Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Cancer in Translation
  • Published:

A bright future for KRAS inhibitors

KRAS mutations are among the most prevalent tumor drivers, but targeting them pharmacologically has been challenging. Recent landmark studies have demonstrated promising clinical results of KRASG12C inhibition by using small molecules. Bar-Sagi, and Knelson and Sequist provide their distinct perspectives on this recent tour de force in targeting KRASG12C alterations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The path to KRAS targeting.

References

  1. Ostrem, J. M. & Shokat, K. M. Nat Rev. Drug Discov. 15, 771–785 (2016).

    Article  CAS  Google Scholar 

  2. Canon, J. et al. Nature 575, 217–223 (2019).

    Article  CAS  Google Scholar 

  3. Hallin, J. et al. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-1167 (2019).

  4. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. Nature 503, 548–551 (2013).

    Article  CAS  Google Scholar 

  5. Castellano, E. & Downward, J. Genes Cancer 2, 261–274 (2011).

    Article  CAS  Google Scholar 

  6. Cullis, J., Das, S. & Bar-Sagi, D. Cold Spring Harb. Perspect. Med. 8, a031849 (2018).

    Article  Google Scholar 

  7. Fakih, M., O’Neil, B. & Price, T. J. J. Clin. Oncol. 37 (Suppl.), abstr. 3003 (2019).

  8. Govindan, R. et al. Ann. Oncol. 30 (Suppl. 5), mdz244.008 (2019).

  9. Hosomi, Y. et al. J. Clin. Oncol. https://doi.org/10.1200/JCO.19.01488 (2019).

    Article  Google Scholar 

  10. Matikas, A., Mistriotis, D., Georgoulias, V. & Kotsakis, A. Crit. Rev. Oncol. Hematol. 110, 1–12 (2017).

    Article  Google Scholar 

  11. Planchard, D. et al. Lancet Oncol. 18, 1307–1316 (2017).

    Article  CAS  Google Scholar 

  12. Sequist, L. V. et al. Cancer Res. 79, abstr. CT033 (2019).

    Google Scholar 

  13. Arbour, K. C. et al. Clin. Cancer Res. 24, 334–340 (2018).

    Article  CAS  Google Scholar 

  14. Oxnard, G. R. et al. J. Clin. Oncol. 33 (Suppl.), abstr. 2509 (2015).

  15. Jänne, P. A. in AACR-NCI-EORTC International Conf. on Molecular Targets and Cancer Therapeutics (2019); https://www.mirati.com/wp-content/uploads/2019/10/AACR-NCI-EORTC-Clinical-Data-Presentation_Janne_October-2019-1-1.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dafna Bar-Sagi or Lecia V. Sequist.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-Sagi, D., Knelson, E.H. & Sequist, L.V. A bright future for KRAS inhibitors. Nat Cancer 1, 25–27 (2020). https://doi.org/10.1038/s43018-019-0016-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-019-0016-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing