time series: index-
velocity peaks precede the stage peaks. This trend hinted that the
index-velocity peak can be used as a pivotal point in anticipating
the stage peak. The practical question then becomes: how high-
temporal resolution measurements of index-velocity and stage, in
conjunction with knowledge on hysteretic behavior in channel
flows (see Fig. 1g), can be used to estimate the flood crest arrival
time and its magnitude?

The short-term forecasting foundation was obtained by data-
mining the records available at the station for identifying the
hysteretic-related patterns affecting the index-velocity and stage
time series pairs and by parameterizing each pulse occurring
during storm events. We define pulses as groups of consecutive
data points on the index-velocity hydrograph pertaining to a flow
acceleration-deceleration cycle. A single-pulse storm produces one
peak in the stage time series that, in fact, represent the flood crest.
Multiple-pulse storms result in a flood crest that cumulates the
effect of all pulses that occur during the rising phase of the stage
hydrograph. The need for distinguishing between single- and

Table 1 Hysteresis diagnostic formulas4.

Reference Criterion description

Fread39 Insignificant: S0 > 0.001 & 0 < dh/dt < 1.219m h−1; moderately significant: 0.0001 < S0 < 0.001 & 0.03 <
dh/dt < 0.914m h−1; significant: S0 < 0.0001 & dh/dt > 0.015 m h−1

Ponce51 Crago and Richards52 τ= TS0V/D with τ—parameter, T—wave period; V—reference mean flow velocity; D—reference flow depth; for
kinematic wave: τ > 171, for non-kinematic wave: τ < 171

Dottori24 S0≥ 5 × 10−4 (steep slope); Good estimator for kinematic or quasi-kinematic conditions.

Fig. 1 Hysteresis effects on flow variables. a Stage vs. free-surface water slope4. b Stage vs. index velocity19. c Stage vs. discharge4. d Hydrograph phase
sequencing4. e–g Relationships for pairs of variables measured during a flood wave propagating through USGS #05558300 index-velocity station. See
Supplementary Data 1 to generate related charts. h–j Relationships for pairs of variables measured with the CSA method during a flood wave propagating at
USGS #0545422018. Rising and falling terms in the plots specify stage variation phases (i.e., from steady flow to Hmax). See Supplementary Data 2.
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multiple pulse storms stems from the fact that each pulse has a
unique and distinct impact on the stage hydrograph depending on
its past and progression. The multiple-pulse storms are more
common than the single-pulse ones in natural channels.

The identified pulses were subsequently parameterized to
capture the time-evolving impact of the index-velocity pulses on
the associated stage hydrographs accounting for: (a) the mag-
nitude of the velocity and stage at the pulse origin; (b) the
intensity of the pulse (i.e, ratio between pulse peak magnitude
and its duration, and the gradient of the acceleration phase);
and, (c) the phase of the stage hydrograph (i.e., rising or falling).
The time-resolved parameterization of the velocity-stage peak
correlations were assembled in graphical and analytical forms
relating: (i) the peak index velocity with the associated phase lag
of the stage peak; and (ii) the magnitude of the index-velocity
gradient with the gradient of the associated stage peak. The
graphical illustration of the above-mentioned forecasting aids is
plotted in Fig. 2. The actual forecasting entails real-time tracking
of the incoming index-velocity peaks, backtracking the pulse
parameters from their initiation, and, entering the correspond-
ing values in the assembled forecasting relationships to antici-
pate the magnitude and timing of the phase-lagged flood crest.
The details of the data-driven forecasting protocol are described
in the “Methods” section.

Below, we test the performance of the developed forecasting
protocol using data publicly available at the USGS station
#05558300. Table 2 illustrates the performance of the forecasting
protocol by comparing the hindcasted values of the flood crest
magnitude and time lag between index-velocity and stage peaks
with the actual recorded data at the station for the largest storms
of the water years 2014–2019. Only three of the storms were

above 6.7 m associated with the Action Stage for this location.
This stage magnitude is identified by specialized agencies in the
US to alert communities for potential flooding in their area41.
Overall, the differences between the predicted and recorded
values of the stage crest are <10%, with more than half of the
predicted values within a ~5% range. The differences between the
prediction and actual values for the arrival time of the crest are
larger than those in predicting the flood crest magnitude. The
visual inspection of the forecasting graphs suggests that these
differences occur due to the flatter gradients of the forecasting
relationship for the flood crest. More investigations are needed to
reveal a physically based explanation for the differences. Another
notable feature of the presented results is that the lag between
hydrograph peaks for the largest storm of the observation period
is between 30 and 65 h, equivalent to 1.25–2.7 days, time interval
that enable managers and public to evacuate and make last-
minute interventions or to intervene with additional information
in the streamflow forecasting modeling executed in real time.

Inspection of the storms in the available dataset allowed us to
observe that larger events produce better agreement between the
forecasted and actual magnitude of the forecasting parameters,
most probably because of the prominence of the hysteretic
behavior in the larger events. Moreover, the analyses seem to
indicate that the forecasting are more reliable for single-pulse
storms suggesting that more refinements of the algorithm are
needed for accurate index-velocity peak predictions in multi-
pulse storm events. Unquestionably, many of these inferences will
improve with an increase of the number of datapoints in the
training datasets and of the number of analysis sites.

Discussion
Currently, forecasting practices rely on hydrologic/hydraulic
modeling developed and run with streamflow data acquired with
conventional monitoring methods that most often do not capture
the entire complexity of unsteady flow dynamics. The quality of
these forecasts improves if the models use data produced by
superior instruments embedded in conventional monitoring
methods. Relevant examples along this line include the use of
real-time delivered data produced at index-velocity stations used
for illustration in this paper. Use of these superior instruments
allows us to re-think monitoring methods altogether by using the
directly measured data and their spatial and temporal gradients in
conjunction with canonical flow equations, such as Eq. (1).
Moving away from the traditional, empirically based ratings
would unquestionably contribute to reducing uncertainties rela-
ted to modeling flow routing, thus improving the quality of

Fig. 2 Parameterized velocity-stage peak correlations. a Index-velocity vs. stage peak lag and b index-velocity gradient vs. associated stage peak gradient.
Note: the unsteadiness coefficient, α*, is determined with Eq. (4) applied to the 2014–2018 training dataset (see the “Methods” section and
Supplementary Data 3).

Table 2 Forecasting protocol performance tested on the
largest annual storms during 2014–2019 period.

Year Forecast Difference (%)a

Stage (m) Lag (h) Stage Lag

2014 5.3 33.3 5.7 −3.0
2015 5.9 41 −3.4 −9.8
2016 6.2 27 1.6 −7.4
2017 7.8 39 −5.1 2.6
2018 6.9 39 1.4 −7.7
2019 9.8 64.7 3.1 −0.3

aThe reference values for the comparison are the measured values of the stages and time of
crest arrivals.
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conventional forecasts. Moreover, the rating-less monitoring
methods assure superior quality benchmarks for advancing
hydrological understanding of watershed dynamics and better
support scientific studies on the changes in water cycles, ecolo-
gical patterns, and climate trends.

Use of advanced instruments also opens opportunities for
developing new forecasting approaches using only streamflow
data, rather than having to model all the water cycle compo-
nents involved in traditional forecasting. The data-driven
algorithm presented in this paper unequivocally demonstrates
such a potential. Exploiting subtle features related to the hys-
teretic behavior of the flow variables enables us to anticipate
the flood crest magnitude and its timing using only
in situ measured data. To the best of our knowledge, this
forecasting approach has not been published so far. Assimila-
tion of direct measurements in data-driven modeling inferences
informed by physically based channel routing equations has the
potential to reduce uncertainties generated by the execution of
the conventional multi-component streamflow forecasting with
hydraulic/hydrologic models42.

The proposed forecasting algorithm has several advantages
over conventional approaches. The first advantage entails the
formulation of science-sound and cost-effective means of releas-
ing short-term flood warnings using only directly measured data,
without relying on hydraulic/hydrologic modeling or rating
curves. This is demonstrated in the present paper with HADCP
measurements acquired with well-established infrastructure and
operational knowledge at an existing USGS index-velocity gaging
station. Notably, the formulation of the early warnings is based
solely of continuous measurement of river stage and velocity,
without requiring estimation of discharges, a laborious process in
itself. This aspect was also hinted by43 from their observations on
the sequencing patterns between stage and free-surface velocity
measured with radars during unsteady flows. The proposed
algorithm can be readily implemented at any index-velocity sta-
tions, especially as this monitoring approach is increasingly used
today in areas exposed to hysteresis and backwater effects using a
variety of new instruments (e.g., radars and image velocimetry).

The second advantage of the proposed forecasting algorithm is
that it can be used for supporting the calibration and validation of
predictive channel routing numerical models based on Eq. (1) at
hysteresis-prone sites with stage-discharge ratings (overwhelming
used at existing gaging stations and known to be insensitive to
hysteresis). After getting a better understanding of the interplay
between velocity and stage relationship during hysteresis (with all
its subtleties and particular cases) and development of generic
relationships for specific site categories, we can use the forecasting
algorithms discussed herein for supporting the calibration and
validation of the channel routing models with new type of
information. For this purpose, transfer functions relating to the
index-velocity and stage should be developed and generalized to
be applicable to Eq. (1) for future time series scenarios44. This
development will enable to extend forecasting at any gaging site
along the fluvial system and will reduce the uncertainties asso-
ciated with flood type identification currently involved in running
the routing models. Finally, the use of the above-mentioned
short-term predictive combination will lower the uncertainty in
the streamflow forecasting contributed by the the precipitation
and runoff modeling components.

The third advantage is that the skills of the data-driven fore-
casting algorithms are continuously improving for multiple sce-
narios with the acquisition of new data at a gaging site. This is in
contrast with the modeling-based forecasts that are developed
using long-term historical records that need to be re-evaluated for
each new simulation45. Coupling the data-driven inferences on
the flow variables and the associated forecasting parameters (see

the “Methods” section) with the uncertainties in the input para-
meters within a Bayesian framework46 could improve the
robustness and confidence of the forecasts developed with this
approach. At a time when the storms become more intense and
frequent, this method will allow to infer the impact of non-
stationarity in hydrologic extremes using the observed changes in
the flood wave characteristics.

During the proof-of-concept phase of the development of the
data-driven forecasting approach, we used only simple analysis
tools and manual data manipulations. However, we identified
several aspects that can be further optimized for implementation
and generalization by using contemporary artificial intelligence
tools. Algorithm optimization will require: (a) automating the
peak variable detection using algorithms for pattern discovery
based on dynamic time warping47; (b) testing of optimum
methods for estimating flood wave intensity for single- and
multiple-pulse storms; (c) testing alternative regression equation
types for the forecasting relationships; (d) estimating the extent of
the time series needed to obtain reliable forecasts; and (e) adding
simulation modules with real-time data assimilation capabilities
for automated prediction of the flood crest arrival and its mag-
nitude. The outcomes of the forecasting implementation descri-
bed here are valid only for the site where the analysis was
conducted, which is obviously insufficient for a robust validation
of a data-driven algorithm for the hydrology domain48. Gen-
eralization of the algorithm requires: (a) considerably increasing
the number of data-mined time series for a specific site and
extending the number of sites to include various hysteresis-
sensitive regions; (b) extending the proposed data-driven algo-
rithms to build a comprehensive understanding of its perfor-
mance for various types of hysteresis-prone sites and range of
flow conditions.

Conclusion
The paper demonstrates that using datasets collected at an index-
velocity station with just one instrument unit enables short-term
forecasting of the magnitude and timing of a flood crest arrival
during the occurrence of hydrological events. We are aware that
our proof-of-concept and conclusions are based on a limited
dataset. From this perspective, the outcomes of the discussion
should be regarded as being indicative rather than confirmative. It
is our hope, however, that these discussions illustrate the bene-
ficial aspects of detecting and using hysteresis behavior as a
reliable means of producing a new way for streamflow forecasting
using only direct in situ measurements. The proposed data-driven
approach can be independently used for delivering short-term
forecasts for the magnitude and arrival time of a flood crest, free
of ratings and without resorting to modeling. The approach can
also be complementary used to supplement physically-based
modeling within a data assimilation framework that takes
advantage of the precipitation forecasts.

While still in its infancy, there is convincing evidence that the
algorithm presented here can provide important scientific insights
into the propagation of flood waves though river networks, and
the much-needed impetus to revise and refine the methodologies
for more accurately monitoring unsteady flows. The capability to
provide observation-based predictions on the sequence and tim-
ing of the hydrographs of index-velocity and stage in real time are
essential for flood defense agencies to accurately provide flood
warnings to the public that can protect life and property, espe-
cially in rivers without modeled forecast points. Once fully
developed and tested, this method can turn many of the nation’s
and world’s stations exposed to hysteresis into independent,
short-term, streamflow forecast points. The implementation of
the forecasting approach proposed herein can advance flood
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science with data-based inferences that enable a systematic
investigation of the effect of variable flood wave velocities pro-
pagating through a channel network and, hence, the creation of a
more accurate spatial flood scaling. This goal can only be
achieved by implementing novel techniques for observing, in a
systematic and widespread fashion, the physical phenomena
relevant to water transport in the landscape.

Methods
Forecasting method conceptualization. The basic assumption for developing the
protocol is that passages of storm events at a hysteresis-prone site produce rela-
tionships between flow variables that replicate themselves for identical flow events
passing through the site. In other words, unsteady flow pulses of the same intensity
applied to the same state of the variables produce hysteretic loops with similar
characteristics, whether the event is single- or multi-pulse storm. The flow accel-
eration, occurring on the ascending part of the pulse, is decisive for determining
the severity of the hysteretic loops49,50. For the protocol’s conceptualization, we
relied on the following terms (see also Fig. 3): pulse peaks, P, are consecutive data
points leading to a peak in index velocity, V index; time duration, Tr, is the time for
the pulse to reach its peak; the lag, L, is the time duration between the index
velocity peak and the associated stage peak for each individual pulse; and indices B
and P stand for the base and peak of individual pulses, respectively. Identification
of the above parameters can be automated using data-driven approaches (e.g.,
machine learning or similar).

We illustrate the proof-of-concept of the new data-driven forecasting concept with
data acquired at the index-velocity gaging station USGS #05558300. We selected this
site because the stream at this location is prone to hysteresis and because the data
acquisition and processing are made with rigorous and uniform protocols over
extended periods of time, therefore providing a reliable benchmark dataset. The station
is equipped with a HADCP (i.e., 1500 kHz SonTek-SL), used in conjunction with
typical index-velocity protocols. The HADCP measures continuously and unassisted
stage and velocities with probes collocated in the same unit. This USGS gaging station
drains an area of 35,080 km2 through a cross section of about 10m deep and 300m
wide at high flows. The maximum flow recorded at this station is 4560m3 s−1 (April
22, 2013) and the minimum flow is 30m3 s−1 (March 3, 2015). The annual mean
discharge for 2019 water year was 1100m3 s−1 with a min–max range from 85 to
3000m3 s−1 (with corresponding stages of 5.74, 4.5, and 9.5m, respectively). During
the same interval, the peak index velocity varied between 0.64 and 2.13m s−1. During
the 2013–2019 interval, there were a total of 79 storm events propagating through this
station. The training of the data-driven model was made by applying the algorithm to
65 single- and multiple-pulse storms recorded during the 2013–2018 interval and
during the largest flood event recorded in 2019. We validated the algorithm against
4 storm events recorded during 2019 at the same station. We also used the developed
algorithm for hindcasting the largest storms in each year during the analysis period.
During the proof-of-concept phase of the development of the data-driven forecasting
approach, we used only simple analysis tools and (quite extensive) manual data
manipulations, as the intent of the initial investigation was to explore and
conceptualize the algorithm’s protocol and test its feasibility.

Forecasting protocol formulation. The first step in formulating the protocol
entailed the analysis of the records available at the station for identifying the
hysteretic-related patterns and quantifying the relationships between the index-
velocity peaks and their response in stage variation for each pulse occurring during
storm events. Identification of the hysteretic patterns for single-pulse storm events
is quite straightforward, as illustrated in Fig. 3a. A pulse in the index-velocity
record is associated with a delayed peak in the stage hydrographs. For multi-pulse
hydrographs (produced by successive storms separated by short time intervals, or
inflows from tributaries entering the main-stream reach), the pairing of the index-
velocity peaks with their response in the stage hydrographs requires more caution.
Figure 3b illustrates the incremental change of the variables produced by the
propagation of a multi-pulse storm event up to the flood crest. For illustration of
the used terminology, complete notations for the pairing of the second pulse peak,
P2, are shown in Fig. 3b. Given that for flood crest prediction the timing and
magnitude of the absolute maximum of the stage peak are of primary interest, our
analysis entails only pulses located on the rising limb of the multi-pulse storms
leading to the flood crest.

Quantification of the protocol relationships is a direct reflection of the interplay
among the various terms in Eq. (1) that, in turn, depend on the type of waves
propagating through the site and the associated hysteresis intensity (i.e., ratio
between pulse magnitude and the time taken to reach this specific magnitude). We
account for hysteresis intensity by adopting the widely used unsteadiness
coefficient27. Under the assumption of hydrostatic distribution, this coefficient is
proportional to the lag between the maximum shear stress (that is highly correlated
with the maximum Vindex peak) and the maximum depth (i.e., stage peak).
Consequently, the unsteadiness coefficient is defined as the ratio between the rising
speed of the water surface, Vs, with respect to celerity, Uc. We deem that the
unsteadiness coefficient describes the hysteresis intensity (a.k.a. severity) well, and
that in turn determines the thickness of the hysteresis loop and the time lag
between the index-velocity and the stage peaks associated for a specific pulse.
Furthermore, as the rising limb is the most active period of the flood wave
propagation50, the severity is defined only for the duration of the rising limb, Tr.
Using notations illustrated in Fig. 3a, the unsteadiness coefficient α for single pulse
can be defined as

α ¼ V s

Uc
¼ ΔHP

TrUc
¼ HP �HB

Tr
´

2
V indexB þ V indexP

ð3Þ

For a multi-pulse storm, the unsteadiness coefficient is determined with
measurements taken at the beginning of each individual pulse. In order to account
for the state of the variables at the starting of the pulse, a non-dimensional term,
H*, is introduced. Using notations illustrated in Fig. 3b, the severity of the
individual pulses in a multi-pulse series is estimated by the normalized
unsteadiness coefficient, α*:

α* ¼ α´H* ¼ V s

Uc
´
ΔHPi

HB
¼ ΔHPi

TriUci
´
ΔHPi

HB
¼ HPi � HBi

Tri
´

2
V indexBi þ V indexPi

´
ΔHPi

HB

ð4Þ
where indices B and P stand for base and peak of the stage and index velocity for
individual pulses, i, and HB is the stage corresponding to the base flow for the
specific measurement location. Equation (4) for multi-pulse storm events reduces

Fig. 3 Identification of the hysteresis-related patterns for developing flood wave crest amplitude and arrival time forecasting protocol (Supplementary
Data 4). a Single-pulse storm event and b multiple-pulse storm event.
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to Eq. (3) for a single-pulse storm, therefore from this point on our algorithm uses
only the normalized unsteadiness coefficient, α*, for protocol description.

Given that some of the operational gaging stations prescribe warning levels for
the flood severity at a specific location, we deemded that it is useful to include these
parameters in the forecasting protocol, in addition to the above-described
parameters characterizing the pulse intensity. By doing so, we distinguish between
harmless index-velocity pulses from flooding perspectives (even if the pulses are
intense) and those that require immediate attention as they predict potential for
out-of-the-bank flows. Figure 3 displays the Action Stage, i.e., the first level of
warning established to inform US communities of flood threats. If such a warning
line does not exist for a measurement location, the forecasting protocol is only
based on the unsteadiness coefficient defined by Eq. (4).

In the second step of the protocol development, we assembled the unsteadiness
coefficients for all the pulses in the training dataset used for developing the data-
driven model, along with the variables that are associated with the coefficients’
determination. Figure 4a plots the normalized unsteadiness coefficients for our test
gaging station, grouped in two clusters. The /*

1cluster contains coefficients associated
with pulses that originate at stage values below the Action Stage at the origination of
the pulse. The /*

2 cluster contains parameters that are above the action stage. For our
test site, only 14 storms in the 2013–2019 period have the peak stage above this stage.
For sites that do not have established warning levels, the plot in Fig. 4a entails only
one group of points corresponding to all the occurred storms.

In the third step of the protocol development, we used the aforementioned
measured variables and the parameters derived from them for all the pulses in the
training dataset to construct the following relationships (see Fig. 4): (i) peak index
velocity vs. associated phase lag of the stage peak (see Fig. 4b); and (ii) the
magnitude of the index-velocity gradients and the associated stage peak gradient
(see Fig. 4c). The generic form of the last two forecasting relationships is
substantiated by applying exponential regression lines through the data cloud for
each of the above-mentioned relationships. For our case study, where warning
severity levels are available, these regression equations are clustered around the two
groups of unsteadiness coefficients illustrated in Fig. 4a. The R2 correlation
coefficient for the regression lines in Fig. 4b are 0.91 and 0.65 for /* values above

and below the Action Stage, respectively. The R2 correlation coefficients for the
regression lines in Fig. 4c are 0.75 and 0.61 for/* values above and below the
Action Stage, respectively. If the warning levels do not exist for a specific gaging
site, the forecasting relationships plotted in Fig. 4b and c contain only one
relationship. Needless to say, correlation coefficients improve with increased
number of data points available in the training datasets.

In summary, the construction of the forecasting protocol entails the tracing,
recording, and determining the following parameters for each individual pulse
occurred during the storm: (a) magnitude of the stage and index-velocity values at
the onset of the index-velocity pulse; (b) rates of change for the index velocity and
stage associated with the pulse; (c) duration of the rising of the pulse to its peak; (d)
unsteadiness coefficient; and (e) the time interval between the index-velocity peak
and the associated stage peak. This simple and intuitive tracing procedure is
applied uniformly to the whole training dataset. Table 3 summarizes the essential
data of the protocol formulation applied to the Henry gaging station.

The regression lines in Fig. 4b indicate that the larger pulse magnitudes (Peak
Index Velocity) are paired with larger lags between the peaks of the index-velocity and
stage hydrographs. It is noteworthy that the numerical values of the lags, L, range
between 19 and 85 h (equivalent to about 1–3.5 days), time intervals that are deemed
appropriate for delivering short-term forecasts with the present approach. Similarly,
Fig. 4c indicates that the larger storm pulse gradients (Δ Index Velocity) are paired
with larger increases in stage peak magnitudes. The relative positions of the two
groups of forecasting relationships (shown by the gray dotted lines in Fig. 4b, c) seem
to suggest that the larger flow stage, the slower the increase in lag between the index-
velocity and stage peaks, and the faster the increase in their gradient relationship,
respectively. For more definitive conclusions on the trends noticed in Fig. 4b and c
there is a need for further evaluations on the data-driven modeling applied to
considerably larger datasets and using companion numerical simulations.

Forecasting protocol implementation. If the regression equations illustrated in
Fig. 4b and c are readily available for a specific measurement location, then the
high-temporal resolution data for index-velocities should be closely observed for

Fig. 4 Construction and usage of the flood wave crest amplitude and arrival time forecasting protocol. a Unsteadiness coefficients for the pulses in the
training dataset grouped by warning severity levels. b Regression lines for the index velocity peak and the corresponding lag times in the stage progression
response grouped by warning severity levels. c Regression lines for the gradients of index-velocities and stages to their peaks grouped by warning level
severity. Note: red dotted straight lines display forecasted values based on the status of the parameters at the start of storm pulse #50 (see Table 4).
Supplementary data to generate Fig. 4 are included in Supplementary Data 5.
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preparing the flood crest characteristics forecasting. For stations where severity
warning levels exists, only index velocity associated with higher than the Action
Stage levels should be diligently monitored. Once an index-velocity peak is detected
(ideally by a dedicated software module that also applies the needed data
smoothening), the values of the peak index velocity, VindexPi, and its timing are
recorded. Back-tracing of the values of the index velocity, stage, the origin of the
pulse (VindexPi, and HBi, respectively), and determining the rising time, Tr, are
subsequently made to allow for the estimation of the gradient in the index velocity,
ΔVindex. Automation of the back-tracing and generalization of the algorithm would
benefit from developing suitable data mining and specialized artificial
intelligence tools.

The values determined above are then used in conjunction with the regression
lines provided in Fig. 4b and c to forecast the lag between the index-velocity peak
and stage peak, as well as the corresponding gradient in the stage. The determined
stage gradient is subsequently added to the stage at the origin of the pulse, HBi, to
determine the magnitude of the forecasted crest, HPi. This procedure is applied
uniformly for single- and multiple-pulse storm events. During a multi-pulse storm,
if a subsequent peak in index-velocity time series is observed while the stage
continues to increase, the warning associated with the previous flagged pulse is
canceled immediately and a new one is formulated using the same protocol.
Indicated with straight-dotted red lines in Fig. 4b and c are the forecasted and
actual parameters for Pulse #50, the largest storm recorded at this station in 2017.
The selection of this pulse was made because it is located in the denser area of the
training set, where it is deemed that the regression lines are less uncertain. Table 4
assembles samples of forecasted and actual recorded values for the flood crest
magnitude and index velocity vs. stage peak lag for the largest storms of the water
years 2014-2019 and for all the storms of 2019 water year that are above the Action
Stage. The forecasted storm pulses cover storm severity levels 1 and 2 (i.e.,
/*

1 and/*
2) as well as pulses pertaining to single- and multiple-storm events (i.e.,

Pulses #77 and #79 are the second and third pulses of a multi-pulse storm event).

Data availability
Data sets used for flood forecast at the USGS 05558300 Illinois River at Henry are freely
available online from National Water Infromation System in https://waterdata.usgs.gov/
nwis/uv?site_no=05558300. Data sets used for Fig. 1h–j are available in https://
waterdata.usgs.gov/nwis/uv?site_no=05454220 at the USGS 05454220 Clear Creek near
Oxford, IA, USA.

Code availability
No new computer code was written in preparing the paper, rather Microsoft Excel
function for the regression was applied.
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