
Nature Cancer | Volume 4 | February 2023 | 203–221 203

nature cancer

https://doi.org/10.1038/s43018-022-00474-yArticle

The clinical utility of integrative genomics in 
childhood cancer extends beyond targetable 
mutations
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We conducted integrative somatic–germline analyses by deeply sequencing 
864 cancer-associated genes, complete genomes and transcriptomes for 300 
mostly previously treated children and adolescents/young adults with cancer of 
poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing 
(KiCS) program. Clinically actionable variants were identified in 56% of patients. 
Improved diagnostic accuracy led to modified management in a subset. 
Therapeutically targetable variants (54% of patients) were of unanticipated 
timing and type, with over 20% derived from the germline. Corroborating 
mutational signatures (SBS3/BRCAness) in patients with germline homologous 
recombination defects demonstrates the potential utility of PARP inhibitors. 
Mutational burden was significantly elevated in 9% of patients. Sequential 
sampling identified changes in therapeutically targetable drivers in over 
one-third of patients, suggesting benefit from rebiopsy for genomic analysis 
at the time of relapse. Comprehensive cancer genomic profiling is useful at 
multiple points in the care trajectory for children and adolescents/young adults 
with cancer, supporting its integration into early clinical management.

Whereas the long-term survival for young people with cancer now 
approaches 85%, that for patients with relapsed, metastatic or 
treatment-refractory disease has remained dismal, with virtually no 
improvement in more than four decades across most disease subtypes1. 

The incorporation of research-based next-generation sequencing (NGS) 
technologies, including whole-genome sequencing (WGS) and tran-
scriptome sequencing as well as targeted cancer gene or expression 
panels, to expand treatment options through identification of clinically 
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prognostication and in therapeutic target identification, we sought to 
evaluate pediatric tumor etiology and evolution. We investigated the 
role of germline pathogenic variants in HR pathway genes as drivers of 
pediatric/AYA cancers and the change in mutational burden and tumor 
drivers over the course of the disease trajectory, to establish the value 
of rebiopsy at relapse. On the basis of our observations, we suggest that 
comprehensive somatic–germline genomic profiling at multiple time 
points is essential to understanding tumor evolution and impacts clinical 
management.

Results
Sequencing is feasible across a broad range of cancers
From 29 April 2016 to 14 January 2020, 359 patients were referred to 
the KiCS program, comprising 252 patients with hard-to-cure tumors, 
9 patients with rare tumors, 47 patients for whom specific clinical 
questions were posed (collectively entry point 1, EP1) and 51 patients 
suspected of cancer predisposition (entry point 2, EP2; Fig. 1). Five 
percent (16/332) of individuals declined participation following an 
informed consent discussion. The feasibility of sequencing pediatric 
and young adult tumors was high: only 18 individuals were not enrolled 
or were subsequently removed from the study owing to inadequate 
tumor material whereas 123 tumor specimens were retrieved from small 
biopsy samples. Ninety-five percent of samples were available in fresh 
frozen form while 19 formalin-fixed, paraffin-embedded (FFPE) tumor 
samples were included. The analyses reported here were based on the 
first 300 KiCS participants who underwent comprehensive sequencing, 
representing a wide spectrum of pediatric and young adult cancers. 
Fifty-six participants had more than one tumor sample analyzed, and 7 
EP2 patients had tumor analysis as well, leading to a total of 348 tumor 
samples from 264 patients. Participant and tumor characteristics, as 
well as sample numbers, are outlined in Fig. 2a, Extended Data Fig. 1 
and Supplementary Table 1. Three patients each had two histologically 

actionable targets, offers promise to patients with ‘hard-to-cure’ can-
cers2–6. Furthermore, NGS offers an unprecedented opportunity to 
more deeply understand the long tail of rare pediatric tumors, for which 
there is currently limited genomic knowledge and no established effec-
tive treatment. The recognized potential for incorporation of NGS in 
the toolbox of diagnostic tests in oncology remains tempered by (1) 
reluctance to offer NGS testing early; (2) reluctance to rebiopsy in the 
context of relapse, metastatic or refractory disease; and (3) limited 
attention to the implications of germline events.

The genetic profile of childhood cancers has typically been character-
ized as ‘quiet’ because these cancers harbor a low overall burden of somatic 
substitution mutations at diagnosis; however, copy number changes and 
structural variants are more prevalent2. It is not known whether sporadic 
pediatric tumors can acquire sufficient mutations at relapse to become 
hypermutant—above the thresholds defined for adult cancers—and 
thereby be candidates for immune checkpoint inhibitor therapy.

Many mutations in childhood cancers arise years before diagnosis, 
having been either inherited from a parent or acquired postzygotically 
in early embryonic cells7–11. This suggests an opportunity for early inter-
vention or therapeutic strategies that target the tumor’s evolutionary 
root. However, which patients and/or tumor types may benefit remains 
unclear. Mutations in BRCA1 and other homologous recombination 
(HR) pathway components provide a compelling example. These muta-
tions have been reported in the germline of patients with childhood 
cancer3,4,7; however, whether they are drivers or mere bystanders (as 
is the case in many adult tumors12) is unknown.

The SickKids Cancer Sequencing (KiCS) program is a prospective 
study of a demographically diverse population of children and adoles-
cents/young adults (AYA) with refractory, metastatic, relapsed or rare 
cancers, as well as children with unresolved suspicion for cancer pre-
disposition. In addition to establishing the clinical feasibility and util-
ity of integrative tumor–germline sequencing in upfront diagnostics/

Approached for consent: 332

Referred to KiCS: 359

Declined: 16

Withdrawn: 27
No sample: 6
Family refusal to discuss the study: 5
Palliative care or deceased before consent: 5 
Unable to reach the family: 4 
Inclusion criteria not met: 3
Family or clinician decision to pursue 
alternative testing: 4

Consented and enrolled on study: 316

Entry point 1: 271 

Entry point 2: 43

Not analysed: 16
No frozen sample: 6
No tumor sample: 2 
Low tumor content: 4
Deceased: 2
Pending analysis: 2Entry point 1: 257

Poor prognosis: 252

Entry point 2: 51

Rare tumor: 9

Specific clinical 
question: 47

Entry point 1

Entry point 2 NGS on 300 patients
(348 tumor samples)

No reason provided: 4

Do not want germline data
or worry about
VUS/incidentals: 5

Declined further medical 
care: 2

Overwhelmed: 3

Patient doing well: 2

Fig. 1 | Overview of the KiCS study cohort and enrollment outcomes of referred patients. Entry Point 2: Suspicion for cancer predisposition syndrome.  
VUS, variants of uncertain significance.
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distinct primary tumors analyzed, but a denominator of 300 was used 
for clarity. Extended Data Fig. 2a details the proportion of participants’ 
samples analyzed using each sequencing platform, and Supplementary 
Table 2 summarizes sample-level sequencing metrics. The median age 
at enrollment of participants undergoing tumor–germline analysis was 
7.1 years. Approximately 44% of these patients (41% of samples) had 
progressive or relapsed disease, and 58% of patients (57% of samples) 
had been exposed to chemotherapy and/or radiation therapy.

Integrative analysis identifies multiple classes of actionable 
variants
In total, 56% of participants had at least one clinically actionable finding 
from comprehensive sequencing; 30.7%, 14.9% and 10.9% of partici-
pants had one, two or more than two findings, respectively (Fig. 2a,b).  
Cate gory A variants, refining an unclear diagnosis, were documented in 
17 participants who underwent somatic analysis (6%), with an impact on 
therapy in 14 of 17 cases (Table 1). In addition, our analysis was 100% con-
cordant with standard clinical and cytogenetic testing for diagnostic/
prognostic variants and fusions (for those with RNA available) in solid 
tumors, central nervous system (CNS) tumors and leukemias (Supple-
mentary Table 3a). For an additional nine participants, our analysis 
provided further characterization of previous clinical findings (Supple-
mentary Table 3b). Nine participants had sequencing findings that were 
of potential prognostic relevance (category B; Supplementary Table 4).

Fifty-four percent of participants with tumor analysis (n = 143/264) 
had sequencing findings that were therapeutically targetable (cate-
gory C; Figs. 2 and 3a and Supplementary Table 5); within subgroups,  
this corresponded to 72%, 58% and 46% of patients with a CNS tumor, solid 
tumor or leukemia/lymphoma, respectively. Fifty-one of the 143 (36%) 
cases had more than one targetable finding, which were also unequally 
distributed among tumor classes: 25 of 41 (61%) CNS tumor cases had 
more than one targetable finding, compared to 8 of 28 (29%) leukemia/
lymphoma cases and 18 of 74 (24%) solid tumor cases. Targets of MEK–ERK 
inhibitors, PARP inhibitors, immune checkpoint inhibitors and cell cycle 
inhibitors predominated (Extended Data Fig. 3b). Thirty-three participants 
(23%) had targetable variants derived from the germline. After excluding 
patients who were on another line of therapy (including targeted agents) or 
who had stable disease or no evidence of disease when sequencing results 
became available and actionable, we identified 69 of 143 (48%) patients 
who were in need of a therapeutic option. Follow-up information was miss-
ing for seven patients. Twenty-five patients (25/62, 40%) were not treated 
with a matched agent for the following reasons: no trial or agent accessible 
(n = 9); end of life (n = 15); and patient/family refusal (n = 1). Thirty-seven 
(37/62, 60%) participants were treated with a matched targeted agent, 14 of 
37 as part of a clinical trial (including one patient through a single-patient 
study), 15 of 37 through compassionate access, 7 of 37 through commer-
cial access and 1 of 37 though an unknown mechanism (Supplementary 
Table 5). While one must acknowledge the potential for selection bias, this 
represents an impressive proportion of patients who were able to obtain 
a novel agent on the basis of their sequencing findings. Extended Data 
Fig. 3a shows the number of actionable variants assigned to each level 
of evidence (Extended Data Fig. 4) after review by the molecular tumor 

board, along with the proportion of variants for which a targeted drug was 
administered. As expected, this proportion was the highest for variants 
with level of evidence 1 (biomarkers that predict response or resistance 
to Food and Drug Administration/Health Canada-approved therapies). A 
majority of variants were attributed level of evidence 3 (biomarkers that 
predict response to therapies on the basis of small series or case reports 
or that serve as inclusion criteria for a clinical trial).

Our sequencing approach explicitly incorporated germline analysis 
given the important implications of germline findings for patients and 
their families, including the potential for finding drivers with therapeu-
tic relevance for an active cancer13. Previously unknown germline likely 
pathogenic or pathogenic (LP/P) variants in cancer predisposition genes 
(CPGs) were found in 15% (n = 46/300) of participants, resulting in referral 
for genetic counseling in 89% of cases and cascade testing and initiation 
of tumor surveillance for participants and/or their relatives in at least 67% 
and 37% of cases, respectively (9 participants had unknown surveillance 
status; Supplementary Table 6). In addition, findings for all patients previ-
ously identified as having germline LP/P variants in CPGs before referral 
to KiCS (n = 16) were corroborated by our analysis. The majority of new 
findings were in genes not typically associated with pediatric cancers, 
including variants in HR pathway genes and heterozygous variants in 
DNA mismatch repair (MMR) genes. When excluding patients enrolled 
specifically to investigate a high suspicion for cancer predisposition (EP2) 
and those with a previously known cancer predisposition syndrome, 17% 
(n = 41/241) of participants had a P/LP germline variant in a CPG, of whom 
4 had been previously referred for clinical genetic testing while only 11 
had a noteworthy personal or family history of cancer. Among the 43 
participants specifically enrolled for suspicion of a cancer predisposi-
tion syndrome (EP2), only 5 (12%) had new findings on the cancer panel.

Comprehensive sequential tumor analysis also provided impor-
tant insights into the relationship between multiple neoplasms of the 
same histology presenting in the same individual (n = 4) (category Dii; 
Fig. 4). For instance, in one patient, a second episode of acute lympho-
blastic leukemia (ALL) from 13 years after the original occurrence was 
determined to be a very late relapse rather than a new leukemia on the 
basis of a shared JAK2 driver variant and was therefore treated with 
relapse therapy. In another case, a unique clonal evolution trajectory was  
discovered in a patient with chronic myeloid leukemia (CML) and two 
subsequent events of B cell ALL (B-ALL). These three leukemia entities 
were derived from an ancestral clone with IGH rearrangement, rather 
than BCR-ABL1 fusion, which developed in an independent CML sub-
clone. A FLT3 internal tandem duplication (ITD) and IKZF1 deletion devel-
oped in an independent B-ALL subclone and showed temporal clonal 
expansion in relapse. FLT3-ITD was detected early on in the diagnostic 
CML sample at a subclonal variant allele fraction (VAF) of 3%. These find-
ings explained the unusual lack of BCR-ABL1 fusion in the B-ALL malig-
nancies and also influenced decisions regarding maintenance imatinib 
after hematopoietic stem cell transplantation. By identifying common 
clonal variants or the evolution of subclonal variants, it was possible to 
distinguish late relapses from independent primary lesions and to map 
divergent neoplastic processes from ancestral clones. Elucidating such 
biological underpinnings has very practical clinical impacts, influencing 

Fig. 2 | The KiCS study cohort: tumor and sample characteristics and 
summary of actionable findings. a, Each row, labeled by study ID and diagnosis 
(based on pathology report), corresponds to a study participant. The first four 
columns describe the tumor samples for each patient. Samples are arranged 
chronologically from left to right. Color indicates the disease state: green, initial 
diagnosis; blue, relapse; orange, progressive disease. Squares correspond to 
samples from the primary tumor site, and circles represent samples of metastatic 
sites. A star indicates a sample collected after the patient had received cancer-
directed therapy. EP2 patients with multiple prior malignancies were classified 
according to their most recent tumor diagnosis. EP2 participants with no cancer 
diagnosis are coded as ‘EP2’ and are denoted with a gray dash if there was no 
accompanying tumor sample. The last column indicates participants with at 
least one actionable finding (red checkmark). Please see Supplementary Table 1 

for a full list of tumor types and acronyms, categories of actionable findings and 
additional demographic information. n = 300 participants. Three participants 
(KiCS 32, 220 and 334) each had two primary tumors and are each represented 
twice. b, Frequency of actionable findings, by class of clinical utility. The height of 
each histogram is the percentage of patients with at least one actionable finding 
in that category. Patients with an actionable variant having more than one aspect 
of utility are recorded in each relevant category but are only counted once in 
the ‘any’ clinical utility class. The colors within each histogram represent the 
proportion of variants in that class detected by each NGS technology. For the A, 
B and C categories, percentages were calculated on the basis of a denominator 
of n = 264 (participants with somatic analysis). For the D and ‘any’ categories, 
percentages were calculated on the basis of a denominator of n = 300 total study 
participants.
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choice of therapy, qualifying concerns for cancer predisposition (which 
would be heightened in the setting of independent primary tumors) and 
potentially surveilling for expansion of minor subclones.

Somatic WGS detects additional clinically relevant findings
Seven additional clinically actionable variants were identified upon 
retrospective analysis of somatic WGS data that were not detected 
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Table 1 | Category A variants: actionable findings resulting in change or refinement of diagnosis

Standard clinical analysis KiCS/NGS analysis

KiCS 
ID

Initial pathologic diagnosis and results from relevant 
clinical testing

Refined diagnosis based on 
KiCS analysis

Actionable finding Impact

Solid tumors

59 8805/3—undifferentiated sarcoma (M1, C2) BCOR-fused sarcoma BCOR-CCNB3 fusion No change in therapy

87 8805/3—undifferentiated sarcoma vs.
9150/3—hemangiopericytoma, malignant (C3)

BCOR-fused sarcoma BCOR-CCNB3 fusion Changed to Ewing sarcoma-like therapy

141 9180/3—osteosarcoma, NOS (C40._, C41._) BCOR-fused sarcoma BCOR-CCNB3 fusion At relapse following osteosarcoma therapy, 
treated according to refined diagnosis with 
Ewing sarcoma-like therapy

239 Malignant small round blue cell tumor with EWSR1 
gene rearrangement (C4, M5)

8562/3—epithelial–
myoepithelial carcinoma

EWSR1-ZNF444 fusion Selection of appropriate chemotherapy 
and improved prognostication

123 8825/1—myofibroblastic tumor, NOS (‘fibroblastic/
myofibroblastic proliferation’) (I6, C7)

8821/1—aggressive 
fibromatosis/desmoid 
tumor

CTNNB1 p.T41A Selection of desmoid-tailored 
chemotherapy instead of morbid surgical 
resection

241 8825/1—myofibroblastic tumor, NOS (‘fibroblastic 
neoplasm with nuclear β-catenin immunoreactivity, 
favor desmoid-type fibromatosis’) (C8, M9, I10)

8821/1—aggressive 
fibromatosis/desmoid 
tumor

Somatic APC copy number loss, 
exons 5–22, with homozygous 
loss of exons 10–15

Selection of desmoid-tailored chemo-
therapy instead of morbid surgical 
resection

356 8805/3—undifferentiated sarcoma (C49.2) (C11, M12, I13) CIC-fused sarcoma CIC-NUTM2A fusion No change (patient deceased)

379 8800/3—sarcoma, NOS (C76.3) (I14, M15) Primitive myxoid 
mesenchymal tumor of 
infancy

BCOR p.*1722Lext*34;
RNA-seq: ITD and BCOR-driven 
tumor expression cluster

Selection of appropriate chemotherapy 
and improved prognostication

Leukemia and lymphoma

192 9812/3—B lymphoblastic leukemia/lymphoma with 
t(9;22)(q34;q11.2); BCR-ABL1 (C16)

9836/3—precursor B cell 
lymphoblastic leukemia

EWSR1-PBX3 fusion
(no BCR-ABL fusion)

Change of therapy (taken off TKI)

104 Preliminary: melanotic neuroectodermal tumor of 
infancy
Final: ‘pseudo-sarcomatous mass with infiltrates 
of a primitive hematolymphoid neoplasm with 
predominance of blasts of M7 acute megakaryoblastic 
leukemia features’ (F17, C18, M19, I20)

9910/3—acute 
megakaryoblastic leukemia

RBM15-MKL1 fusion Initially treated as melanotic 
neuroectodermal tumor of infancy; 
changed to AMKL therapy

155 9960/3—myeloproliferative neoplasm, NOS (M21, C22) Myeloproliferative 
neoplasm with ETV6-ABL1 
rearrangement

ETV6-ABL1 fusion Initiation of TKI
(eventual allogeneic transplantation)

227 9801/3—acute leukemia, NOS (F23, M24) 9837/3—T lymphoblastic 
leukemia/lymphoma

SET-NUP214 fusion, PHF6 
p.V268Tfs*5 and NOTCH1 
p.N386S

T-ALL therapy after other failed induction 
regimens, with omission of steroids

262 9946/3—juvenile myelomonocytic leukemia (C42.1) 
vs. acute myeloid leukemia (C25, F26, M27)

9946/3—juvenile myelo-
monocytic leukemia (C42.1)

KRAS p.G12A and monosomy 7 Confirmed decision to proceed to allo geneic 
hematopoietic stem cell transplantation

310 9836/3—precursor B cell lymphoblastic leukemia 
(C42.1) (F28, C29, M30)

9836/3—precursor B cell 
lymphoblastic leukemia 
(C42.1), Ph-like

SH2B3 p.F146Lfs*52;
RNA-seq expression cluster: 
B-ALL, Ph-like, JAK–STAT

No change in therapy, but improved 
subclassification, prognostication and 
future treatment options

346 9910/3—acute megakaryoblastic leukemia (C42.1) 
(F31, C32)

9898/3—myeloid leukemia 
associated with Down 
syndrome

GATA1 c.186_190delCTACA 
(p.Y62*)

Selection of appropriate chemotherapy 
(lower intensity for myeloid leukemia of 
Down syndrome, instead of high-intensity 
AML therapy)

CNS tumors

70 9440/3—glioblastoma (C71._) Low-grade glioma FGFR1 p.K656M and
germline NF1 p.S1468G

Initiation of targeted therapy instead of 
radiation therapy

323 8990/1—mesenchymal tumor (C71.0) (I33, C34, M35) 8824/0—myofibroma 
(C71.0)

PDGFRB p.P588delinsLP Confirmed plan for no adjuvant therapy 
after resection, given benign entity

The original tumor diagnosis is presented along with the extent of clinical testing carried out, including cytogenetic (C), molecular (M), immunohistochemical (I) and flow cytometry (F) 
analyses. A refined diagnosis was suggested by cancer panel and/or RNA-seq findings, with the noted impact on clinical management. The results of clinical testing are indicated by the 
superscript numbers: (1) negative for EWS-FLI1, CIC-DUX4 and SSX-SYT fusion transcripts; (2) negative for SYT and EWS gene rearrangements; (3) no malignant cells; (4) positive for EWSR1 gene 
rearrangement; (5) negative for EWS-WT1 (RT–PCR) and negative Nanostring assay for fusion transcripts; (6) β-catenin mostly cytoplasmic and perinuclear with possible focal nuclear staining; 
(7) negative for FUS gene rearrangement; (8) negative for FUS, USPS and EWSR1 rearrangements; (9) negative Nanostring assay for fusion transcripts; (10) positive for β-catenin nuclear 
expression; (11) negative for EWSR1 rearrangement; (12) failed analysis; (13) positive for CD99 membrane staining, WT1; negative for CKAE1/AE3, S100, SOX10, melanA, SMA, desmin, myogenin, 
TFE3, IN1 retained; (14) positive for vimentin and TLE-1, patchy staining for CD99, focal positivity for S100 and SOX0, BAF47 intact; negative for NB84, CD45, EMA, pan-keratin, myogenin, 
SMA, actin, caldesmon, CD34, CD31, GFAP, PLAP, glypican-3, WT-1, OCT4 and CD30; (15) negative Nanostring assay for fusion transcripts and negative Trusight RNA-seq for oncogenic fusion 
transcripts and mutations; (16) interpreted as being consistent with BCR-ABL; (17) negative for CD41 and CD61 (BMA); (18) negative for MLL rearrangement (BMA); (19) negative for t(1;22)
(p13;q13)/RBM15-MKL1 and negative sarcoma fusion panel (BMA); (20) negative for CD56, CD61 and factor VIII (BMBx), negative large panel and positive for CD43, CD61 and factor VIII (maxillary 
mass); (21) negative for BCR-ABL p210/p190, PDGFRA-FIP1L1 and t(5;14)(q31;q32)/IL3-IGH, JAK2 V617F, JAK2 exon 12 mutations, CALR, FLT3-ITD, clonal rearrangements of TCR genes and IGH 
gene fusion; (22) negative for FIP1L1-CHIC2-PDGFRA, PDGFRB and MYC; (23) positive for CD34, CD2, CD7, CD33, CD38, CD11 and CD71 and negative for Tdt, MPO and cCD3; (24) negative 
for 29 recurrently mutated myeloid leukemia genes and positive for TCR rearrangement-γ-chain; (25) monosomy 7; (26) myeloblasts and population with monocytic differentiation; (27) 
negative RT–PCR for AML fusion transcripts and negative for FLT3-ITD; (28) consistent with precursor B lymphoblasts; (29) positive for iAMP21 and normal FISH analysis for CRLF2, IGH, MYC, 
CDKN2A and TCF3; (30) negative RT–PCR for canonical ALL fusion transcripts, positive LDA screen and negative Trusight RNA-seq for Ph-like fusion transcripts or mutations; (31) consistent 
with megakaryoblasts; (32) 49,XX,del(6)(q13q21),+8,+21,+21(20); (33) large panel; (34) negative for whole and segmental chromosome aberrations; (35) negative Nanostring assay for fusion 
transcripts and negative Trusight RNA-seq for oncogenic fusions and mutations. BMA, bone marrow aspirate; BMBx, bone marrow biopsy; LDA, low density array; TKI, tyrosine kinase inhibitor.
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by cancer panel or RNA-seq analysis (Supplementary Table 7). ITDs 
involving exon 15 of the BCOR gene in a CNS neuroepithelioma and a 
renal tumor suggested revised diagnoses of high-grade neuroepithe-
lial tumor with BCOR alteration and clear cell sarcoma of the kidney, 
respectively. Five therapeutic targets were identified, including in CDK4 
(intragenic duplication involving the kinase domain) with corroborat-
ing outlier gene overexpression and in PTEN (translocation/inversion 
event and promoter swap), NF1 and SMARCB1 (complex structural vari-
ants) with outlier underexpression. This WGS analysis was also fruitful 
(Supplementary Table 7) in detecting second hits in tumor-suppressor 
genes, demonstrating interesting mechanisms of tumor-suppressor 
inactivation and complex fusion events and highlighting a number of 
novel variants. In the absence of functional data, however, the clinical 
actionability of such novel variants is limited.

Disturbed DNA repair pathways drive pediatric cancer onset 
and evolution
In adult patients with cancer, BRCA1 and BRCA2 variants are tissue- 
restricted biomarkers for PARP inhibitor sensitivity12. Although ger-
mline variants in BRCA1, BRCA2 and other HR repair (HRR) pathway 
genes have been described in large sequencing studies of pediatric 
oncology patients7,14, the relevance of these findings to pediatric cancer 
pathogenesis remains unclear. In our cohort, nearly half of the germline 
LP/P variants in CPGs (21/46) occurred in genes involved in HRR (BRCA1, 
BRCA2, PALB2, BARD1, CHEK2, ATM, BLM, RAD51C, FANCA, FANCC or 
ERCC4; Supplementary Table 6). To clarify the contribution of these 
variants to tumor pathogenesis in these individuals, we conducted 
somatic signature analysis of 293 tumor samples with available WGS data 
in the KiCS cohort. The proportion of Catalogue of Somatic Mutations 
in Cancer (COSMIC) single-substitution signature 3 (SBS3; BRCAness 
mutational signature; requirement for a minimum of 100 mutations 
contributing to this signature) in KiCS was compared to that in a cohort 
of sporadic cancers for which WGS was performed (Pan-Cancer Analy-
sis of Whole Genomes (PCAWG))15. Signature 3 was detected in 13.3% 
(369/2,780 samples) of the mostly adult samples in the PCAWG data, 
which is lower than the 23.1% (56/242; P = 0.00006) of ‘HR-negative’  
KiCS samples (those without somatic or germline mutations in HRR 
genes) that exhibited this signature. However, the prevalence of  
signature 3 was significantly higher among KiCS samples with  
somatic mutations affecting the HR pathway (‘KiCS HR somatic’; 8/26 
samples or 30.8%; P = 0.01) and highest in KiCS tumor samples from 
patients with germline LP/P variants affecting the HR pathway (‘KiCS 
HR germline’; 12/25 samples or 48%; P = 0.00003; Fig. 3b). Detailed 
analyses of KiCS HR somatic and KiCS HR germline cases are presented 
in Supplementary Table 8. Loss of heterozygosity (LOH) of the ger-
mline variant was found in a minority of pediatric tumors and did not 
always correlate with the presence of signature 3. Many of these tumors, 
however, showed somatic copy number loss in other components of 
the HR pathway. The effect of these additional losses on HR pathway 
function is unclear. To further interrogate our findings of HR deficiency 
(HRD), we used the HRDetect algorithm16,17 to calculate HRD probability 
scores for KiCS samples with WGS data (n = 290). Sixty-eight tumors 

(23%) had an HRD probability score higher than 70% (the probabilistic 
cutoff suggested to predict BRCA1 and/or BRCA2 deficiency)17. While 
both approaches indicated HRD in a sizable number of cases, they did 
not always agree: we found no meaningful correlation between the 
samples with a high HRD score and those we previously determined 
to harbor SBS3.

As altered DNA repair pathways can result in accumulation of tumor 
mutations, we proceeded to evaluate somatic tumor mutational burden  
(TMB) in 249 patients. Nine percent of participants (n = 22 with 23 
tumors) had hypermutant tumors, 9 with a TMB of 5–9.9 muta-
tions per Mb, 7 with a TMB of 10–99.9 mutations per Mb and 6 with 
ultra-hypermutation (TMB of >100 mutations per Mb; Supplementary 
Table 9). An additional 8% of participants (n = 14 of 179 participants  
with structural variant counts) exhibited high levels of structural  
variants (>200) (Fig. 5a). Only 36% (n = 8) of patients with hypermutant 
tumors had LP/P germline variants in MMR genes (n = 3 heterozygous, 
n = 1 compound heterozygous, n = 4 homozygous; Supplementary  
Table 6), and one patient had somatic biallelic deleterious variants 
in MMR genes. In 45% (n = 10) of patients, MMR deficiency was not 
documented; instead, these patients had a substantial burden of prior 
therapy (second primary tumors (n = 4) or relapsed/multiply progressed 
tumors (n = 6)). Accordingly, samples acquired after therapy showed 
significantly elevated mutational burden compared to pretherapy 
samples (Fig. 5b,c).

Clonal evolution at relapse provides new therapeutic options
The contributions of therapeutic exposures and tumor evolution 
together may culminate in the emergence or diminishment of tumor 
drivers at progression/relapse or in metastatic sites18–22. In the context 
of a precision medicine program, further clarification of the frequency 
of molecular changes during evolution of the tumor is critical. This 
information can inform whether rebiopsy at relapse or of metastatic 
sites is warranted as it offers the potential to identify new therapeutic 
targets that were not present in the primary tumor. To investigate this, 
we compared DNA cancer panel data from the tumors of 38 patients 
(n = 25 solid tumors, n = 6 CNS tumors, n = 7 leukemias and lympho-
mas) for whom multiple sequential samples were available. Notably, 
we found that the tumor genomes showed substantial changes over 
the disease course, with the majority of mutations identified at only  
one sample time point (Fig. 6a). Additional clonality analysis showed a 
predominance of parallel (versus linear) evolution (Fig. 6b and Extended 
Data Fig. 5). Through detailed analysis of single-nucleotide variants 
(SNVs), insertions/deletions (indels) and copy number changes, we 
determined the proportion of patients with changes in tumor drivers 
(new drivers, expansion of driver clones, displacement/loss of driver 
clones or diminished driver clones; Supplementary Table 10). A detailed 
analysis of one patient with recurrent rhabdomyosarcoma is presented 
in Extended Data Fig. 5a. Of 38 patients, 22 showed emergence of a 
new driver and 9 showed loss of a driver; when considering the subset 
of these with therapeutic implications, 37% of patients (n = 14) had a 
change in therapy recommendation as a result of serial sample analysis 
(Fig. 6a and Supplementary Table 10).

Fig. 3 | Oncoprint visualization of category C (therapeutic) clinically 
actionable findings and BRCAness in pediatric and AYA cancers in the 
KiCS cohort. a, Oncoprint visualization of the distribution of therapeutically 
actionable findings (category C). Findings are arranged in rows and grouped by 
the therapeutic agent indicated by each finding. Patients (n = 143; two patients 
with two primary tumors each represented twice) are arranged in columns. The 
top bar plot indicates the number of relevant mutations in each patient (that is, 
the number of variants that constitute therapeutic biomarkers in each patient). 
Some variants contribute together as a single actionable finding, for example, 
PTEN SNV and PTEN loss in KiCS 366 and MSH2 germline and somatic SNVs, 
POLE SNV and ultra-hypermutation in KiCS 284. Variant details are depicted in 
Supplementary Table 5. The right-side bar plot depicts the number of patients 
harboring a finding. Red square, amplification; blue square, loss; pink vertical 

rectangle, fusion; yellow triangle, germline SNV/indel; green triangle, somatic 
SNV/indel; black border, homozygous mutation; brown square, hypermutation. 
Please see Supplementary Table 1 for a full list of tumor types and acronyms.  
b, The proportion of COSMIC single-substitution signature 3 (BRCAness 
mutational signature) in the PCAWG dataset compared to KiCS cohort patients 
with absence or presence of either somatic or germline variants affecting the 
HR pathway. The KiCS cohort is divided into three subsets based on the absence 
or presence of germline or somatic HRD. The proportion of samples with the 
SBS3 signature in each KiCS subset as well as the PCAWG dataset is shown by the 
height of the bars. Sample sizes (that is, the number of biologically independent 
samples) are shown on the x axis. Only statistically significant P values obtained 
by Fisher’s exact test (two sided) comparing each pair of datasets are shown.
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Fig. 5 | Impact of therapy on TMB in pediatric and AYA cancers. a, Bar charts: 
KiCS tumor samples ordered by SNVs per Mb, displaying SNVs per Mb and 
structural variant (SV) count on the y axis. Red bars indicate samples that had 
a high mutational load for at least one of the two mutation types. Pie charts: 
combined red slices indicate the proportion of samples with high mutational 
load for respective mutation type. The dark red slices indicate the proportion of 
samples with a high mutational load for only one of the mutation types (that is, 
not high for the other mutation type). For a, n = 326 individual tumor samples 
from 249 patients. b,c, Box plots showing SNVs per Mb (b) and structural 

variant count (c) for samples obtained before treatment versus after treatment 
(chemotherapy and/or radiation). Wilcoxon two-tailed P values are shown. Box 
plots show quartiles with the center line representing the median and whiskers 
representing 1.5 times the interquartile range. For b, n = 326 individual tumor 
samples from 249 patients; test statistic (z score) = 2.81; effect size = −0.156. For c, 
n = 217 individual tumor samples from 180 patients; test statistic (z score) = 2.65; 
effect size = −0.180. d, Example of a tumor sampled before and after treatment. 
Light blue indicates mutations seen before treatment and dark blue indicates 
new mutations present at relapse (after treatment).
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a VAF of greater than 0.10. Pie charts are colored by the proportion of mutations 
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(black). Open circles represent no SNVs detected above the threshold. The 
center panel depicts samples (gray squares) in sequential order with time on the 
x axis, showing the number of days since the initial sample was obtained. A star 

represents the emergence or loss of a targetable driver, leading to a potential 
change in clinical action. Note that samples obtained at the same time point 
(days since diagnosis) correspond to anatomically distinct lesions (for example, 
local relapse versus lung metastasis). b, Proportion of mutations shared by each 
primary tumor with its paired relapse (n = 25 individual patients with 38 initial 
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to relapse samples (with a one-to-one comparison comprising a ‘pair’). The 
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is characterized as parallel or linear on the basis of a 75% threshold29.
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Discussion
In this precision oncology study of pediatric and AYA patients, we 
present sequencing and comprehensive clinical annotation of a wide 
array of CNS tumors, solid tumors and hematological malignancies. 
Our analysis extends to multiple samples per participant, many of 
which are from after initiation of therapy and from sites of progressive, 
recurrent or metastatic disease. We demonstrate clinical actionability 
beyond the identification of therapeutic targets and provide insights 
into the contribution of germline drivers and cancer therapies to the 
pathogenesis and evolution of pediatric cancer. We also highlight the 
utility of rebiopsy at relapse, on the basis of evidence of changes in 
therapeutically targetable drivers.

Collectively, this study demonstrates both the feasibility and 
utility of incorporating comprehensive somatic–germline genomic 
analysis into pediatric oncology care. Uptake of testing was high 
(95% consent rate), and sufficient tissue was available for analysis in 
94% of patients. The clinical actionability of the findings was broad: 
although the identification of novel therapeutic targets in patients with 
hard-to-cure cancers remains a primary indication for genomic analysis 
(found in 54% of patients in this cohort; Fig. 2b), we demonstrate that 
comprehensive sequencing also improves upfront diagnostics and 
prognostication. Our approach was instrumental in refining or chang-
ing the diagnosis for 17 uncertain cases in this cohort (Table 1), which 
permitted the appropriate choice of antineoplastic therapy, rather 
than exposing patients to ineffective therapies and their side effects. 
Notably, our analysis also reliably captured every canonical fusion and 
other clinically relevant markers (for example, MYCN amplification in 
neuroblastoma), while providing further detailed characterization of 
clinical findings in other cases (Supplementary Table 3a,b). NGS-based 
tumor analysis can provide more comprehensive assessments than 
standard clinical molecular/cytogenetic testing and could eliminate 
the time delays23 inherent to performing sequential assays (Table 1), 
particularly for cases with diagnostic uncertainty or for which tumor 
tissue is limited (small biopsies from pediatric patients). Notably, our 
approach is flexible and adaptable in accommodating new diagnostic 
and prognostic markers that may be prioritized for identification 
and risk stratification in the future, without the need to develop and 
validate new assays.

Our prospective analysis was based on a comprehensive cancer 
panel and full transcriptome sequencing. Retrospective analysis of 
somatic WGS data in our cohort, using a filtering strategy designed 
to detect variants that would be overlooked by a panel, identified a 
small number of additional clinically actionable findings (n = 7; Sup-
plementary Table 7). A combined sequencing approach that includes 
WGS has been shown to be most sensitive by other groups24,25 and 
permits comprehensive integrative analysis (including of mutational 
signatures). This is likely to be a preferred approach moving forward, 
depending on the goals of the specific sequencing effort, technical abil-
ity and financial constraints. Not surprisingly, WGS analysis also led to 
identification of other biological drivers, improved mechanistic insight 
into complex structural variation and detection of novel variants in 
regulatory and noncoding areas, which will inform future discovery 
and potentially future clinical care.

Two important observations emerge from our analysis that chal-
lenge current tenets of pediatric cancer biology. The first is the presence 
of a notable proportion of high mutation burden in relapsed childhood 
cancers, across all classes of mutation (Fig. 5). This is in distinct contrast 
to the ‘quiet’ pediatric genomes described in prior studies2,26, which 
are largely based on assessments of diagnostic tumor specimens, and 
thus represents an important addition to the literature. This finding is 
not exclusively associated with germline pathogenic variants in genes 
associated with MMR deficiency. We demonstrate that tumors exposed 
to chemotherapy and radiation have a significantly higher mutational 
burden than pretherapy samples (Fig. 5b,c), which has been shown in 
prior studies of paired primary–relapse tumors22 of specific histologies, 

including neuroblastoma27,28 and glioma29, and is now observed across a 
broad range of tumor histiotypes in our cohort. These findings suggest 
a potential role for immune checkpoint inhibitors in subsets of pedi-
atric tumors, as hypermutation is evolving as a biomarker of immune 
checkpoint inhibitor efficacy, including non-SNV neoantigens30–34. In 
recent work, response to immune checkpoint inhibitors was associ-
ated with TMB across a wide range of cancer types, particularly among 
those with TMB in the top 20% for a given histology30. Accordingly, TMB 
of more than 5 mutations per Mb may be a more appropriate cutoff 
to define hypermutation in pediatric tumors (and TMB as low as 2 
mutations per Mb has been suggested to represent ‘pediatric highly 
mutated’ in diagnostic cohorts2), given the low SNV burden among 
tumors from the overwhelming majority of these patients; we are 
actively pursuing this question in a clinical trial35. We also conducted a 
detailed analysis of changes to molecular drivers at the time of relapse 
(Fig. 6 and Supplementary Table 10), which extends findings described 
in histology-specific cohorts18,27,28,36,37 and patient-derived xenograft 
models38 and so far has been shown in only very small patient subsets 
of a few broad precision medicine studies22,39–43, with limited analysis. 
Collectively, these data lend support for repeat profiling of relapsed 
pediatric cancers after therapy44, which may identify new drivers or 
genomic architecture to target. Future analysis, including assessment 
of therapy-related mutational signatures, will help clarify the extent to 
which increased mutational load and detection of new drivers in the 
relapse setting is due to therapy-induced pressures.

The second notable finding in pediatric cancers is the prevalence 
of defects in the HRR pathway, suggesting potential utility for PARP 
inhibitors (Extended Data Fig. 3b). Indeed, deficient DNA repair has 
been identified to be an important contributor to pediatric cancer 
pathophysiology and has been explored in a number of specific cancer 
types, including in neuroblastoma and osteosarcoma45,46. In this study, 
we focused our analysis on tumors with identifiable driver variants in 
the HRR pathway. Several variants originate in the germline, and their 
contribution to pediatric cancer pathogenesis has, thus far, remained 
unclear3,7,14. Early epidemiological studies highlighted an association 
between women with breast cancer and sarcomas in their relatives, and 
a high prevalence of childhood cancers in families with mutations in 
BRCA2 has also been described47–49. The presence of pathogenic variants 
in HRR genes in the germline of pediatric patients with cancer has been 
reported in specific tumors50–52, in germline studies of broad popula-
tions of pediatric oncology patients7,8,14,53,54 and in some precision 
medicine studies3,6,25,39,42. We present an in-depth correlative analysis 
to interrogate the contribution of such germline variants to pediatric 
cancer pathogenesis. Herein we demonstrate an enrichment in muta-
tional signature 3 in the tumors of patients with germline LP/P variants 
in HRR genes (Fig. 3b), providing support for their role as drivers of 
pediatric cancers, despite the apparent lack of a second somatic hit in 
many. It is possible that other mechanisms of second allele inactiva-
tion are at play, including epigenetic silencing, dominant-negative 
effects or post-translational modifications. Direct application of the 
HRDetect score did not yield robust correlation with mutational sig-
nature analysis and/or inactivating mutations in HRR genes. While the 
interpretation of signature 3 requires a cautious approach, we also 
strongly feel that this finding should not be dismissed. Collectively, 
these findings will continue to motivate the pediatric oncology com-
munity to investigate further and determine more reliable assessments 
of HRD in pediatric cancers and interpretations of existing measures.

Analysis of the pediatric germline is a critical component of a 
comprehensive sequencing effort. As noted above, a number of poten-
tially important therapeutic targets were identified from the pediatric 
germline (Fig. 3a). Furthermore, identification of germline mutations 
in CPGs was not strongly correlated with a personal or family history of 
cancer7, and cancer predisposition would have remained undiagnosed 
if the germline had not been independently sequenced. The impact of 
these findings often extends beyond the pediatric patients themselves 
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and stands to benefit parents and family members through the institu-
tion of appropriate tumor surveillance measures55,56 where indicated 
and family planning considerations, as was shown in our cohort. The 
proportion of patients in our study with germline LP/P variants in CPGs 
(15%, not including already known germline variants) is moderately 
higher than reported in some other studies but is fairly consistent 
with others3–8,14,39,40,53,57–59; these proportions, which range from 8% to 
35%, are influenced by the breadth of the sequencing platforms used 
and genes reported, ascertainment bias (tumor types, ancestries) and 
the inclusion or exclusion of carrier status in frequency counts. Of 
particular interest in this study was the application of broad cancer 
panel sequencing to the germline DNA of patients with high clinical 
suspicion for cancer predisposition but with negative targeted test-
ing to date (EP2). A pathogenic variant in a known CPG was reported 
in 5 of 43 (12%) patients. Although these variants may represent the 
causative drivers of the suspicious personal or family cancer history 
in these five patients, these findings suggest that other mechanisms 
such as yet-to-be-discovered genes, variants that span regulatory 
regions, epigenetic changes or polygenic interactions from multiple 
low-penetrant variants in a common pathway should be considered to 
explain cancer predisposition risk more generally.

In summary, the application of comprehensive somatic–germline 
analysis to pediatric oncology care conveys a breadth of clinical util-
ity, extending beyond identifying canonical targets, which provides 
a rationale and urgency for its incorporation into standard clinical 
practice for all pediatric and AYA patients, at diagnosis and at relapse24. 
Given the relatively small numbers of these patients, population-wide 
sequencing for every child and young adult with cancer is likely to be 
a realistic goal. While stratified approaches may be considered (for 
example, transcriptome analysis at diagnosis for solid tumors and 
leukemias), it is clear that integrative, comprehensive tumor–germline 
sequencing provides the broadest impact (Fig. 2b). This applies par-
ticularly to the interrogation of therapeutic targets, which show no 
consistent association across most tumor types (Fig. 3a). Challenges 
remain in performing NGS for specific patient populations (for exam-
ple, tumors with poor cellularity such as in Hodgkin lymphoma and 
patients with relapsed hematological malignancies after allogeneic 
transplantation). Finally, we demonstrate how a program that adds 
careful clinical annotation to sequencing efforts can also rapidly accel-
erate meaningful biological insights. Comprehensive approaches such 
as these along with data sharing efforts will advance the understanding 
of pediatric and AYA cancer pathogenesis and evolution and improve 
patient management and outcomes.

Methods
This study was approved by The Hospital for Sick Children Research 
Ethics Board.

Patient recruitment
Launched in April 2016, KiCS is an ongoing prospective study. We 
report on the first 300 participants analyzed. KiCS is available to 
patients at The Hospital for Sick Children but also enrolls nationally 
and internationally. Patients are referred by their primary oncology 
teams to one of two streams: EP1 (tumor + germline analysis), includ-
ing individuals with a difficult-to-cure cancer (any metastatic, poor 
prognosis (predicted 5-year overall survival <50%) or relapsed tumor) 
or a poorly characterized rare tumor and patients for whom NGS could 
answer a clinically relevant question that had not been addressed by 
clinical testing, and EP2 (germline ± tumor analysis), including indi-
viduals suspected for a cancer susceptibility syndrome on the basis 
of personal or family history, with negative targeted clinical testing. 
All participants (or substitute decision-makers) provided informed 
consent. Participants received no compensation. The sex and age of 
participants included in various analyses can be determined by refer-
ring to Supplementary Tables 1 and 2.

KiCS program overview
Paired tumor–normal sequencing was conducted. Fresh frozen tumors 
were required initially, but an amendment to accept FFPE samples was 
incorporated in May 2018. Normal (‘germline’) samples were derived 
from peripheral blood. For individuals with hematological malignan-
cies, DNA was extracted from skin biopsy-derived short-term cultured 
fibroblasts or a peripheral blood sample if negativity for minimal 
residual disease was confirmed in the bone marrow. Otherwise, we 
used maternal and paternal blood. In brief, tumors were analyzed 
against each parent’s germline independently. Variants common to 
both analyses were considered true somatic tumor variants. Germline 
variants that were maternally or paternally inherited, found in only a 
single analysis, were excluded. It was not possible to ascertain germline 
de novo variants in these patients. When possible, the germline origin 
of variants was assumed on the basis of allele frequency or presence 
in population databases (gnomAD); however, variants were mostly 
reported as somatic findings. If available, the percentage of malignant 
cells in the tumor sample was noted to further filter out variants from 
the somatic analysis. Particular consideration was given to the analysis 
of relapsed leukemia in patients after allogeneic bone marrow trans-
plantation60. Preanalytic removal of donor cells from mixed tumor–
donor specimens (for example, by flow cytometry) was considered but 
not always feasible. If available, donor DNA derived from the patient 
(for example, a remission blood sample taken after transplantation) 
or donor blood (if available for consent (for example, from a sibling 
donor) was sequenced to filter out variants from the somatic analysis. 
In the absence of these, the percentage of donor chimerism was noted 
for analysis purposes.

Tumors were sequenced using a custom pan-cancer DNA panel 
providing deep coverage for 864 cancer-associated genes (Supplemen-
tary Table 11) and with whole-transcriptome (RNA-seq) sequencing and 
WGS. Paired germline samples were analyzed by panel (with specific 
use of a CPG list for reporting; Supplementary Table 12) and WGS. For 
individuals in EP2, tumor specimens were analyzed when possible to 
complement germline analysis. Sample preparation and panel sequenc-
ing were performed in a CAP/CLIA-accredited laboratory.

All sequencing data were annotated with comprehensive clini-
cal details, abstracted from medical records, chemotherapy charts/
protocols and institutional clinical databases. ICD morphology 
codes (ICD-O-3.1)61, when not provided on the pathology report, were 
assigned retrospectively by two pediatric oncologists. Data were col-
lected on any systemic (intravenous/oral) cancer-directed therapies 
received more than 24 hours before resection of the analyzed tumor 
specimens. Therapeutic radiation exposures were captured, and two 
study coinvestigators categorized each tumor specimen as ‘in field’ or 
‘not in field’ of prior radiation.

Findings from the panel and RNA-seq were discussed at a weekly 
multidisciplinary molecular tumor board, whose members included 
genome scientists, bioinformaticians, oncologists (with hematological, 
neuro-oncology, solid tumor and experimental therapeutics exper-
tise), clinical geneticists, genetic counselors, laboratory geneticists 
and pathologists. The clinical actionability of sequencing data was cat-
egorized as shown in Extended Data Fig. 6. Each actionable variant was 
individually counted. Variants with more than one aspect of actionabil-
ity were counted once but were recorded in each relevant subcategory 
for clarity. Actionable variants were categorized using a classification 
framework, based on AMP/ASCO/CAP and OncoKB guidelines and 
NCI-COG Pediatric Match Levels of Evidence (Extended Data Fig. 4), 
that was adapted to include signatures and hypermutation62,63. These 
data were recorded in REDCap (v11.0.5). Clinically validated actionable 
findings were returned to the referring clinician for disclosure.

WGS data were used to corroborate TMB and to assess mutational 
signatures64. Somatic WGS data were further interrogated retrospec-
tively, using a strategic filtering approach to identify variants that 
would be missed by the panel, including small deletions/duplications, 
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variants overlapping upstream/regulatory or noncoding regions of a 
gene and complex structural variants. Variants already detected by the 
cancer panel and/or RNA-seq were removed, and additional clinically 
actionable findings were recorded.

Cancer panel DNA extraction, library preparation and 
sequencing
DNA from 1.0-ml EDTA blood vacutainer tubes was extracted (DSP Blood 
Midi Kit with QIA Symphony DNA extractor, Qiagen). A custom 1.0-ml 
EDTA blood protocol was run on the QIA Symphony with DNA eluted in 
200 μl TE (Qiagen, without azide). DNA from bone marrow aspirates, 
fresh and frozen tumor tissues, and blood (volume of <1.5 ml or with low 
white blood cell count) was extracted with the QIAamp Micro silica-based 
membrane column kit (Qiagen). Specimen input of 1–8 mg of tumor  
tissue, 50 μl of bone marrow aspirate or 100 μl of blood was extracted on 
a single QIAamp microcolumn and eluted in 20 μl TE. DNA was extracted 
from FFPE tissue using the QIAamp DNA FFPE tissue kit (FFPE tumors 
were included for participants 92, 170, 200, 209, 228 (2 samples), 269, 273 
(2 samples), 299, 306, 358, 362, 370, 375, 376, 377, 384 and 400). DNA was 
quantitated with a Biomek FLX800 fluorimeter using 2 μl DNA, diluted 
in 198 μl assay B solution containing Hoescht dye (Sigma). A standard 
curve of 25–450 ng DNA was prepared using commercial genomic DNA 
(Sigma), and patient DNA was quantified using this curve. Using the Sure-
SelectXT kit, samples were processed using 200 ng DNA. After shearing 
the DNA (Covaris sonicator), Illumina HiSeq 2500-compatible libraries 
were generated. Samples were pooled in multiples of six.

Design and validation of a pan-cancer sequencing panel
The panel was designed to capture more than 15,000 exons from 864 
genes (Supplementary Table 11) using Agilent SureSelect. Probes 
were designed to capture exons and a substantial portion of intronic 
sequence. Probes with poor coverage were redesigned, especially if 
they fell within childhood cancer-associated genes. The curated list 
of associated genes included 514 from COSMIC (v69), 319 from other 
cancer-specific databases and resources, and 45 from pediatric-specific 
sequencing manuscripts. We designed probes for the full coding 
regions of each gene and the promoter of TERT, as well as a small 
number of microsatellites. We compared each probe to those already 
designed as part of Agilent’s exome kit and ‘boosted’ those with poor 
coverage in the exome. Some targets were excluded because they 
consistently performed poorly (>50% of 137 samples with coverage 
of less than 50× for <95% of target bases) or were duplicated. In total, 
864 genes performed consistently, with more than 95% of target bases 
with over 50× coverage.

Clinical validation of germline and somatic variants (substitu-
tions, insertions and deletions) was performed according to CAP (CAP 
Molecular Pathology Checklist; MOL.36115 rev.201708) and IQMH 
(IQMH Medical Laboratory Accreditation Requirements; v7.1, 2017) 
guidelines. Validation of germline variant calling using the panel was 
performed by testing the accuracy and reproducibility of variant calls 
using reference and patient samples with known variants (verified by 
orthogonal clinical methods). Only variants found in genomic intervals 
common to both methods were used. This was done in triplicate within 
and between sequencing runs, ensuring ≥95% and ≥85% sensitivity for 
substitutions and indels, respectively.

Validation of somatic variant calling was performed using patient 
samples and mock tumor samples, created by mixing reference sam-
ples. Samples were mixed to include varying dilutions of the mock 
tumor in the mock germline–normal sample, yielding somatic variants 
with a range of VAF values to test variant calling and to challenge the 
limit of detection of the panel. These variants were also visually curated 
to derive a gold-standard truth set. Limit of detection was also assessed 
by attempting to detect variants with low VAF for patient material 
verified by a clinically validated orthogonal method. The accuracy and 
reproducibility of variant detection was tested within and between 

sequencing runs, ensuring ≥90% sensitivity for substitutions and ≥80% 
sensitivity for indels with the limit of detection challenged and repro-
ducible down to 5% VAF for substitutions and 10% VAF for indels.

Processing of cancer panel sequencing data
Tumor and non-neoplastic DNA samples were sequenced using the 
following thresholds: ≥98.5% of bases at ≥50× depth; ≥95% of bases 
at ≥200× depth; and ≥75% of bases at ≥500× depth (for fresh frozen 
samples). FASTQ files were aligned to hg19 (BWA-MEM v0.7.15). PCR 
duplicates were marked with Picard (v2.5.0), with indel realignment 
and recalibration of base quality scores using GATK (v3.6.0). The mean 
coverage across the cancer panel achieved with these parameters for 
the cohort was 1,181× for fresh frozen tumor and blood samples and 
829× for FFPE tumor samples. NGSCheckMate65 was used to ensure 
tumor and germline pairs were from the same patient.

Cancer panel variant detection
Germline substitutions and indels were called using GATK Haplo-
typeCaller (v3.6.0) with a minimum base quality score of 20 and a 
minimum confidence threshold of 30. Germline substitutions were fur-
ther filtered using the following rules: QD < 2.0, FS > 60.0, MQ < 40.0, 
MQRankSum < −12.5, ReadPosRankSum < −8.0 and SOR > 30. Germline 
indels were filtered using the following rules: QD < 2.0, FS > 200.0, 
ReadPosRankSum < −20.0 and SOR > 10.0. Variants were annotated 
with Annovar and snpEff.

Somatic substitution and indel calling was performed using 
Mutect (v1.1.4) and Mutect2 (GATK v3.5.0), respectively. Somatic sub-
stitutions were excluded using the following rules: variant allele depth 
in tumor <10, variant allele depth in germline ≥3, reference allele depth 
in germline ≤50 and VAF in tumor <0.01, VAF ≥0.01 in normal individuals 
(using multiple control datasets), and germline depth <10 and tumor 
depth at the position <10, unless the variant passed all Mutect filters. 
The remaining substitutions were classified as being of high quality 
if they passed the Mutect internal filters and had a VAF of ≥5%, with at 
least 50× depth at the position in the tumor and normal samples. Indels 
were classified as being of high quality if they had a VAF of ≥10%, with 
>10 alternative reads in the tumor, >50 reference reads in the normal 
sample and ≤2 alternative reads in the normal sample. Variants from 
coding sequences and intron–exon boundaries, including 10 bp of 
intronic sequence for substitutions and 20 bp of intronic sequence 
for indels, were annotated by Annovar and investigated. The threshold 
for reporting clinically actionable variants was a VAF of 5% for substitu-
tions and 10% for indels. Exceptions were made for clinically actionable 
somatic variants detected below these thresholds.

Reference genome
The clinical cancer panel and research genomes were aligned to hg19.

Automated variant prioritization using an internal website 
and database
A website was developed for variant interpretation, which was used by 
genome analysts to prioritize germline and somatic variants by apply-
ing customizable filters. Summary and quality metrics tabs displayed 
specimen information, coverage metrics and TMB (Extended Data 
Fig. 7a). Annotated variants were loaded into a database (MySQL) and 
displayed on the variants page. Columns for germline variants included 
mutation type, population frequency, OMIM disease association, mode 
of inheritance, ClinVar and HGMD classifications, zygosity, read depth 
and in silico predictions of functional effect (Extended Data Fig. 7b). 
Additional columns for somatic variants included VAF and COSMIC 
(Extended Data Fig. 7c). Custom annotations were built in to review 
variants in CPGs and therapeutically actionable genes. We flagged 
compound events that potentially caused biallelic disruption of a 
gene. The interpretation history was displayed for recurrent delete-
rious or benign variants previously classified in other cases. Lastly,  
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a knowledge-based prioritization tool was designed to automatically 
prioritize variants on the basis of these annotations. Short-listed vari-
ants were displayed in the variants of interest tab for classification 
and reporting.

Interpretation of somatic and germline variants from the 
cancer panel
Small indels in clinically actionable genes were confirmed by Sanger 
sequencing or ddPCR if they met requirements for verification by these 
orthogonal methods. Alamut Visual (Interactive Biosoftware) was 
used to predict the potential splicing effects of variants found ±10 bp 
with respect to intron–exon junctions. Predictions were investigated 
in matched tumor-derived RNA, when available (Extended Data Fig. 
8). Alamut parameters were as follows: synonymous variants, 3′- and 
5′-UTR variants, and intronic variants (±10 bp) were reported if known 
to be pathogenic in ClinVar, if predicted to disrupt splicing as indicated 
by in silico programs (SpliceSiteFinder, MaxEntScan, NNSPLICE, Gene-
Splice) or if predicted to disrupt translation initiation. At least three 
programs were required to generate a prediction score of >30% each 
or a combined score of 100% for an indel to be considered disruptive. 
Variants beyond ±10 bp were not reported unless known to be patho-
genic in ClinVar or the literature.

Somatic variants were classified as noted above (Extended Data 
Figs. 4, 6 and 8). Germline variants were classified using ACMG criteria66 
with reference to recent ClinGen criteria67. Germline variants found in 
the general population at a frequency of >5% were classified as benign, 
and those found at a frequency of between 2–5% were classified as 
likely benign. LP/P variants, as well as variants of uncertain significance 
with supporting functional evidence, were reported. This analysis 
included functional characterization of the variant by other published 
studies, RNA-seq of the patient’s tumor showing aberrant splicing or 
loss of expression, high TMB or mutational signatures detected in the 
tumor due to variants in MMR or HRD genes (Extended Data Fig. 9 and  
Supplementary Table 12).

RNA extraction and sequencing
Tumor samples were disrupted with an electric OMNI homogenizer 
with a disposable probe and processed using the Qiagen RNeasy Micro 
tissue extraction kit, with a maximum starting input of 1–5 mg (usually 
3 mg). Total RNA quality was assessed using an Agilent Bioanalyzer 2100 
RNA Nano chip. Concentration was measured by Qubit RNA HS assay on 
a Qubit fluorometer (ThermoFisher). RNA-seq library preparation was 
performed following the NEB NEBNext Ultra II Directional RNA Library 
Preparation protocol. In brief, 400 ng of total RNA was used as input, 
enriched for poly(A) mRNA, fragmented to a size of 200–300 bases for 
4 min at 94 °C, converted to double-stranded cDNA, end-repaired and 
adenylated at the 3′ end to create an overhang A, allowing for ligation of 
Illumina adaptors with an overhang T. Library fragments were amplified 
under the following conditions: initial denaturation at 98 °C for 30 s; 15 
cycles of 98 °C for 10 s, 65 °C for 75 s; and extension for 5 min at 65 °C. 
Samples were amplified with different barcoded adaptors, enabling 
multiplex sequencing. One microliter of the library was loaded on a 
Bioanalyzer 2100 DNA High-Sensitivity chip to check for size. Librar-
ies were quantified by qPCR using the Kapa Library Quantification 
Illumina/ABI Prism protocol (Kapa Biosystems) and then sequenced on 
a High-Throughput Run Mode flow cell with V4 sequencing chemistry 
on an Illumina HiSeq 2500 using 125-bp reads.

Fusion detection
Fusion transcripts were detected by integrating multiple fusion detec-
tion algorithms (STAR-Fusion, Chimerascan, Mapsplice and deFuse), 
removing normal artifacts and validating the remaining fusions (F.F. 
et al., unpublished data). Following initial detection, candidate fusions 
were amalgamated, formatted and annotated using a common set 
of gene models (GTF file format). This standard format includes 

coordinates, strand and, if the breakpoint ends are within genes, gene 
names and locations, splice donor/acceptor sites and the exonic loca-
tions of the breakpoint ends. Potential read-through events and those 
involving microRNA, small nucleolar RNA, ribosomal and mitochon-
drial genes were removed. Each candidate fusion was reconstructed 
using 200 bp from the 5′ and 3′ break point ends.

To remove common artifacts, we aligned normal transcriptomes 
(1,277 GTEx samples from 43 tissues) to the candidate reconstructed 
chimeric transcripts (STAR v2.4.2a). Reads were considered to be 
aligned to a reconstructed chimeric transcript if they had a minimum 
overlap of 10 bp and were a perfect match. Chimeric transcripts with 
more than three reads from more than three GTEx samples were 
removed. The remaining candidate fusions were brought forward for 
validation.

Validation of the candidate fusions was performed by both 
local and genomic realignment. For local realignment, reads were 
locally realigned in single-end mode against each chimeric transcript 
remaining from the previous steps (STAR v2.4.2a). Aligned reads were 
extracted using samtools and used to reconstruct the sequence span-
ning the breakpoint. Validation of the breakpoint by reconstruction was 
achieved through two methods. One method used de novo assembly of 
the candidate reads with Abyss 2.1.0 using iteration of different k-mers. 
Contigs generated by Abyss were compared to the reconstructed 
chimeric transcript using BLAST. Fusions were considered validated 
if they had at least 3 bp of overlap with at most one mismatched base. 
The second method used was to create an artificial 5-bp gap on the 
candidate chimeric transcript at the breakpoint and use Gapfiller68 
to close the artificially created scaffold between the two breakpoint 
ends. Reads that were previously selected as potential candidate reads 
of the transcript were used as input and aligned against the artificial 
scaffolds for each scaffold end using Bowtie (if shorter than 50 bp) 
or BWA (if longer than 50 bp). Reads aligned onto the scaffold were 
then split into shorter k-mers (85% of read) and used to iteratively 
fill the artificial gap from the left and right edges, one base at a time. 
Each base of the gap was considered filled if it was covered by at least 
two k-mers. A candidate fusion was considered validated if its gap 
was closed with at least 3 bp of overlap achieved on both the left and 
right edges of the artificial gap and the total length of the gap-filled 
sequence and the starting artificial chimeric transcript did not differ 
by more than 1 bp. For validation by genomic realignment, fusion chi-
meric transcripts were aligned to the reference genome (using BLAST, 
with DUST filtering for low-complexity regions). Chimeric transcripts 
aligning to low-complexity regions were flagged. Reconstructed chi-
meric transcripts aligning with more than 50 bp with 100% identity to  
other locations in the genome were considered to be misalignments. 
Lastly, for BLAST alignments spanning the breakpoint of the chimeric 
transcript, the difference between the end of the 5′ gene alignment  
and the breakpoint position and the difference between the start of the 
3′ gene alignment and the breakpoint position were computed. The 
candidate fusion was flagged as an alignment artifact if the maximum 
of the two differences was greater than 10 bases with >99% identity.

Fusions were then scored on the basis of technical and biological 
features, to aid in interpretation. These features included, for example:

•	 Location of the breakpoints: the probability of a fusion being 
validated increased when both breakpoints were in a coding 
sequence.

•	 Exonic location of the breakpoint: having both breakpoints on a 
splice junction increased the probability of a fusion being real.

•	 Donor/acceptor site: the major canonical splice pattern GT–AG 
is more likely to be found in true fusions than the minor  
canonical (GC–AG and AT–AC) or noncanonical sequences.

•	 Frame: the predicted effect of the fusion was estimated using  
the Gene Rearrangement AnalySiS tool (https://github.com/ 
cancerit/grass). Driver fusions are typically in frame.

http://www.nature.com/natcancer
https://github.com/cancerit/grass
https://github.com/cancerit/grass


Nature Cancer | Volume 4 | February 2023 | 203–221 217

Article https://doi.org/10.1038/s43018-022-00474-y

Processing of WGS data
Tumors and matched non-neoplastic samples were sequenced on 
an Illumina HiSeq X. The target depth was 30× for normal samples 
and 30× or 60× for tumors. Actual depths achieved were as follows: 
normal samples, average depth of 38.83× (range, 24.33× to 90.54×); 
tumors, average depth of 49.23× (range, 26.55× to 125.24×); 4.6% of 
samples were below the 30× target depth. In total, 569 genomes (272 
non-neoplastic and 297 tumor) from 238 patients were analyzed. FASTQ 
files were aligned using BWA-MEM (v0.78) and PCR duplicates were 
marked with Sambamba (v0.7.0), with indel realignment (GATK v3.8) 
and base quality recalibration using GATK (v4.1.3).

Whole-genome somatic variant calling
Somatic substitution and indel calling was performed with Mutect2 
(GATK v4.1.3). Structural variant calling was performed using Delly 
(v0.7.1) and the GRIDSS-PURPLE-LINX container (https://github.com/
hartwigmedical/gridss-purple-linx); Delly calls with at least four dis-
cordant read pairs were kept. All somatic variants (substitutions, indels 
and structural variants) were filtered for quality control as previously 
described11. In brief, we required a minimum depth of 10× in the tumor 
and normal samples with no reads supporting the variant in the normal 
sample. We removed variants found in a panel of non-neoplastic sam-
ples (n = 133), analyzed using the same methods, and those that failed 
at least two of the four cutoffs for nonunique mapping (<70% of reads 
at the locus mapping uniquely), multiply mapping clusters (seen in 
tumor and matched normal samples), excessively high mapping depth 
(compared to the average for the normal chromosome) and presence 
in low-complexity regions (DUST score of >60). Samples were removed 
from use in TMB or structural variant burden calculations if artifacts were 
suspected. One such example would be an artificially high TMB result-
ing from the proband’s blood being obtained after transplantation60.

Structural variants were first filtered to remove any variants pre-
viously discovered by cancer panel analysis. Breakpoint ends were 
categorized as exonic or intronic, annotated as being within an onco-
gene or tumor suppressor or categorized as being within a promoter 
region or intergenic. Structural variants were grouped by breakpoint 
ends (promoter–promoter, exon–exon, intron–exon, exon–intron, 
etc.) and then underwent interpretation. Breakpoints were assessed to 
determine whether they disrupted a functional or regulatory domain 
(UniProtKB). When available, RNA-seq data provided supporting  
evidence for over- or underexpression caused by the disruption.

Cancer panel TMB calculation
TMB was calculated from the count of variants detected from the 
panel with a VAF of 10% or higher. The count was divided by the panel 
target size (3.012823 Mb), which included the exonic regions of the 
panel ± 10 bp for intron–exon junctions, to give a value in mutations 
per Mb. TMB values of ≥5 were considered actionable on the basis of 
trial eligibility (NCT02992964).

Exome TMB calculation
TMB was calculated from the count of variants detected in the exome, 
captured with the Agilent SureSelect v4 kit, intersected with the cancer 
panel intervals. This count was divided by the cancer panel target size, 
producing an in silico cancer panel TMB from the exome.

Whole-genome TMB calculation
TMB was calculated for substitutions and structural variants. The count 
of variants detected from WGS was divided by the size of the reference 
genome (2,897.310462 Mb).

Finding agreement between whole-genome and cancer panel 
TMB
One difference between the panel and WGS was the limit of detection. 
The panel had an average depth of 1,100×, whereas the depth of WGS 

was closer to 38×. Supplementary Table 13 shows the ability of WGS to 
detect variants using the panel as a truth set (n = 170 tumors). WGS had 
a limited ability to detect variants of low VAF compared to the panel 
(5% limit of detection).

These approaches were more concordant when the panel ‘truth 
set’ was restricted to variants with ≥10% VAF. Extended Data Fig. 10a 
shows that the variants detected in common were largely found at 
equivalent VAF but that there were still some private variants. These 
private variants included (1) somatic variants excluded from the cancer 
panel output owing to the low, yet unacceptable, number of alternative 
reads in the normal sample (due to the high depth of sequencing of the 
panel) not found in the normal sample by WGS and (2) true somatic 
variants excluded from the WGS output due to a few low-quality reads 
in the region, while the higher depth of sequencing in the cancer panel 
at these regions reduced the ratio of low-quality reads.

We observed a tight correlation between panel and WGS TMB 
(Extended Data Fig. 10b). We analyzed the difference in TMB for 170 
individual samples (Supplementary Table 14). At VAF of ≥10%, WGS and 
the panel produced highly similar TMB. The average difference in TMB 
between the platforms was 0.42 mutations per Mb for samples with a 
TMB of <5 mutations per Mb (not deemed actionable), accounting for 
91.2% of the 170 samples. For samples with 5–10 mutations per Mb, the 
average difference was 2.08 mutations per Mb, and, for samples with 
>10 mutations per Mb, a larger average difference was found (15 muta-
tions per Mb), accounting for only 3.5% of the samples.

A limitation of the panel was the resolution of the TMB that could 
be called (~0.33 mutations per Mb for each variant on target). As shown 
in the top subplot of Extended Data Fig. 10a, the majority of samples 
had a negative value (that is, larger WGS TMB). If a tumor has a burden 
of 0.15 mutations per Mb and the resolution of the cancer panel is 0.33 
mutations per Mb, a single mutation may not be in the target space, 
yielding a TMB of >0. Hence, some low-TMB samples had a negative 
difference between the cancer panel and WGS TMB.

Copy number analysis
Copy number variants (CNVs) for cancer panel samples were called 
using CNVKit (0.9.4)69. Samples were compared to a reference of 
non-neoplastic tissues from males and females using CNVKit (n = 83). 
Sex-specific copy number normal reference modules were built from 
a series of ten male and ten female blood samples for NxClinical. 
Sex-matched patient samples were processed against this reference 
to generate copy number calls in NxClinical. The average bin size was 
set to 100 bp on target because of the high depth of the panel data; 
bin sizes for off-target regions were determined by CNVKit/NxClin-
ical for genomic accessible regions using default settings. Mainly 
centromeres, telomeres and highly repetitive regions were excluded 
from the accessible regions. Bins with reference log2-transformed 
read depth of less than −5 or a spread of read depth larger than 1.0, 
predefined by CNVKit, were excluded for all sample analyses. Seg-
ments were called using circular binary segmentation. Normal CNV 
was defined as a log2-transformed ratio of 0 ± 0.2. Gains were defined 
as a log2-transformed ratio of >0.5, while losses were defined as a 
log2-transformed ratio of >−1.0. CNVs that included or disrupted a clini-
cally actionable gene were classified according to the somatic variant 
interpretation scheme (see above). A decision tree was used to filter/
prioritize CNVs for actionable gene targets (Supplementary Table 15).

The following steps were taken in NxClinical:

 1. Removal of recurrent technical artifacts and common popula-
tion variants (Database of Genomic Variants) with at least 95% 
reciprocal overlap

 2. Prioritization of genic variants from actionable genes (Supple-
mentary Table 15)

 3. Review of losses encompassing tumor suppressors and gains/
amplifications involving oncogenes
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 4. Review of whether the variant was a second hit to a mutation
 5. Review of regions of LOH of >10 Mb involving actionable genes

The following steps were taken in CNVKit:

 1. CNV variant calls were extracted for targeted, actionable genes, 
separated into ‘amplification’ or ‘deletion’ events and then 
filtered to ensure they were (1) focal (<5 Mb in length) and (2) 
true deletions (log2(ratio) < −2.0 for homozygous deletions and 
log2(ratio) < −0.85 for heterozygous deletions) and amplifica-
tions (log2(ratio) > 0.85 for high gains with greater than four 
copies and log2(ratio) > 2.3 for amplifications with greater than 
ten copies).

 2. For cases with a germline or somatic deleterious substitution/
indel in a tumor-suppressor gene, CNVs were analyzed to iden-
tify second hits in the same gene, either focal deletions (<5 Mb) 
or variants involving sizable segments or whole chromosomes.

All events passing cutoffs were visually inspected in IGV or NxClini-
cal to ensure they were correctly sized and had sufficient copies as 
evidence for the CNV genotype.

Extraction of SBS3 mutational signature
De novo extraction of SBS3 was performed using all somatic substi-
tutions from 290 WGS samples, using the full cohort. One hundred 
mutations contributing to SBS3 were required to have a positive call. 
SigProfilerExtractor (v1.1) was used in two steps, as described previ-
ously15. The extracted signatures were compared to COSMIC Mutational 
Signatures v3.2–March 2021.

DNA repair pathway analysis
Samples were divided into ‘HR germline’ (germline variants affecting 
the HR pathway; n = 20, 5 of which had multiple sequential samples) 
and ‘HR somatic’ (somatic HR variants; n = 20; 5 of which had multiple 
samples) (Supplementary Table 8). Each sample was also analyzed for 
SNVs, indels and copy number changes in HR pathway genes. In eight 
samples with biallelic variants, the first hit was germline followed 
by LOH or a second variant affecting the same gene in the tumor. In 
13 samples with biallelic variants, both hits were somatic. In the ‘HR 
germline’ group, seven samples had biallelic mutations. In the ‘HR 
somatic’ group, 12 samples had biallelic variants. Fisher’s exact test of 
independence was used to determine whether SBS3 was significantly 
different between the PCAWG dataset and the three KiCS cohort sub-
sets (‘non-HR’, ‘HR somatic’ and ‘HR germline’). Fisher’s exact test was 
performed in a pairwise fashion (that is, one test for each possible pair 
of datasets; Fig. 3b).

Tumor evolution analysis
Thirty-eight patients had multiple neoplasms of the same histology in 
the same individual (Supplementary Table 10). Driver substitutions, 
indels and copy number changes were identified and tracked across 
subsequent relapses, progression samples or primary–metastatic 
pairs. Substitutions and indels were included in the analysis at any 
VAF (lowest 1.6%). Copy number changes were detectable in tumors 
with cellularity of at least 20–25%. Samples with ‘normal’ copy number 
profiles and TMB = 0 were suspected to have low tumor cellularity and 
were not included in this analysis. Variants were classified into (1) new 
therapeutically actionable drivers detected in the sample; (2) previ-
ously detected drivers absent in the sample, indicating displacement of 
the tumor clone and loss of a therapeutic target; (3) driver variants for 
which the VAF increased in the sample by >20%, indicating an expanded 
clone; (4) driver variants for which the VAF decreased by at least 20%, 
indicating a diminished clone; and (5) new drivers detected in the 
sample (not therapeutically actionable). Samples containing variants 
that could be classified in group 1 or 2 were counted as having a change 
in therapeutic actionability across serial sampling.

Pathology reports were reviewed before sequencing, and efforts 
were made to use samples/sections that did not have substantial necro-
sis or low tumor content (Extended Data Fig. 2b). As samples run on the 
panel were sequenced at high depth, it was possible to obtain reliable 
data even from samples with lower purity.

To show clonal evolution of an embryonal rhabdomyo-
sarcoma in an individual with constitutional neurofibromatosis-1  
(KiCS 15; Extended Data Fig. 5a), a mutation‐based phylogeny was 
created (Treeomics v1.8.1)70. Drivers in the trunk and branches  
were determined by WGS. We then used Pyclone-VI71 and PairTree72 
clonal and phylogenetic analyses to develop a pipeline for all KiCS 
WGS data. For each case, PyClone-VI (a Bayesian method) inferred  
clonal populations, incorporating copy number and purity, and  
PairTree then reconstructed phylogenies and estimated cancer cell 
fraction (Fig. 6b and Extended Data Fig. 5). We compared pairs of initial 
primary tumors with metastases or relapses in multisample cases and 
then determined the proportion of mutations unique to the initial 
primary sample. Pairs in which >75% of the initial mutations shared29 
were deemed linear.

Statistics and reproducibility
No statistical method was used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment. Individ-
ual analyses presented above, and the associated figures, include 
details on statistical methods and exclusions. Participant exclu-
sions are presented in Fig. 1. None of the statistical tests used in this  
study required the assumption of normality or the assumption of 
equal variance.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
DNA and RNA sequencing data that support the findings of this study 
have been deposited in the European Genome-phenome Archive under 
accession codes EGAS00001006034 for RNA, EGAS00001006610 for 
DNA from WGS and EGAS00001006642 for DNA sequencing from the 
comprehensive cancer panel. All data not presented here that support 
the findings of this study are available from the corresponding author 
on request. Mutational signature data for PCAWG are publicly acces-
sible at https://www.synapse.org/#!Synapse:syn11726602. Source data 
are provided with this paper.

Code availability
Custom code described in this study is available at https://github.
com/shlienlab.

References
1. Norris, R. E. & Adamson, P. C. Challenges and opportunities 

in childhood cancer drug development. Nat. Rev. Cancer 12, 
776–782 (2012).

2. Grobner, S. N. et al. The landscape of genomic alterations across 
childhood cancers. Nature 555, 321–327 (2018); erratum 559, E10 
(2018).

3. Parsons, D. W. et al. Diagnostic yield of clinical tumor and 
germline whole-exome sequencing for children With solid tumors. 
JAMA Oncol. https://doi.org/10.1001/jamaoncol.2015.5699  
(2016).

4. Mody, R. J. et al. Integrative clinical sequencing in the manage-
ment of refractory or relapsed cancer in youth. JAMA 314, 
913–925 (2015).

5. Harris, M. H. et al. Multicenter feasibility study of tumor molecular 
profiling to inform therapeutic decisions in advanced pediatric 

http://www.nature.com/natcancer
https://ega-archive.org/studies/EGAS00001006034
https://ega-archive.org/studies/EGAS00001006610
https://ega-archive.org/studies/EGAS00001006642
https://www.synapse.org/#!Synapse:syn11726602
https://github.com/shlienlab
https://github.com/shlienlab
https://doi.org/10.1001/jamaoncol.2015.5699


Nature Cancer | Volume 4 | February 2023 | 203–221 219

Article https://doi.org/10.1038/s43018-022-00474-y

solid tumors: the Individualized Cancer Therapy (iCat) study. 
JAMA Oncol. 2, 608–615 (2016).

6. Wong, M. et al. Whole genome, transcriptome and methylome 
profiling enhances actionable target discovery in high-risk 
pediatric cancer. Nat. Med. 26, 1742–1753 (2020).

7. Zhang, J. et al. Germline mutations in predisposition genes in 
pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

8. Akhavanfard, S., Padmanabhan, R., Yehia, L., Cheng, F. & Eng, C.  
Comprehensive germline genomic profiles of children, 
adolescents and young adults with solid tumors. Nat. Commun. 
11, 2206 (2020).

9. Young, M. D. et al. Single-cell transcriptomes from human kidneys 
reveal the cellular identity of renal tumors. Science 361, 594–599 
(2018).

10. Vladoiu, M. C. et al. Childhood cerebellar tumours mirror 
conserved fetal transcriptional programs. Nature 572, 67–73 (2019).

11. Anderson, N. D. et al. Rearrangement bursts generate  
canonical gene fusions in bone and soft tissue tumors. Science 
https://doi.org/10.1126/science.aam8419 (2018).

12. Jonsson, P. et al. Tumour lineage shapes BRCA-mediated 
phenotypes. Nature 571, 576–579 (2019).

13. Thavaneswaran, S. et al. Therapeutic implications of germline 
genetic findings in cancer. Nat. Rev. Clin. Oncol. 16, 386–396 (2019).

14. Fiala, E. M. et al. Prospective pan-cancer germline testing using 
MSK-IMPACT informs clinical translation in 751 patients with 
pediatric solid tumors. Nat. Cancer 2, 357–365 (2021).

15. Alexandrov, L. B. et al. The repertoire of mutational signatures in 
human cancer. Nature 578, 94–101 (2020).

16. Degasperi, A. et al. A practical framework and online tool for 
mutational signature analyses show inter-tissue variation and 
driver dependencies. Nat. Cancer 1, 249–263 (2020).

17. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 defici-
ency based on mutational signatures. Nat. Med. 23, 517–525 (2017).

18. Schleiermacher, G. et al. Emergence of new ALK mutations at 
relapse of neuroblastoma. J. Clin. Oncol. 32, 2727–2734 (2014).

19. Waanders, E. et al. Mutational landscape and patterns of clonal 
evolution in relapsed pediatric acute lymphoblastic leukemia. 
Blood Cancer Discov. 1, 96–111 (2020).

20. Yates, L. R. et al. Genomic evolution of breast cancer metastasis 
and relapse. Cancer Cell 32, 169–184 (2017).

21. Landau, D. A. et al. Mutations driving CLL and their evolution in 
progression and relapse. Nature 526, 525–530 (2015).

22. Byron, S. A. et al. Genomic and transcriptomic analysis of 
relapsed and refractory childhood solid tumors reveals a diverse 
molecular landscape and mechanisms of immune evasion. 
Cancer Res. 81, 5818–5832 (2021).

23. Shukla, N. et al. Feasibility of whole genome and transcriptome 
profiling in pediatric and young adult cancers. Nat. Commun. 13, 
2485 (2022).

24. Rusch, M. et al. Clinical cancer genomic profiling by 
three-platform sequencing of whole genome, whole exome and 
transcriptome. Nat. Commun. 9, 3962 (2018).

25. Newman, S. et al. Genomes for Kids: the scope of pathogenic 
mutations in pediatric cancer revealed by comprehensive DNA 
and RNA sequencing. Cancer Discov. 11, 3008–3027 (2021).

26. Ma, X. et al. Pan-cancer genome and transcriptome analyses 
of 1,699 paediatric leukaemias and solid tumours. Nature 555, 
371–376 (2018).

27. Eleveld, T. F. et al. Relapsed neuroblastomas show frequent  
RAS–MAPK pathway mutations. Nat. Genet. 47, 864–871 (2015).

28. Schramm, A. et al. Mutational dynamics between primary and 
relapse neuroblastomas. Nat. Genet. 47, 872–877 (2015).

29. Johnson, B. E. et al. Mutational analysis reveals the origin and 
therapy-driven evolution of recurrent glioma. Science 343, 
189–193 (2014).

30. Samstein, R. M. et al. Tumor mutational load predicts survival 
after immunotherapy across multiple cancer types. Nat. Genet. 
51, 202–206 (2019).

31. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant 
glioblastoma multiforme resulting from germline biallelic 
mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211  
(2016).

32. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung 
cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

33. Yang, W. et al. Immunogenic neoantigens derived from gene 
fusions stimulate T cell responses. Nat. Med. 25, 767–775 (2019).

34. Wu, Y. M. et al. Inactivation of CDK12 delineates a distinct 
immunogenic class of advanced prostate cancer. Cell 173, 
1770–1782 (2018).

35. Morgenstern, D. A. et al. Pilot study of nivolumab in pediatric 
patients with hypermutant cancers. J. Clin. Oncol. 39, 10011 
(2021).

36. Crompton, B. D. et al. The genomic landscape of pediatric Ewing 
sarcoma. Cancer Discov. 4, 1326–1341 (2014).

37. Morrissy, A. S. et al. Divergent clonal selection dominates 
medulloblastoma at recurrence. Nature 529, 351–357 (2016).

38. Rokita, J. L. et al. Genomic profiling of childhood tumor 
patient-derived xenograft models to enable rational clinical trial 
design. Cell Rep. 29, 1675–1689 (2019).

39. Chang, W. et al. MultiDimensional ClinOmics for precision therapy 
of children and adolescent young adults with relapsed and 
refractory cancer: a report from the Center for Cancer Research. 
Clin. Cancer Res. 22, 3810–3820 (2016).

40. Harttrampf, A. C. et al. Molecular Screening for Cancer  
Treatment Optimization (MOSCATO-01) in pediatric patients:  
a single-institutional prospective molecular stratification trial. 
Clin. Cancer Res. 23, 6101–6112 (2017).

41. Worst, B. C. et al. Next-generation personalised medicine for 
high-risk paediatric cancer patients—the INFORM pilot study.  
Eur. J. Cancer 65, 91–101 (2016).

42. van Tilburg, C. M. et al. The pediatric precision oncology INFORM 
registry: clinical outcome and benefit for patients with very 
high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).

43. George, S. L. et al. A tailored molecular profiling programme 
for children with cancer to identify clinically actionable genetic 
alterations. Eur. J. Cancer 121, 224–235 (2019).

44. Parsons, D. W. et al. Actionable tumor alterations and treatment 
protocol enrollment of pediatric and young adult patients with 
refractory cancers in the National Cancer Institute–Children’s 
Oncology Group Pediatric MATCH Trial. J. Clin. Oncol. 40, 
2224–2234 (2022).

45. Kovac, M. et al. Exome sequencing of osteosarcoma reveals muta-
tion signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 
8940 (2015).

46. Brady, S. W. et al. Pan-neuroblastoma analysis reveals age- and 
signature-associated driver alterations. Nat. Commun. 11, 5183 
(2020).

47. Hartley, A. L., Birch, J. M. & Blair, V. Malignant disease in the 
mothers of a population-based series of young adults with bone 
and soft tissue sarcomas. Br. J. Cancer 63, 416–419 (1991).

48. Bennett, K. E., Howell, A., Evans, D. G. & Birch, J. M. A follow-up 
study of breast and other cancers in families of an unselected 
series of breast cancer patients. Br. J. Cancer 86, 718–722 (2002).

49. Magnusson, S. et al. Higher occurrence of childhood cancer in 
families with germline mutations in BRCA2, MMR and CDKN2A 
genes. Fam. Cancer 7, 331–337 (2008).

50. Waszak, S. M. et al. Spectrum and prevalence of genetic 
predisposition in medulloblastoma: a retrospective genetic study 
and prospective validation in a clinical trial cohort. Lancet Oncol. 
19, 785–798 (2018).

http://www.nature.com/natcancer
https://doi.org/10.1126/science.aam8419


Nature Cancer | Volume 4 | February 2023 | 203–221 220

Article https://doi.org/10.1038/s43018-022-00474-y

51. Li, H. et al. Germline cancer predisposition variants in pediatric 
rhabdomyosarcoma: a report from the Children’s Oncology 
Group. J. Natl Cancer Inst. 113, 875–883 (2021).

52. Mirabello, L. et al. Frequency of pathogenic germline variants  
in cancer-susceptibility genes in patients with osteosarcoma. 
JAMA Oncol. 6, 724–734 (2020).

53. Byrjalsen, A. et al. Nationwide germline whole genome 
sequencing of 198 consecutive pediatric cancer patients reveals 
a high incidence of cancer prone syndromes. PLoS Genet. 16, 
e1009231 (2020).

54. Wilson, C. L. et al. Estimated number of adult survivors of 
childhood cancer in United States with cancer-predisposing 
germline variants. Pediatr. Blood Cancer 67, e28047 (2020).

55. Villani, A. et al. Biochemical and imaging surveillance in  
germline TP53 mutation carriers with Li–Fraumeni syndrome: 
a prospective observational study. Lancet Oncol. 12, 559–567 
(2011).

56. Villani, A. et al. Biochemical and imaging surveillance in germline 
TP53 mutation carriers with Li–Fraumeni syndrome: 11 year 
follow-up of a prospective observational study. Lancet Oncol. 17, 
1295–1305 (2016).

57. Wagener, R. et al. Comprehensive germline-genomic and clinical 
profiling in 160 unselected children and adolescents with cancer. 
Eur. J. Hum. Genet. 29, 1301–1311 (2021).

58. Marks, L. J. et al. Precision medicine in children and young 
adults with hematologic malignancies and blood disorders: the 
Columbia University experience. Front. Pediatr. 5, 265 (2017).

59. Kline, C. N. et al. Targeted next-generation sequencing of 
pediatric neuro-oncology patients improves diagnosis, identifies 
pathogenic germline mutations, and directs targeted therapy. 
Neuro Oncol. 19, 699–709 (2017).

60. Marwa, B. et al. Ethical and analytic challenges with genomic 
sequencing of relapsed hematologic malignancies following 
allogeneic hematopoietic stem-cell transplantation. JCO Precis. 
Oncol. 5, 1339–1347 (2021).

61. World Health Organization. International Classification of Diseases  
for Oncology (ICD-O), 1st Revision, 3rd ed. (World Health 
Organization, 2013).

62. Li, M. M. et al. Standards and guidelines for the interpretation 
and reporting of sequence variants in cancer: a joint consensus 
recommendation of the Association for Molecular Pathology, 
American Society of Clinical Oncology, and College of American 
Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

63. Chakravarty, D. et al. OncoKB: a precision oncology knowledge 
base. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00011  
(2017).

64. Campbell, B. B. et al. Comprehensive analysis of hypermutation in 
human cancer. Cell 171, 1042–1056 (2017).

65. Lee, S. et al. NGSCheckMate: software for validating sample 
identity in next-generation sequencing studies within and across 
data types. Nucleic Acids Res. 45, e103 (2017).

66. Richards, S. et al. Standards and guidelines for the interpretation 
of sequence variants: a joint consensus recommendation of the 
American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology. Genet. Med. 17, 405–424 
(2015).

67. Walsh, M. F. et al. Integrating somatic variant data and biomarkers 
for germline variant classification in cancer predisposition genes. 
Hum. Mutat. 39, 1542–1552 (2018).

68. Nadalin, F., Vezzi, F. & Policriti, A. GapFiller: a de novo assembly 
approach to fill the gap within paired reads. BMC Bioinformatics 
13, S8 (2012).

69. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome- 
wide copy number detection and visualization from targeted DNA 
sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

70. Reiter, J. G. et al. Reconstructing metastatic seeding patterns of 
human cancers. Nat. Commun. 8, 14114 (2017).

71. Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal 
population structures using whole genome data. BMC 
Bioinformatics 21, 571 (2020).

72. Wintersinger, J. A. et al. Reconstructing complex cancer 
evolutionary histories from multiple bulk DNA samples using 
Pairtree. Blood Cancer Discov. 3, 208–219 (2022).

Acknowledgements
This work was supported by the following grants: the KiCS program 
is supported by the Garron Family Cancer Centre at The Hospital for 
Sick Children through funding from the SickKids Foundation. A.V. is 
supported by the Garron Family Cancer Centre at The Hospital for Sick 
Children through funding from the SickKids Foundation and Alex’s 
Lemonade Stand Foundation for Childhood Cancer. A.S. is partially 
supported by an Early Researcher Award from the Ontario Ministry of 
Research and Innovation, the Canada Research Chair in Childhood 
Cancer Genomics, funding from the V Foundation and the Robert 
J. Arceci Innovation Award from St. Baldrick’s Foundation. D.M. is 
supported by the CIBC Children’s Foundation Chair in Child Health 
Research. D.M. and A.S. are supported by a CureSearch for Children’s 
Cancer Acceleration Initiative Grant. M.S.I. is supported by the R.S. 
McLaughlin Foundation Chair in Paediatrics and a McLaughlin Center 
grant. Contributing clinicians: O. Abla, L. Abbott, S. Alexander,  
U. Athale, S. Banerji, U. Bartels, S. Baruchel, J. Bartram, M. Bassal,  
J. Berman, V. Blanchette, M. Bornhorst, E. Bouffet, L. Bowes,  
V. Breakey, J. Brzezinski, B. Cairney, A. Chopek, T. Conrad, G. Cuvelier,  
P. Czaykowski, C. Dahl, S. Das, J. Dawrant, A. Denburg, S. Desai,  
J. Doyle, Y. Dror, R. Dvir, A. Eisen, R. Elhasid, A. Erez, C. Erker, A. Fecteau, 
C. Fernandez, A. Fleming, P. Gibson, R. Gladdy, R. Grant, P. Grundy,  
A. Gupta, S. Gupta, G. Halliday, C. Harlos, A. Huang, W. Jingsheng,  
D. Johnston, R. Kim, J. Krueger, L. Lafay-Cousin, N. Laperriere, D. Levin,  
E. Lewis, V. Lewis, S. L’heureux, S. Marjerrison, S. Mckillop, M. Minden,  
P. Moorehead, O. Mordecai, C. Mpofu, N. Mushtaq, A. Naqvi, P. Nathan,  
I. Odame, K. Panabaker, K. Paulson, S. Perreault, P. Philips, C. Portwine,  
A. Punnett, D. Reed, R. Ramphal, A. Razak, M. Rojas-Vasquez,  
H. Rosenfeld, T. Schechter-Finkelstein, F. Shaikh, R. Sinha,  
C. Sinquee-Brown, S. Singh, P. Skrabek, M. Spavor, C. Speziali,  
D. Stammers, J. Stoffman, D. Strotner, L. Sung, D. Szwajcer, I. Vanan, 
D. Wall, S. Weitzman, M. Wilejto, B. Wilson, S. Zelcer and A. Zorzi. 
Contributing pathologists: L.C. Ang, J.L. Arredondo Marin, S. Asa,  
D. Assaad, R. Bozanovic, R. Chami, H. Chen, E. Demicco, J. De Nanassy, 
B. Dickson, D. El Demellawy, R. Fraser, D. Grynspan, R.R. Hammond, 
L.-N. Hazrati, D. Kumar, V. Lu, S. Mohamed, B. Ngan, E. Nizalik, P. Pal,  
A. Pinto, J. Putra, R. Riddell, M. Rouzbahman, M. Schneider, J. Shepherd, 
K. Washington, B. Wehrli and K. Whelan.

Author contributions
Substantial contributions to the conception or design of the work:  
A.V., S.D., N.K., W.W.L., Y.L., F.F., B.G., F.C., M.L., L.B., U.T., S.M., M.S.I., 
D.M., A.S. Substantial contributions to the acquisition, analysis  
or interpretation of data for the work: all authors. Drafting the  
work or revising it critically for important intellectual content: all 
authors.

Competing interests
D.A.M.: consultancy/advisory board for ymAbs Therapeutics,  
EUSA Pharma and Clarity Pharmaceuticals. A.S and F.C.: a patent 
application has been filed on an RNA-seq-based tumor classifier 
algorithm.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s43018-022-00474-y.

http://www.nature.com/natcancer
https://doi.org/10.1200/PO.17.00011
https://doi.org/10.1038/s43018-022-00474-y
https://doi.org/10.1038/s43018-022-00474-y


Nature Cancer | Volume 4 | February 2023 | 203–221 221

Article https://doi.org/10.1038/s43018-022-00474-y

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1038/s43018-022-00474-y.

Correspondence and requests for materials should be addressed to 
David Malkin or Adam Shlien.

Peer review information Nature Cancer thanks Jo Lynne Rokita and the 
other, anonymous, reviewer(s) for their contribution to the peer review 
of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

1Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. 2Department of Pediatrics, University of Toronto, 
Toronto, Ontario, Canada. 3Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada. 
4Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada. 5Institute of Medical Science, University 
of Toronto, Toronto, Ontario, Canada. 6Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. 7Cancer Genetics and 
High-Risk Program, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. 8Department of Genetic Counselling, University of Toronto, 
Toronto, Ontario, Canada. 9Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada. 10Center for 
Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada. 11Division of Hematology, Faculty of Medicine, King Abdulaziz 
University, Jeddah, Saudi Arabia. 12Division of Hematology-Oncology, McGill University Health Centre, Montreal, Quebec, Canada. 13Department 
of Pediatrics, McGill University, Montreal, Quebec, Canada. 14Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, Canada. 
15McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada. 16Department of Laboratory Medicine and Pathobiology, University of 
Toronto, Toronto, Ontario, Canada. 17Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, 
Canada. 18Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. 
19These authors contributed equally: Scott Davidson, Nisha Kanwar, Winnie W. Lo. 20These authors jointly supervised this work: David Malkin, 
Adam Shlien.  e-mail: david.malkin@sickkids.ca; adam.shlien@sickkids.ca

http://www.nature.com/natcancer
https://doi.org/10.1038/s43018-022-00474-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:david.malkin@sickkids.ca
mailto:adam.shlien@sickkids.ca


Nature Cancer

Article https://doi.org/10.1038/s43018-022-00474-y

A

EP
EP
EP
EP
EP
EP
EPEP
EP
EP
EP
EPEPEP
EP

GGG
GSGSGSGS

HGG
HGG
HGG
HGG
HGG
HGG
HGG
HGG

HGG
HGG
HGG
HGG

HGG

HGGHGG
HGGHGG

HGG
HGG
HGG

HGG
HGG

HGG

HGG
HGG
HGG

HGG
MBLMBLMBLMBLMBLMBL

NENE
NE
NE
NE
NENE
NE
NE
NE
NE
NE
NENE
US
USUS
US
US
US
US
USUSUS
US
USUSUS

AMKLAMKLAMKLAMKLAMKLAMKL
AML
AML
AML
AML
AML
AML
AML
AML
AMLAML
AML
AML

AML/DSAML/DSAML/DSAML/DS
B−ALL
B−ALL
B−ALL
B−ALL
B−ALL

B−ALL
B−ALL
B−ALL
B−ALL
B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALLB−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−ALL

B−ALL
B−ALL
B−ALL

B−ALL
B−ALL

B−ALL
B−ALL

B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL
B−NHL

CMLCML
CML
CML
CML
CML
CML
CMLCML
CML
CML
CML
CML
CML
CML
CML
CML
CML
CML
CML
CML

LPDLPDLPDLPD
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN
MPN

MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS

T−NHLT−NHLT−NHLT−NHL
AFAF
AF

ARMS
ARMS
ARMS
ARMSARMS

ARMS
ARMS

ARMS
ARMS
ARMSARMS
ARMS
ARMS

ARMS
ARMS

ARMS

ARMS
ARMS
ARMS

ARMS
ARMS

ARMS
ARMSARMS

CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRCCRCCRC

ERMS
ERMS
ERMS
ERMS
ERMS
ERMS
ERMS
ERMS

ERMS
ERMS
ERMS
ERMS
ERMS

ERMS
ERMS
ERMS

ERMS
ERMS

ERMS
ERMS

ERMS

ERMS
ERMS
ERMS

ERMS
ERMS

ERMS
ERMS
ERMS

ERMS

ERMS
ERMS

ERMS

ERMS
ERMS
ERMS

ERMS
ERMS

ERMS
ERMS

ERMS

ERMS
ERMS
ERMS

ERMS
ERMS
ERMS

ERMS

ERMS

ERMS

ERMS

ERMS
ERMS
ERMS

ERMS
ERMS

ERMS
ERMS

ERMS

ERMS
ERMS
ERMS

ERMS

ERMS
ERMS
ERMS

ERMS
ESES

EWS
EWS
EWS
EWS
EWS
EWS
EWS
EWS
EWS

EWS
EWS
EWS

EWS
EWS
EWS
EWS

EWS
EWS
EWS
EWS

EWS
EWS
EWS

EWS
EWS
EWS
EWS

EWS

GCTGCTGCTGCTGCT
HB
HB
HB
HB

HB
HB
HB
HB

HBHB
HB
HB

HB
HB
HB

HB
HB
HB
HB
LSLSLS

MAOMAO
MFT
MFT
MFT
MFT
MFT
MFT
MFT
MFT
MFT
MFT
MFT

MPNSTMPNSTMPNST
MRTMRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT

MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
MRT
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL

NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL

NBL

NBL

NBL
NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL

NBL

NBL

NBL
NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL

NBL
NBL

NBL
NBL
NBL
NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL

NBL
NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL
NBL

NBL

NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL

NBL

NBL

NBL
NBL
NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL

NBL
NBL
NBL
NBL
NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL

NBL
NBL

NBL

NBL

NBL

NBL
NBL
NBL
NBL
NBL

NBL

NBL
NBL
NBL
NBL
NBL

NBL
NBL
NBL
NBL

NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL

NBL

NBL
NBL

NBL

NBL
NBL
NBL

NBL
NBL

NBL

NBL

NBL

NBL
NBL
NBL

NBL

NBL

NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL
NBL

NBL

NBL
NBL

NBL
NBL

NBL
NBL
NBL
NBL
NBL

NBL

NETNETNETNETNETNETNET
OST
OST
OST
OST
OST
OST

OST

OST
OST
OST
OST

OST
OST
OST
OST

OST

OST
OST
OST
OST

OST
OST
OST
OST
OST

OST

OST
OST
OST
OST

OST

OST

OST
OST
OST

OST
OST
OST

PTPTPTPTPTPTPTPTPT
PTC
PTC
PTC
PTC
PTC
PTC
PTC
PTCPTC

SS
SS
SS
SS
SS
SS
USUS
US
US
US

US
US
US

USUS
US
US
US
US
US
US
US
US
US

WT
WT
WT
WT
WT
WT

WT
WT
WT
WT
WT

WT
WT
WT
WT
WT

WT
WT

WT
WT

WT
WT
WT
WT
WT
WT

WT
WT
WT
WT
WT
WT

WT
WT
WT
WT
WT
WT

WT

WT

WT
WT
WT
WT
WT
WT

other chem
o

m
onoclonal antibodies

*dexrazoxane
asparaginase

steroids
taxanes

vinca alkaloids
topoisom

erase I inhibitor
other topoism

erase II inhibitor
epipodophyllotoxins

anthracyclines
antim

etabolites
other alkylator

nitrosoureas
platinum

s
nitrogen m

ustards
in-field radiation

previous XR
T

C
N

S
Leukem

ia/Lym
phom

a
Solid 

B
Alkylating Agent

Topoisomerase II Inhibitor
Other Chemotherapy

an
y 

ra
di

at
io

n

in
-fi

el
d 

ra
di

at
io

n

ni
tro

ge
n 

m
us

ta
rd

s
pl

at
in

um
s

ni
tro

so
ur

ea
s

ot
he

r

an
th

ra
cy

cl
in

es

ep
ip

od
op

hy
llo

to
xi

ns

ot
he

r

vi
nc

a 
al

ka
lo

id
s

to
po

is
om

er
as

e 
I i

nh
ib

ito
r

an
tim

et
ab

ol
ite

s

st
er

oi
ds

*d
ex

ra
zo

xa
ne

M
oA

b 
& 

sm
al

l m
ol

ec
ul

e 
in

hi
bi

to
rs

as
pa

ra
gi

na
se

ta
xa

ne
s

ot
he

r

0.0%

10.0%

20.0%

30.0%

40.0%

Therapy

Pe
rc

en
ta

ge
 o

f S
am

pl
es

RadiationC

0 20 40 60 80
Age (Yrs)

0

10

20

30

40

50

60

70

C
ou

nt

D

E
Ashkenazi Jewish

Black-African

Black- Caribbean

East Asian

Indigenous
Latino

Multiethnic

South Asian
Southeast Asian

West Asian

White

White - European

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | KiCS cohort characteristics. (a) Distribution of tumor 
types (n = 303; 3 participants had two independent primary tumors. N = 186 for 
solid tumors, n = 67 for CNS tumors, n = 50 for leukemia/lymphomas). OTHER 
(Solid Tumors): ACC, AF, DCIS, DSRCT, EMC, EMS, ES, GCT, HCC, IDC, LB, LS, MAO, 
MFT, MM, MPNST, MRT, N, OF, PFHT, PGL, PT, RB, RCC, SBC, SCST, SN. OTHER 
(CNS Tumors): AM, CPC, CSRC, GG, GS, MN, MT, N, NE, SW. OTHER (Leukemia/

Lymphoma): BPDCN, CML, LPD, MPAL. Please see Supplementary Table S1 for 
a full list of tumor types and acronyms. (b, c) Representative example of prior 
therapeutic exposures of sequenced samples (N = 232 tumor samples from 176 
patients). (d) Age distribution (N = 300 participants). (e) Ethnicity distribution 
(based on self-reported ethnicity provided by 41% of study participants, N = 123 
participants (59% missing data)).
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sequencing technologies used. The proportion of patients whose tumors were 
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(WGS – green) and whole-transcriptome (WTS –violet) sequencing, and 

the proportion of patients whose germline DNA was analyzed using each 
combination of CP and WGS. (b) KiCS cohort purity distribution by tumor class. 
N = 292 tumor samples. Greater than 75% of samples have a purity of over 25%.
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Extended Data Fig. 3 | Therapeutic biomarkers in the KiCS cohort. (a) Level 
of evidence for category C variants (therapeutic biomarkers) and proportion 
targeted with a therapeutic agent (N = 222 variants). Details about levels of 
evidence are available in Extended Data Fig. 4. (b) Frequency of targets in various 
therapeutic agent classes. Targets in each category (not inclusive list): PARP 
inhibitors: BRCA1, BRCA2, PTEN, CHEK2, PALB2, ARID1A, RAD51C, RAD51D, BARD1, 
BRIP1, ATM, ATRX variants. MEK/ERK inhibitors: NF1/2, N/K/HRAS, MAP2K1, PTPN11 
variants, BRAF fusions. Immune checkpoint inhibitors: Tumor mutational burden 
>5 mutations/Mb, or biallelic loss of a MMR gene. CDK4/6 inhibitor: CDK4/6 

amplification, CCND2 or CCND3 amplification, CDKN2A/B homozygous deletion. 
Growth TKI: KIT, FGFR, PDGFR, RET, EGFR, VEGFR, FLT3 variants/amplification 
and ABL fusions. ALK inhibitors: ALK hotspots, fusions, MET and ROS1 fusions. 
PI3K/AKT/mTOR inhibitors: PIK3CA, PIK3R1, AKT1, FBXW7, PTEN, TSC1/2 variants, 
ARID1A variants (in addition to genes targetable by MEK/ERK inhibitors above). 
EZH2 inhibitor: EZH2, SMARCB1, SMARCA4, ARID1A variants. BRAF inhibitor: BRAF 
variants. NTRK inhibitors: NTRK fusions. Other: IDH1 inhibitor, WEE1 inhibitor, 
Wnt pathway inhibitor, Hif inhibitor, BRD and BET inhibitor, SHH inhibitor.
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Extended Data Fig. 4 | Classification of actionable variants. Classification is adapted from AMP/ASCO/CAP, OncoKB guidelines and NCI/COG Pediatric Match levels 
of evidence, and with reference to ACMG/ClinGen criteria62,63,66,67.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Examples of clonal evolution in the KiCS cohort.  
(a) Clonal evolution of an embryonal rhabdomyosarcoma in an individual with 
constitutional Neurofibromatosis-1 (KiCS 15). Upper panel: Ancestral ‘drivers’ 
are detected early and maintained through tumor evolution regardless of 
spatial evolution (FGFR4 SNV, chr17p-). New clones emerge at progression 
with additional SNV/CN changes. Tumor progression within the same spatial 
region show significant SNV/CN commonalities (D and E), while others despite 
temporal/spatial changes show important similarities with ancestral clones  
(C and F). Lower panel: The phylogenetic tree annotated with SNV drivers. Each 
node represents a subpopulation whereby arrows extend from ancestors to 
descendants. This is supportive of the findings that although ancestral driver 
events may diminish or be displaced during tumor progression, they may also 
be maintained as subclones that drive relapse. (b) Parallel and linear evolution 

in multi-sample KiCS cases (N = 2 individual cases; one case shown on each side 
of the vertical line). Phylogenetic trees from WGS annotated with SNV drivers, 
number of SNVs comprising each tree node, and the number of SNVs unique 
or shared between paired initial and subsequent tumor samples. Left panel: 
KiCS 319 represents linear evolution, with 79.9% of initial SNVs shared with the 
relapse. In the KiCS cohort, linear evolution is uncommon; only 4 patients shared 
>75% SNVs between initial and relapse tumor samples. Right panel: Chronic 
myelogenous leukemia (CML) was initially diagnosed in January 2014 for KiCS 35, 
followed by development of precursor B-ALL sampled in April 2014 and a relapse 
of B-ALL in July 2018. The initial CML shares 35.4% and 38.8% of SNVs respectively 
with each subsequent sample. KiCS 35 displays extreme branching and parallel 
evolution.
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A

Extended Data Fig. 6 | Categories of clinical actionability used to broadly classify sequencing variants.  Four classes of actionability were considered to classify 
the clinical relevance of sequencing variants.
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A

B C

Extended Data Fig. 7 | KiCS program internal website and database for automated variant prioritization. (a) Summary and Quality Metrics tab on website.  
(b) Germline website – Variants of Interest tab. (c) Somatic website – Variants of Interest tab.
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Extended Data Fig. 8 | Somatic variant interpretation pipeline. Somatic variant interpretation scheme (Class I-V) is further detailed in Extended Data Fig. 4. 
VUS – clinical actionability of this variant is currently unknown; however, the variant may be biologically relevant in the patient’s tumor type. Unknown – no known 
association of this variant with cancer.
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Extended Data Fig. 9 | Germline variant interpretation pipeline. Abbreviations: VOI – variant of interest; VUS – variant of uncertain significance; ACMG – American 
College of Medical Genetics; HGMD – Human Genetic Mutation Database; UTR – untranslated region.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Agreement between whole genome and cancer panel 
tumor mutation burden. (a) Scatter plot of variant allele fraction from variants 
discovered on cancer panel target regions from 242 tumors from 193 patients 
detected on both cancer panel sequencing and whole genome sequencing. 
Axis plots are count histograms of variants at certain variant allele fraction 
bins. Variants discovered from one platform, but not the other, have the NULL 
value replaced with zero to allow plotting of the point, but these variants were 
not used within the correlation calculation. (b) Correlation of cancer panel 

tumor mutation burden to whole genome sequencing tumor mutation burden 
across 201 tumor samples. Only samples where cancer panel tumor mutation 
burden was greater than zero are plotted due to log conversion. Line indicates 
linear regression fit of these samples, Pearson (two sided) correlation R = 0.810, 
p = 4.888E−48. The Pearson (two sided) correlation and significance of non-log 
transformed data, including cancer panel samples with TMB of zero (303 tumor 
samples) was R = 0.956, p = 6.281E−149.
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