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Critical charge transport networks in doped organic
semiconductors
Andreas Hofacker 1✉

Intrinsic organic small molecule and polymer materials are insulators. The discovery that

polymers can be made highly conductive by doping has therefore sparked strong interest in

this novel class of conductors. More recently, efficient doping of small molecule materials has

also been achieved and is now a key technology in the multi-billion dollar organic light

emitting diode industry. Nevertheless, a comprehensive description of charge transport in the

presence of doping is still missing for organic semiconductors with localized electronic states.

Here, we present a theoretical and computational approach based on percolation theory and

quantitatively predict experimental results from the literature for the archetype small

molecule materials ZnPc, F8ZnPc and C60. We show that transport in the complex potential

landscape that emerges from the presence of localized charges can be aptly analyzed by

focusing on the network properties of transport paths instead of just the critical resistance.

Specifically, we compute the activation energy of conductivity and the Seebeck energy and

yield excellent agreement with experimental data. The previously unexplained increase of the

activation energy at high doping concentrations can be clarified by our approach.
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The astonishing finding that the conductivity of conjugated
polymers can be tailored over many orders of magnitude
by doping with additional charges1,2 has led to a vast

amount of work on these materials since the 1970s3. While the
possibility of electrically doping small-molecule organic materials
was also known for a long time4, its technological breakthrough
was delayed until the late 1990s5,6. Nowadays, doping of organic
semiconductors with controlled impurities is essential for almost
all of their device applications, due to the notoriously low con-
ductivity of undoped organic materials.

Experimentally, doping of small molecule semiconductors is a
comparatively simple procedure, since the dopant molecule is
usually just co-evaporated with the matrix molecule in the desired
mixing ratio. On the theoretical side, despite its paramount
importance in the organic semiconductor field, the description of
charge transport in the presence of doping is still far from com-
plete. In the past decades, a number of significant advances7–15

have been made, but still open questions remain.
An example is the influence of the Coulomb potentials of

dopants and charge carriers on the nature of charge transport.
While these potentials also exist in doped inorganic semi-
conductors, there is an important difference: Charge carrier states in
organic semiconductors are strongly localized in many cases16–18.
This leads to weaker screening and complex potential landscapes
with strong spatial correlations10,19,20. In such a landscape, what is
the mode of charge transport, which paths will carriers take, what
are the important length scales? What effect will a certain doping
concentration have on a given material?

Spatially averaged techniques based on the transport energy
(TE) model8,21 are too limited for these questions, as they assume
translational symmetry of the available hopping target energies22.
Correlated energy landscapes have been studied extensively,
mostly using a dipolar glass model22–25, atomistically calculated
molecular interactions or site energies smoothed with a moving
average26,27. The focus has been primarily on calculating the
mobility, analytically or by kinetic Monte Carlo (kMC) simula-
tions. The combined energetic and spatial nature of the carrier
trajectories has, to our knowledge, not been explicitly investigated
previously, especially not for the correlations caused by different
concentrations of dopant and carrier charges.

In this article, we show that valuable information is to be
gained from the analysis of the transport networks that carry
most of the electrical current. We investigate how the mode of
transport changes with the doping concentration and with it its
limiting factors. We show why the Seebeck energy ES can only be
correctly obtained from averaging over the whole transport net-
work and by doing so confirm the previously unexplained
observation that ES is not generally equal to the activation energy
of the conductivity EA.

While no analytical tools exist for treating this problem exactly,
we computationally obtain quantitative results that can be com-
pared to experiment. The tools we use are a percolation analysis
combined with a simple model of the electrostatic potential
landscape. The computations are parallelizable and our imple-
mentations in the Python programming language for the samples
of this report have typical runtimes of a few minutes on 24-core
machines, with room for improvement.

Percolation theory is a powerful technique for analyzing
complex systems that has found applications in many scientific
fields since its general formulation by Broadbent and Ham-
mersley in 195728, ranging from solid state physics29 over climate
physics30 to neuroscience31, language32 and epidemics33. As
Broadbent and Hammersley28 put it, diffusion and percolation
are two complementary perspectives on random motion of fluids
through media: While for diffusion, the randomness is assigned
to the fluid, percolation assigns it to the medium. This is the

particular strength of a percolation analysis for hopping trans-
port, where the questions asked are usually ultimately about the
medium (like What is the conductivity of a given sample?) and
not about the fluid (like Where does a particular charge carrier
move to?).

Application of percolation theory to transport in organic
semiconductors is not new, and has produced many interesting
results15,34–36. However, most published work focuses on esti-
mating the critical hop. As discussed above, we want to extend
these analyses by utilizing information from the whole network of
transport paths.

As a general workflow, we first model the energetic landscape
in the sample by constructing a molecular geometry (lattice/
amorphous) and placing charged dopants on randomly selected
sites, as well as charge carriers in energetically optimized posi-
tions. We then identify the sample with a weighted complete
graph, where the vertices correspond to the molecular sites and
the edges to carrier hops, whose weights are given by the hopping
rates. By using a variant of the resistor network model37,38

(see “Methods” section and Supplementary Note 3 for details), we
reduce this huge graph to the critical conducting subnetworks, i.e.
the networks of sites that carry almost all of the current.

Our basic assumptions are that (i) each site cannot contain
more than one charge, (ii) charges are localized to one site, (iii)
not all site energies are the same, and (iv) the sample structure is
not affected by adding the dopants.

Results
Potential landscapes and the density of states (DOS). We start
by modeling the energetic landscape in the sample as a function
of doping concentration. To achieve this, we place sites in
a predefined three-dimensional structure (regular lattice or
randomly with a minimal intersite distance to account for finite
molecular volume), optionally with energies from a distribu-
tion. We then randomly replace sites with dopants, assigning
them a positive charge. We finally place an equal number
of electrons on the remaining sites, in a configuration that
minimizes the total Coulomb energy of all charges (see the
“Methods” section for more details).

Note that we do not consider the charge transfer (CT) process
from dopant to matrix. For efficient host/dopant systems, it has
been found that this CT adds negligibly to the temperature
activation of the conductivity39,40. Here, we concentrate on the
charge transport, given the doping CT was successful. Thus, by
dopants we refer just to the ionized dopants.

When a sample is doped, an equal amount of localized positive
and negative charges is introduced into the system, effecting their
electrostatic potential on all other sites in the sample. This leads
to a broadening of the DOS, as some states get raised and some
get lowered by the one or the other type of charge (Fig. 1). In the
light doping regime, the peak position of the unoccupied DOS
stays constant, due to the equal amount of positive and negative
charges. Some previous analytical treatments of this effect only
included the dopant charges10,41, leading to qualitatively different
results for the DOS and the energetic landscape.

As the doping concentration increases, the asymmetry between
ionized dopants and charge carriers becomes evident: While the
dopants are fixed and distributed randomly in space, the carriers
can move and attain the configuration that minimizes their total
potential energy. As the density ND of randomly positioned
dopants increases, the amplitude of the fluctuations of their
density also increases, namely like42

ffiffiffiffiffiffiffi
ND

p
. The carriers can

partially screen these fluctuations, and sites in the regions with
small dopant density see more of the carrier potential than of the
dopant potential. Consequently, the peak position of the DOS
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shifts to positive energies at high doping concentrations, as seen
in Fig. 1.

We want to point out that the DOS approaches zero around
the Fermi level, i.e. at the high-energy edge of the density of
occupied states (DOOS) (blue in Fig. 1). This so-called Coulomb
gap has been studied previously and is a consequence of the
electrostatic interaction of localized fermionic charges43. The
appearance of this feature underlines the validity of our method.
We will not go into detail about its origin, but instead refer the
reader to the existing literature43–47.

The increase of density fluctuations upon increasing the doping
concentration is also reflected in the spatial structure of the
potential. Figure 2 shows 3-dimensional potential contour plots of
a tetragonal matrix lattice at different doping concentrations. The
blue/orange shapes are iso-surfaces of negative/positive poten-
tials, respectively.

At low concentrations, the dopants as well as the charge
carriers form separated potential wells, corresponding to the
separated closed iso-surfaces for 0.32% in Fig. 2. There is a small
dispersion of the individual energies, reflected in a distribution
of the contour sizes. Carriers are mostly situated close to the

dopants, forming short dipoles. Increasing the doping concen-
tration, the potentials start to fluctuate more and more on all
length scales. In the potential landscape, this is reflected in large-
scale connected iso-surfaces which exhibit fluctuating structure
down to small length scales. So-called Gaussian potential
fluctuations caused by dopant charges have been studied for
inorganic-doped compensated semiconductors previously48.
Our systems are not equivalent to the systems studied in ref. 48

because the sites that accommodate the charge carriers
(the acceptors in ref. 48, the matrix sites in this article) and
the dopants are not spatially uncorrelated in our case: Our
charge carriers position themselves in energy-minimizing
configurations, while the acceptors in ref. 48 are fixed. However,
the notion of 0-, 1-, and 2-complexes, where a dopant can host
either zero, one, or two charge carriers still applies and leads to
the same type of potential fluctuations.

The activation energy of conductivity. After the energetic
landscape has been calculated, we transform the sample into a
resistor network by assigning each pair of hopping sites (i, j) a
resistivity given by the inverse rate of a hop between them, using

Fig. 1 Exemplary density of states for different doping concentrations. a Amorphous material, i.e. with point-molecules placed randomly, but with a
minimal distance of 0.5 nm. b Tetragonal lattice using the lattice spacings of ZnPc (see Supplementary Table 1 for details). The occupied states are shown
in blue. With increasing doping concentration, the DOS broadens for both structures, as some states get raised and some get lowered by the one or the
other type of charge. In the light doping regime, the peak position of the unoccupied DOS stays constant, due to the equal amount of positive and negative
charges. Note that for the tetragonal lattice, an additional peak in the unoccupied DOS arises due to the the neutral ZnPc in the Coulomb potential of the,
for n-doping, negatively charged ZnPc next to it and the positively charged dopant two places away (we do not account for a different shape of the dopant
molecule). The doping concentrations are given in molar percentages and the plots are offset vertically for clarity.

Fig. 2 3D contour plots of the energy landscape for F8ZnPc for increasing doping concentration. Blue/orange structures are regions with negative/
positive potential for charge carriers, respectively (exemplary colorbar for 32%). See Supplementary Note 1 for parameter information. Upon increasing the
concentration, there is a transition from rather isolated potential hills and valleys to large, fluctuating structures. Thus, at low concentrations, the spatial
correlations of the site energies are stronger than at high concentrations. This transition is accompanied by a transition in the critical charge transport
paths, i.e. from long-range hopping between the separated wells to hopping on all length scales through the fluctuating landscape (see Fig. 3c).
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Marcus hopping rates and Fermi–Dirac occupation statistics. The
hopping rates pij have the form

pij ¼ p0 exp �ξij

h i
; ð1Þ

with ξij ¼ 2 rij=αþ ðΔεeffij þ λÞ2=ð4kTλÞ; and p0 ¼ ð2π=_Þ
ðJ20=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλkT

p Þ. Here, rij is the distance between the sites, α the
localization length, Δεeffij their effective energy difference (see
“Methods” section for definition), λ the reorganization energy,
and J0 the transfer integral prefactor. We do not restrict the
hopping distance, allowing for variable-range hopping (VRH).

We then numerically find the critical resistor and the
corresponding critical subnetwork (see Fig. 3) for different
temperatures: Starting from an empty network, the resistors are
added, ordered by increasing resistivity until a connected path
from one face of the sample cube to its opposing face exists for
the first time (see “Methods” section for details). The critical
resistor is the first one that completes such a path when it is
inserted. The critical subnetwork is the collection of all resistors
connected to that path at that instance.

The derivative of the exponent ξc of the critical hopping rate
with respect to inverse temperature equals the activation energy
EA of the conductivity37,38. It has been repeatedly found that
doped organic semiconductors follow such an Arrhenius
behavior, where ln σ / �1=T, and not ∝−1/T2, as suggested
by the Gaussian disorder model7,9,40,49.

We always randomly sample 48 configurations to find ξc. We
thus account for the fact that the ground state carrier configuration
is not unique and can even change with time. We, however,
implicitly assume that the transitions occur adiabatically and only
one carrier moves at a time.

Figure 4 compares the experimentally obtained EA of ZnPc and
octa-flourinated ZnPc (F8ZnPc), n-doped with (2-Cyc-DMBI)2,
as a function of doping concentration40, with our calculated
values, observing very good agreement (see Supplementary
Table 2 for parameter values). Note that the only unknown
parameters of our model are the intrinsic disorder width σ0
and the localization length α, which we fix to the same values of
σ0= 100 meV and α= 0.44 nm for both materials. All other

parameters are taken from experiment, when available, or from
independent calculations in the literature.

The comparison between the two materials in Fig. 4 is
particularly interesting, since they are very similar in all
molecular parameters except for their quadrupole moment40.
This difference leads to strongly different binding energies
(with reference to the isolated matrix level) of the charge-
transfer complex formed by the ionized dopant and the charge
on the neighboring matrix molecule: 930 meV for ZnPc and
680 meV for F8ZnPc40. As can be seen from Fig. 4, the different
binding energies lead to an EA which is about 150 meV lower
for F8ZnPc at low-doping ratios around 3 × 10−2, in the
experiment as well as in our calculations. The reason is the
difference in Fermi level, which lies deeper for ZnPc due to its
higher binding energy.

Fig. 3 Exemplary critical subnetworks without and with intrinsic energetic disorder at low and high doping ratios. for F8ZnPc (see Supplementary
Note 2 for parameter information). Blue dots represent the ionized dopant positions. In panels a and b, a low doping ratio of 0.32% is present. In the case of
no energetic disorder a, the network consist of bunches of short transitions (which contribute almost nothing to global transport) in the vicinity of dopants
and long transitions between the dopants. These long transitions are critical for the global conductivity. When intrinsic energetic disorder of σ0= 120meV
is introduced b, the long transitions can be broken into several shorter ones, as some sites are randomly energetically lowered by the disorder. They can
thus serve as bridging sites between the dopants and EA is reduced compared to the disorder-free case. c Shows a high doping ratio of 32%. The white lines
represent the critical subnetwork in a 3D contour plot of the calculated bulk potential. Note that the critical subnetwork paths avoid regions of both high
(red, where they are repelled) and low (cyan, where they would be bound) potential and mainly occupy potential-free regions. Charge carriers have to
circumnavigate the regions of strong potential to traverse the sample, which increases EA at very high concentrations.

Fig. 4 Calculated and experimental activation energy of conductivity for
ZnPc and F8ZnPc. The main difference in molecular parameters between
ZnPc and F8ZnPc is their CT-binding energy with the dopant EC (see
Supplementary Table 2 for parameter values). Strikingly, the difference in
EC is enough to accurately explain the difference in EA, which is especially
pronounced at low-doping ratios. The reason is the deeper lying Fermi level
for ZnPc due to the low EC. Error bars show one standard deviation.
Experimental data reproduced from ref. 40.
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When we artificially increase the dielectric permittivity, all
Coulomb interactions are weakened and the potential landscape
flattens out. Consequentially, EA decreases significantly, about
100 meV for ZnPc with the relative permittivity set to 4 instead of
2.8, as seen in Supplementary Fig. 2. This is in line with findings
that the binding energy of CT states decreases with increasing
permittivity50,51. Thus, we confirm the design guideline that a
high dielectric permittivity of the matrix leads to low activation
energies. This is also a reason for the very low EA of C60 that is
discussed below.

Characteristic length scales. As the doping concentration
increases, EA drops. At higher concentrations, the distances
between sites with similar energies decrease. Carriers thus do not
have to hop as far to reach favorable target energies and paths
with smaller critical barriers open up: EA decreases.

Interestingly, the decisive length scale for this effect is the
localization length α and not the matrix site density N: Halving α
shifts all activation energies up by 50–100 meV, and steepens the
decay of EA as seen in Fig. 5a. Conversely, doubling the lattice
distances (spacing between site centers of mass) does not change
EA at all at low and moderate doping concentrations. The reason
is the following: In the presence of a strong long-range potential,
the optimal VRH hopping range is solely determined by the shape
of that potential, regardless of whether a target site is available at
that range. If the hopping distance is only large compared to the
nearest-neighbor (NN) spacing, a site close to that optimal range
likely exists, and the exact value of the NN spacing is irrelevant.
The decisive length scales for the temperature-activated part of
the charge transport at low and moderate doping concentrations

are the typical dopant distance N�1=3
d and the localization length

α, while the site density N does not play a role.
The decisive role of α for EA is counterintuitive as the term in

the hopping rate containing α does not even depend on
temperature. To rationalize the emergent dependence EA(α), we
revisit a similar result that has been found for the dependence
of carrier mobility on an electric field, using the concept of

the effective temperature52–55. In the effective-temperature
approach, which has been studied in several publications52–54,
the field dependence can be described by replacing the
laboratory temperature T in the expression for the mobility
with the effective temperature Teff given by

Teff ¼ T2 þ γ
eFα
kB

� �2
" #1=2

; ð2Þ

with the constant prefactor γ, the elementary charge e and the
electric field F. In Eq. (2), the electric field also only appears in
combination with α and the site density does not enter. This at
first sight counter-intuitive result is related to the fact that with
increasing hopping distance in field direction also a propor-
tionally increasing amount of electrical energy is gained. Thus,
the greater difficulty of long-range hops is compensated by their
greater energy gain and a scaling of the site distances has no net
effect. As discussed above, this holds as long as the optimal
hopping distance is large compared to the lattice distance.

This is very similar to our case, where the electric field is not
external but originates from the ionized dopants and charge
carriers in the sample. The optimal hopping ranges are given by
the potential and as long as the sites are sufficiently dense, no
significant changes in the transport networks happen. Changing
only α on the other hand affects the spatial penalty of the hops
without any compensation. This changes the optimal hopping
range and the tolerated energy differences along the transport
paths—and hence, EA—increase: Energy has become "cheaper”
compared to distance.

Going to very high doping concentrations, the dopants are
getting so close to each other that the typical hopping distance
saturates at the lattice distance and the above arguments do not
apply anymore. Then, the decisive parameters are N−1/3 and α.
Consequently, EA for the sample with doubled lattice distances
follows the reference sample at low and the half-α sample at high
doping concentrations in Fig. 5a.

Fig. 5 Influence of spatial parameters and intrinsic disorder on the calculated activation energy of conductivity for F8ZnPc. a This plot underlines that
the spatial and energetic aspects of transport are closely connected: Halving the localization radius α (blue circles) compared to a reference sample (green
squares), i.e. doubling the penalty of long-distance hops, also increases the activation energy by up to 100meV. This is not obvious, since the exponent of
the hopping rate (Eq. (6)) that contains α does not even depend on temperature. The connection of α and EA only emerges due to the tradeoff of variable-
range hopping: For stronger localization, low-energy hops are more likely to be traded for short-distance hops. Since the typical critical hopping distance is
the distance between dopants at low doping ratios, lowering the dopant distance is the main reason for the decrease in activation energy upon increasing
doping ratio. Interestingly, decreasing α is not equivalent to increasing the lattice distances d (black triangles) at low and moderate doping ratios. At high
concentrations, however, where the charges get very close and the typical hopping distance saturates at the lattice distance, the effect of halving α and of
doubling d becomes equivalent. b EA versus molar doping ratio for F8ZnPc with different widths σ0 of the intrinsic energetic disorder. Remarkably, the
sample with the highest intrinsic disorder exhibits the lowest EA at low doping concentrations. The reason are matrix sites that are randomly lowered in
energy by the intrinsic disorder and can serve as bridging sites between the dopant wells (see Fig. 3). This benefit disappears at high doping
concentrations, where the notion of individual dopant wells vanishes. Error bars show one standard deviation.
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Since the potential fluctuations get stronger for higher charge
densities, they even lead to an increase of EA with very high
doping concentrations (see Figs. 4–6). Such an increase has been
observed in various experimental reports in the literature, e.g. for
n-doped C60

49,56 or n-doped polymer samples57, but was not
explained therein. We can now link it to the change in critical
subnetwork topology in the following way: The steady-state
transfer rate of a given connection decreases with increasing
absolute energy difference of the connected sites, since in steady
state, forward and backward transfer rates must balance. It is thus
unlikely for the critical subnetwork to expand into regions with
either largely positive or negative potential and the most
important paths circumvent all potential structures, staying
mostly in the regions with the potential around zero (Fig. 3c).

In this situation, one can think of the network of conducting
paths as solving a discrete percolation problem on short scales
and a continuum percolation problem on large scales. Similarly as
described in ref. 48, the carriers have to be activated to an energy
εc such that the regions with potential smaller than εc are
connected.

Intrinsic disorder. As a further illustrative example for the power
of the percolation method, let us investigate the influence of
intrinsic disorder. By intrinsic disorder, we mean a distribution of
site energies that is present without the introduction of charges,
i.e. in an undoped sample. It is well-known that some degree of
intrinsic energetic disorder is present in all molecular solids and
it is in many cases modeled by a Gaussian distribution of
energies16,58,59. Here, we also draw our initial site energies from a
Gaussian distribution g0(ε) with standard deviation σ0:

g0ðεÞ ¼
1

σ0
ffiffiffiffiffi
2π

p exp
�ε2

2σ20
: ð3Þ

In Fig. 5b, we compare the activation energy of the conductivity
as a function of doping concentration for three different σ0, using
the F8ZnPc structure parameters. Remarkably, the sample with the
highest intrinsic disorder width (σ0= 120meV) exhibits the
lowest activation energy of 250meV at the lowest doping
concentrations, about 150meV less than for the disorder-free
sample. This is in line with previous findings that energetic
disorder can facilitate electron–hole pair dissociation60,61.

The reason for this counter-intuitive behavior is the fact that a
broader intrinsic disorder increases the density of sites that have
low energies by chance. These sites can then serve as bridges
between the Coulomb wells created by the ionized dopants,
facilitating the transitions from dopant to dopant. This mechan-
ism can be transparently observed by inspection of the critical
subnetworks. Figure 3a shows the disorder-free case: bundles of
connections close to dopants are connected by long-distance hops
between the dopant wells. When intrinsic disorder is introduced
(Fig. 3b), there are still some bundles close to dopants, but the
long-distance connections mostly contain multiple hopping
nodes, which are the aforementioned bridging sites, with energies
lowered by the intrinsic disorder. In this way, energetically more
favorable paths open up and the activation energy of the
conductivity is reduced with respect to the disorder-free case.

At high doping concentrations, the notion of an individual
Coulomb well for each dopant vanishes in favor of a potential
landscape fluctuating on all length scales. Bridging between the
dopants becomes not advantageous anymore and the difference
between the curves in Fig. 5b vanishes. Instead, there are extended
(i.e. including more than one dopant on average) regions of the
sample with negative and positive potentials, which now limit
charge transport.

Activation energy vs. Seebeck energy. Interestingly, in ref. 56 it
has been found that the activation energy of the conductivity
increases at high doping concentrations (Fig. 6a), while the See-
beck energy ES continues to decrease (see Fig. 6). This previously
unexplained discrepancy can be readily clarified with our
approach: The Seebeck energy does not depend on the details of
the transport mechanism, particularly not on the rate of the
critical hop, but only on the average energy that is transported
with each charge carrier. ES can thus be calculated from the DOS
belonging to the critical subnetwork eNðεÞ as62

ES ¼
R
εeNðεÞ dεR eNðεÞ dε ; ð4Þ

where the energy ε is given with respect to the Fermi level EF.
In Fig. 6b, we observe two regimes: For low doping

concentrations, EF is pinned far from the DOS peak due to the
low energy of the CT states and overall, only a small fraction of

Fig. 6 Comparison of the activation energy of conductivity and the Seebeck energy. a Experimental and calculated activation energy of conductivity of
C60:W2(hpp)4 as a function of molar doping ratio. We used an amorphous structure of C60 for the whole range of doping ratios (see Supplementary
Table 3 for other parameter values). The excellent agreement of our results with the experimental data shows that the assumption of structural changes
upon doping of C60 is not necessary to explain the increase of activation energy at high concentrations, but it can be rationalized solely as the result of
electrostatic fluctuations. b Seebeck energy ES of C60:W2(hpp)4 as a function of molar doping ratio. That ES, surprisingly, does not show an increase at high
doping concentrations can now be understood: Although the critical hopping energy shows a stronger temperature activation, ES is determined by the
average energy of the critical subnetwork with respect to the Fermi level. This average keeps decreasing as the Fermi level moves up in the DOS
(see Supplementary Fig. 1 for the DOS plots). Error bars show one standard deviation. Experimental data reproduced from ref. 56, Figs. 3 and 4.
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sites is occupied. Increasing the doping concentration steeply
decreases ES by creating more deep unoccupied states, which can
be reached with less energy investment compared to the states at
the DOS peak. This lowers EA in the same way as ES and a
comparison of Fig. 6a and b, shows that both are very similar up
to a molar ratio of about 3 × 10−2.

Increasing the concentration further starts to shift EF
significantly through the DOS distribution and eNðεÞ becomes
more and more symmetrical around EF (see Supplementary Fig. 1
for plots of the distributions). In this regime, ES approaches zero
with a smaller slope than before. The activation energy of the
conductivity, on the other hand, is given only by the energy of the
critical hop as outlined above and increases due to the increasing
potential fluctuations at high doping concentrations.

One can even generally state that EA is always equal to or
greater than ES, as for EA, the absolute distance ∣ε∣ from the Fermi
level is decisive, while for ES, one has to average ε as in Eq. (4)62.
In other words, EA is big, if the sites that are important for
conduction are far from EF, regardless of them lying below or
above EF. On the other hand, ES is increased only by those sites of
the critical subnetwork that lie above EF.

With the knowledge of the critical subnetworks, we are able
to calculate both EA and ES with the same set of parameters and
closely reproduce the measured data (Fig. 6, see Supplementary
Table 3 for parameter values). We use an amorphous structure
of C60 throughout, showing that the assumption of sudden
structural changes of C60 at high doping concentrations is not
necessary to explain the observed behavior. Note that the
widely used TE model8 predicts EA and ES to be equal.
For a Coulombically interacting system like this, the TE
model cannot be applied22. The assumption of spatially
uncorrelated site energies, which is necessary for the TE model,
is not fulfilled due to the presence of long-range Coulomb
interactions.

Finally, as seen in Fig. 6, doped C60 shows a very low activation
energy (around 60 meV at the minimum) compared to e.g. ZnPc,
which has an EA above 200meV for all doping concentrations
(Fig. 4). The main reason for this is its comparably high relative
dielectric constant63, which we set to 4 for our calculations, while
for ZnPc a value of 2.8 was reported63.

Discussion
We present a comprehensive analysis of hopping transport in
doped molecular semiconductor based on percolation theory and
VRH. The analysis of the critical conducting subnetworks, which
contain those transitions that carry almost all of the current, is the
key strength of the percolation approach and sets it apart from
effective-medium calculations or kMC simulations. We accurately
reproduce experimental results for different materials from dif-
ferent experimental studies and explain the difference between
the conductivity’s activation energy and the Seebeck energy. By
analyzing the critical conducting subnetworks, we show that
intrinsic energetic disorder can facilitate long-range charge
transport at low, but not high doping concentrations. For engi-
neering a minimal activation energy, an optimal doping con-
centration exists and is of the order of a molar ratio of 10% for
the materials studied here. As expected, the activation energies
are generally lowered by large dielectric constants, high locali-
zation radii and low CT-binding energies between host and
dopant.

As a closing remark, it is also possible to analyze doped
polymers within the presented framework. The delocalization of
charges along their chains adds another dimension of con-
nectivity to the spatial model. The analysis of the interplay of
spatial and energetic structure of polymers with a percolation

approach thus promises valuable insight into tailoring the elec-
tronic properties of those materials.

Methods
Potential landscape
Spatial distribution. The system is initialized as a three-dimensional collection of
uncharged point sites. The spatial structure of this collection can be arbitrarily
chosen. For this report, we employ random positions with a minimum distance and
two tetragonal lattices for ZnPc and F8ZnPc. For the random with minimum
distance configuration, to account for a finite molecule volume, sites are randomly
placed in the sample volume and kept, if their distance to every existing site is
larger than the prescribed minimum distance (molecule diameter), otherwise
deleted again. This process is repeated until the desired number of sites has been
placed, which is around 3 × 104 for the present report. In the literature45,64, it has
been confirmed that this site number is sufficient for our widths of energetic
dispersion (which do not significantly exceed 0.1 eV), in the sense that increasing
the number of sites does not change the results significantly anymore. Initially, all
sites are assigned zero energy.

Energetic distribution. An intrinsic energetic distribution can be imposed on the
sites. We use a Gaussian intrinsic DOS according to Eq. (3), with different widths
σ0, including σ0= 0.

Dopant placement. Nd of the sites are randomly chosen to be active dopants
(donors, for concreteness). They are assigned a positive charge and the electrical
potential due to their charge is added to all other site energies. Dopants do not
count as transport sites anymore.

Charge carrier placement. Nd electrons (corresponding to the Nd donors) are placed
in a configuration as close to the ground state as possible. To achieve this, we place
one electron after another at the site with the currently lowest energy and add the
potential due to its charge to all other sites. After all electrons have been placed, we
take out the first electron again (subtracting the potential due to its charge
everywhere) and place it in the state that is now the lowest in energy. We iterate
this loop five times and take the configuration that out of these five states has the
lowest total energy. We assume that by this procedure we end up with a state that is
optimized with respect to single-electron transitions and close to the ground state,
since the Coulomb interactions are strong, making the ground state very attractive.
Indeed, the resulting optimized total energy does not depend on the (random)
donor starting configuration, which makes it unlikely that the algorithm gets stuck
in local minima. This is reflected in the error bars in the main text figures, where
each point for each temperature was averaged over 48 realizations of the sample.

Adjacent molecules in a molecular solid can form so-called CT states, if the
energy levels of the two molecules are suitably situated, as is the case for a
dopant–matrix dimer. We thus assign the next-neighbor sites of the donors the CT
state energy EC. We assume that all interactions of sites that are further apart are
just Coulomb interactions of point charges. EC is a parameter of our model. We
find that this simple model for CT state formation explains the experimental
features of material combinations with different EC already very well, as seen in
Fig. 4, where the values for EC are taken from density functional theory calculations
in ref. 40, i.e. were not fitting parameters.

The Fermi level EF is finally extracted as the midpoint between the highest
occupied and the lowest unoccupied energy levels.

Percolation threshold. Following ref. 45, we calculate the percolation threshold of
the system to obtain the conductivity of the sample in the following way.

For each pair of sites i and j, there is a probability pij of an electron transit from i
to j, which is proportional to the probability f(i) that i is occupied, the probability 1
−f(j) that j is unoccupied and the transition rate νij:

pij ¼ f ðiÞ ð1� f ðjÞÞ νij : ð5Þ
For the rate νij we choose the Marcus expression65,66

νMR;ij ¼
2π
_

J20ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλkT

p exp � 2rij
α

� ðΔεij þ λÞ2
4λkT

" #
; ð6Þ

with the transfer integral prefactor J0, the reorganization energy λ, the distance rij
between sites i and j, the localization length α and the energy barrier Δεij= εj−εi.

In thermal equilibrium, f(i) only depends on the energy εi of site i and is given
by the Fermi–Dirac distribution

f ðiÞ ¼ f FDðεi; εFÞ ¼
1

1þ exp εi�εF
kT

� � ; ð7Þ

with the Fermi level εF. Detailed balance then requires that all transition rates are
symmetric, i.e. pij= pji. Thus, pij is proportional to the probability that site i is
occupied and site j is unoccupied as well as the probability for the opposite
situation. If both site energies lie above or below the Fermi level, the rate is
consequentually limited by the site energy that is the furthest from the Fermi
level45.
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We further account for the hopping carrier’s own Coulomb field by reducing
the energy barrier by its self–Coulomb interaction, if the hopping site energies lie
on opposite sides of the Fermi level45. This is necessary since the energy of the
target site includes the Coulomb potential of the hopping carrier itself, evaluated at
the target position. However, the carrier does not interact with itself, so this
contribution to the target energy must not be included into the energy barrier of
the hop.

Summarizing the last two paragraphs, we define the effective energy difference
Δεeffij as45

Δεeffij ¼
jΔεijj � e2

ϵrij
; if εi=j<εF<εj=i;

max jεi � εFj; jεj � εFj
� �

; otherwise ;

8<: ð8Þ

with the elementary charge e and the dielectric permittivity ϵ.
Collecting Eqs. (5), (6) and (8), we finally obtain the symmetric transition rates

pij ¼ p0 exp �ξij

h i
; ð9Þ

with ξij ¼ 2 rij=αþ ðΔεeffij þ λÞ2=ð4kTλÞ and p0 ¼ ð2π=_ÞðJ20=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλkT

p Þ.
It has been shown37,38 that the conductivity of a resistor network with broadly

(e.g. exponentially) distributed resistances like in Eq. (9) is given by the
conductivity at the critical parameter ξc, where removing all connections with ξij >
ξc just allows for percolation:

σ ¼ σ0 exp �ξc½ � : ð10Þ
For a given spatial structure (e.g. crystal lattice, amorphous) and a random,
uncorrelated placement of the resistances, ξc can be analytically obtained from the
known percolation threshold of the bond percolation problem xc, assuming that
the ξij are distributed uniformly in an interval [ξ0, ξ1]:

xc ¼ ξc�ξ0
ξ1�ξ0

) ξc ¼ ξ0 þ xcðξ1 � ξ0Þ :
ð11Þ

Upon introducing Coulomb interactions in our system we have to relax the
assumption of the resistances being spatially uncorrelated and cannot expect Eq.
(11) to hold. The basic idea of the percolation approach however, i.e. that the
conductivity of the sample is determined by the critical resistance at ξc, still
applies, since it only relies on the observation that if you turn on the resistances
in increasing order, the resistor that just connects the critical subnetwork cannot
be shunted by smaller resistances and shunts all higher resistances. We thus
calculate ξc numerically for each realization of our sample and readily use it in
Eq. (10) to obtain the conductivity and its temperature activation, similar to
ref. 45.

However, in contrast to ref. 45, where just hopping transport between the states
bound to dopants is investigated, we look for connections between all the sites,
since we assume that in molecular solids all molecules (also in the undoped case)
contribute localized states that can take part in hopping events. Thus, there is the
limiting case where only states close to dopants take part in hopping transport,
while in general, all molecules can function as hopping sites. This is an extension of
the approach for doped crystalline semiconductors, where rather an interplay of
localized dopant states and extended bulk states is present. This extension is
especially essential at high doping concentrations, where the notion of an
individual dopant potential vanishes and hopping takes place all over the system.

Since we do not introduce any artificial cut-off radius for neither the Coulomb
interactions nor the possible transitions, we account for potential variations on all
length scales up to the sample size and allow for VRH.

Data availability
The data that were computed in this work are available from the author upon request.

Code availability
The computer code used in this work is available at https://doi.org/10.5281/
zenodo.407733667.
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