Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Uncertainty and the basis for confidence in solar geoengineering research

Abstract

Solar geoengineering is an emerging topic in climate-change discussions. To support future decisions on the deployment of this technology, society requires better estimates of its environmental impacts and limitations. As solar geoengineering has never been deployed, conclusions about its climatic effects are primarily obtained through models and natural analogues. As such, our confidence in projections of solar geoengineering, the basis for that confidence and how our confidence can be improved is limited. In this Perspective, we review our current understanding of uncertainty and risk in solar geoengineering via stratospheric aerosols. Using a risk-register framework, we illustrate key uncertainties, such as sub-grid-scale mixing or effects of stratospheric heating, investigations of which should be prioritized to transition the field to a mission-driven research agenda. We conclude with recommendations for possible avenues of research, including targeted model intercomparisons and appropriately governed small-scale field experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climatic effects and uncertainties associated with SAG.
Fig. 2: Contrast between QBO strength for SAG via equatorial SO2 injection and GLENS.
Fig. 3: Effectiveness of SAG strategies in achieving temperature targets.
Fig. 4: Schematic of a risk register.
Fig. 5: Uncertainty in climate responses to SAG.

Similar content being viewed by others

References

  1. von Neumann, J. Can we survive technology? Fortune 51, 151–152 (1955).

    Google Scholar 

  2. Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim. Change 77, 211–220 (2006).

    Google Scholar 

  3. Long, J. C. S. & Shepherd, J. G. in Global Environmental Change. Handbook of Global Environmental Pollution Vol. 1 (ed. Freedman, B.) 757–770 (Springer, 2014).

  4. Shepherd, J. G. & Working Group on Geoengineering the Climate. Geoengineering the climate: science, governance and uncertainty (Royal Society, 2009).

  5. National Research Council. Climate Intervention: Reflecting Sunlight to Cool Earth (The National Academies Press, 2015). Summarized the state of knowledge, providing the base from which to build a solar geoengineering research agenda.

  6. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Google Scholar 

  7. Budyko, M. I. Climatic Changes (American Geophysical Union, 1977).

  8. Kravitz, B. et al. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118, 8320–8332 (2013).

    Google Scholar 

  9. Irvine, P. et al. Halving warming with idealized solar geoengineering moderates key climate hazards. Nat. Clim. Change 9, 295–299 (2019).

    Google Scholar 

  10. MacMartin, D. G., Caldeira, K. & Keith, D. W. Solar geoengineering to limit the rate of temperature change. Phil. Trans. R. Soc. A 372, 20140134 (2014).

    Google Scholar 

  11. Tilmes, S. et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118, 11036–11058 (2013).

    Google Scholar 

  12. Kravitz, B. et al. An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project. J. Geophys. Res. 118, 13087–13102 (2013).

    Google Scholar 

  13. Moore, J. C. et al. Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario. J. Geophys. Res. 119, 567–583 (2014).

    Google Scholar 

  14. Zhao, L., Yang, Y., Cheng, W., Ji, D. & Moore, J. C. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering. Atmos. Chem. Phys. 17, 6547–6564 (2017).

    Google Scholar 

  15. Curry, C. L. et al. A multimodel examination of climate extremes in an idealized geoengineering experiment. J. Geophys. Res. 119, 3900–3923 (2014).

    Google Scholar 

  16. Dagon, K. & Schrag, D. P. Regional climate variability under model simulations of solar geoengineering. J. Geophys. Res. 122, 12106–12121 (2017).

    Google Scholar 

  17. Moore, J. C. et al. Atlantic hurricane surge response to geoengineering. Proc. Natl Acad. Sci. USA 112, 13794–13799 (2015).

    Google Scholar 

  18. Kravitz, B. et al. A multi-model assessment of regional climate disparities caused by solar geoengineering. Environ. Res. Lett. 9, 074013 (2014).

    Google Scholar 

  19. MacMartin, D. G., Keith, D. W., Kravitz, B. & Caldeira, K. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nat. Clim. Change 3, 365–368 (2013).

    Google Scholar 

  20. Moreno-Cruz, J. B., Ricke, K. L. & Keith, D. W. A simple model to account for regional inequalities in the effectiveness of solar radiation management. Clim. Change 110, 649–668 (2012).

    Google Scholar 

  21. Kravitz, B. et al. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives. J. Geophys. Res. 122, 12616–12634 (2017).

    Google Scholar 

  22. Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).

    Google Scholar 

  23. Tilmes, S., Müller, R. & Salawitch, R. The sensitivity of polar ozone depletion to proposed geoengineering schemes. Science 320, 1201–1204 (2008).

    Google Scholar 

  24. Pitari, G. et al. Stratospheric ozone response to sulfate geoengineering: results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 119, 2629–2653 (2014). One of the few papers to carry out an in-depth analysis of model differences, instead of focusing on similarities.

    Google Scholar 

  25. Visioni, D., Pitari, G., di Genova, G., Tilmes, S. & Cionni, I. Upper tropospheric ice sensitivity to sulfate geoengineering. Atmos. Chem. Phys. 18, 14867–14887 (2018).

    Google Scholar 

  26. Visioni, D., Pitari, G., Tuccella, P. & Curci, G. Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols. Atmos. Chem. Phys. 18, 2787–2808 (2018).

    Google Scholar 

  27. Trisos, C. H. et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nat. Ecol. Evol. 2, 475–482 (2018).

    Google Scholar 

  28. Fasullo, J. T. et al. Persistent polar ocean warming in a strategically geoengineered climate. Nat. Geosci. 11, 910–914 (2018).

    Google Scholar 

  29. Xia, L. et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711 (2014).

    Google Scholar 

  30. Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).

    Google Scholar 

  31. Parker, A. & Irvine, P. J. The risk of termination shock from solar geoengineering. Earths Future 6, 456–467 (2018).

    Google Scholar 

  32. Jones, A. et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. 118, 9743–9752 (2013).

    Google Scholar 

  33. Keith, D. W. Geoengineering the climate: history and prospect. Annu. Rev. Energy Environ. 25, 245–284 (2000).

    Google Scholar 

  34. Rasch, P. J. et al. An overview of geoengineering of climate using stratospheric sulphate aerosols. Phil. Trans. R. Soc. A 366, 4007–4037 (2008).

    Google Scholar 

  35. Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).

    Google Scholar 

  36. Caldeira, K., Bala, G. & Cao, L. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231––256 (2013).

    Google Scholar 

  37. Irvine, P. J., Kravitz, B., Muri, H. & Lawrence, M. G. An overview of the Earth system science of solar geoengineering. Wiley Interdiscip. Rev. 7, 815–833 (2016).

    Google Scholar 

  38. MacMartin, D. G. & Kravitz, B. The engineering of climate engineering. Annu. Rev. Control Robot. Auton. Syst. 2, 445–467 (2019).

    Google Scholar 

  39. MacMartin, D. G., Kravitz, B., Long, J. C. S. & Rasch, P. J. Geoengineering with stratospheric aerosols: What don’t we know after a decade of research? Earths Future 4, 543–548 (2016). Provides a state of the science from a field that was largely curiosity driven, providing motivation for moving to a mission-driven approach.

    Google Scholar 

  40. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Google Scholar 

  41. Stocker, T. F. et al. in TAR Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 419–457 (Cambridge Univ. Press, 2001).

  42. Kravitz, B. et al. The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmos. Chem. Phys. 18, 13097–13113 (2018).

    Google Scholar 

  43. MacMartin, D. G., Kravitz, B. & Rasch, P. J. On solar geoengineering and climate uncertainty. Geophys. Res. Lett. 42, 7156–7161 (2015).

    Google Scholar 

  44. Hofmann, D. J. & Solomon, S. Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J. Geophys. Res. 94, 5029–5041 (1989).

    Google Scholar 

  45. Tie, X. X. & Brasseur, G. The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophys. Res. Lett. 22, 3035–3038 (1995).

    Google Scholar 

  46. Heckendorn, P. et al. The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 4, 045108 (2009).

    Google Scholar 

  47. Simpson, I. R. et al. The regional hydroclimate response to stratospheric sulfate geoengineering and the role of stratospheric heating. J. Geophys. Res. https://doi.org/10.1029/2019JD031093 (2019). One of the first studies to isolate some of the surface-climate effects of stratospheric heating.

    Google Scholar 

  48. Kalidindi, S. et al. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim. Dyn. 44, 2909–2925 (2015).

    Google Scholar 

  49. Kravitz, B., MacMartin, D. G., Wang, H. & Rasch, P. J. Geoengineering as a design problem. Earth Syst. Dyn. 7, 469–497 (2016).

    Google Scholar 

  50. Rasch, P. J., Latham, J. & Chen, C.-C. Geoengineering by cloud seeding: influence on sea ice and climate system. Environ. Res. Lett. 4, 045112 (2009).

    Google Scholar 

  51. Jones, A., Haywood, J. & Boucher, O. Climate impacts of geoengineering marine stratocumulus clouds. J. Geophys. Res. 114, D10106 (2009).

    Google Scholar 

  52. Alterskjær, K. & Kristjánsson, J. E. The sign of the radiative forcing from marine cloud brightening depends on both particle size and injection amount. Geophys. Res. Lett. 40, 210–215 (2013).

    Google Scholar 

  53. Visioni, D., Pitari, G. & Aquilam, V. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide. Atmos. Chem. Phys. 17, 3879–3889 (2017). Provides a multi-model summary of SAG from the lens of solar geoengineering as a design problem.

    Google Scholar 

  54. Garfinkel, C. I. & Hartmann, D. L. The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci. 68, 2026–2041 (2011).

    Google Scholar 

  55. Seo, J., Choi, W., Youn, D., Park, D.-S. R. & Kim, J. Y. Relationship between the stratospheric quasi-biennial oscillation and spring rainfall in the western North Pacific. Geophys. Res. Lett. 40, 5949–5953 (2013).

    Google Scholar 

  56. Aquila, V., Garfinkel, C. I., Newman, P. A., Oman, L. D. & Waugh, D. W. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer. Geophys. Res. Lett. 41, 1738–1744 (2014).

    Google Scholar 

  57. Kleinschmitt, C., Boucher, O. & Platt, U. Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model. Atmos. Chem. Phys. 18, 2769–2786 (2018).

    Google Scholar 

  58. Kravitz, B. et al. Comparing surface and stratospheric impacts of geoengineering with different SO2 injection strategies. J. Geophys. Res. 124, 7900–7918 (2019). Illustrates the dependence of uncertainty on the SAG scenario and strategy.

    Google Scholar 

  59. Dai, Z., Weisenstein, D. K. & Keith, D. W. Tailoring meridional and seasonal radiative forcing by sulfate aerosol solar geoengineering. Geophys. Res. Lett. 45, 1030–1039 (2018).

    Google Scholar 

  60. MacMartin, D. G. et al. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations. J. Geophys. Res. Atmos. 122, 12574–12590 (2017).

    Google Scholar 

  61. Richter, J. H. et al. Stratospheric response in the first geoengineering simulation meeting multiple surface climate objectives. J. Geophys. Res. 123, 5762–5782 (2018).

    Google Scholar 

  62. Irvine, P. J., Sriver, R. L. & Keller, K. Tension between reducing sea-level rise and global warming through solar-radiation management. Nat. Clim. Change 2, 97–100 (2012).

    Google Scholar 

  63. Wong, T. E. et al. BRICK v0.2, a simple, accessible, and transparent model framework for climate and regional sea-level projections. Geosci. Model Dev. 10, 2741–2760 (2017).

    Google Scholar 

  64. Boucher, O., Kleinschmitt, C. & Myhre, G. Quasi-additivity of the radiative effects of marine cloud brightening and stratospheric sulfate aerosol injection. Geophys. Res. Lett. 44, 11158–11165 (2017).

    Google Scholar 

  65. Cao, L., Duan, L., Bala, G. & Caldeira, K. Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering. Geophys. Res. Lett. 44, 7429–7437 (2017).

    Google Scholar 

  66. Gao, Y., Gao, X. & Zhang, X. The 2 °C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations framework convention on climate change to the Paris agreement. Engineering 3, 272–278 (2017).

    Google Scholar 

  67. MacMartin, D. G. & Kravitz, B. Mission-driven research for stratospheric aerosol geoengineering. Proc. Natl Acad. Sci. USA 116, 1089–1094 (2019).

    Google Scholar 

  68. Axelos. Managing Successful Projects with PRINCE2 (The Stationery Office, 2017).

  69. Knight, F. H. Risk, Uncertainty and Profit (Univ. Chicago Press, 1921).

  70. Cairns, R. C. Climate geoengineering: issues of path-dependence and socio-technical lock-in. Wiley Interdiscip. Rev. Clim. Change 5, 649–661 (2014).

    Google Scholar 

  71. Visioni, D. et al. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Chem. Phys. 17, 11209–11226 (2017).

    Google Scholar 

  72. Robock, A., MacMartin, D. G., Duren, R. & Christensen, M. W. Studying geoengineering with natural and anthropogenic analogs. Clim. Change 121, 445–458 (2013).

    Google Scholar 

  73. English, J. M., Toon, O. B. & Mills, M. J. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmos. Chem. Phys. 12, 4775–4793 (2012).

    Google Scholar 

  74. Duan, L., Cao, L., Bala, G. & Caldeira, K. Climate response to pulse versus sustained stratospheric aerosol forcing. Geophys. Res. Lett. 46, 8976–8984 (2019).

    Google Scholar 

  75. Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Stratospheric solar geoengineering without ozone loss. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

    Google Scholar 

  76. Robock, A. Blowin’ in the wind: research priorities for climate effects of volcanic eruptions. Eos Trans. AGU 83, 472 (2002).

    Google Scholar 

  77. Pope, F. D. et al. Stratospheric aerosol particles and solar-radiation management. Nat. Clim. Change 2, 713–719 (2012).

    Google Scholar 

  78. Dykema, J. A., Keith, D. W., Anderson, J. G. & Weisenstein, D. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20140059 (2014).

    Google Scholar 

  79. Keith, D. W., Duren, R. & MacMartin, D. G. Field experiments on solar geoengineering: report of a workshop exploring a representative research portfolio. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20140175 (2014).

    Google Scholar 

  80. Russell, L. M. et al. Eastern pacific emitted aerosol cloud experiment. Bull. Am. Meteorol. Soc. 94, 709–729 (2013).

    Google Scholar 

  81. Wiertz, T. Visions of climate control: solar radiation management in climate simulations. Sci. Technol. Hum. Values 41, 438–460 (2016).

    Google Scholar 

  82. Ferraro, A. J., Highwood, E. J. & Charlton-Perez, A. J. Stratospheric heating by potential geoengineering aerosols. Geophys. Res. Lett. 38, L24706 (2011).

    Google Scholar 

  83. Sukumara-Pillai, K. K.-P., Bala, G., Cao, L., Duan, L. & Caldeira, K. Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer. Earth Syst. Dynam. Discuss. https://doi.org/10.5194/esd-2019-21 (2019).

  84. Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).

    Google Scholar 

  85. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Google Scholar 

  86. Tilmes, S. et al. CESM1(WACCM) stratospheric aerosol Geoengineering Large Ensemble project. Bull. Am. Meteorol. Soc. 99, 2361–2371 (2018).

    Google Scholar 

  87. MacMartin, D. G. & Kravitz, B. Dynamic emulators for solar geoengineering. Atmos. Chem. Phys. 16, 15789–15799 (2016).

    Google Scholar 

  88. Masson, D. & Knutti, R. Climate model genealogy. Geophys. Res. Lett. 38, L08703 (2011).

    Google Scholar 

  89. Knutti, R., Masson, D. & Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).

    Google Scholar 

  90. Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010). Provides general guidance for how to describe and assess confidence and uncertainty.

  91. Jiang, J., Zhang, H. & Cao, L. Simulated effect of sunshade solar geoengineering on the global carbon cycle. Sci. China Earth Sci. 61, 1306–1315 (2018).

    Google Scholar 

  92. Plazzotta, M., Séférian, R. & Douville, H. Impact of solar radiation modification on allowable CO2 emissions: What can we learn from multimodel simulations? Earths Future 7, 664–676 (2019).

    Google Scholar 

  93. Dagon, K. & Schrag, D. P. Exploring the effects of solar radiation management on water cycling in a coupled land–atmosphere model. J. Clim. 29, 2635–2650 (2016).

    Google Scholar 

  94. Dagon, K. & Schrag, D. P. Quantifying the effects of solar geoengineering on vegetation. Clim. Change 153, 235–251 (2019).

    Google Scholar 

  95. Eastham, S. D., Keith, D. W. & Barrett, S. R. H. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone. Environ. Res. Lett. 13, 034035 (2018).

    Google Scholar 

  96. Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T. & Keith, D. W. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys. Res. Lett. 37, L18805 (2010).

    Google Scholar 

  97. Hamill, P., Jensen, E. J., Russell, P. B. & Bauman, J. J. The life cycle of stratospheric aerosol particles. Bull. Am. Meteorol. Soc. 78, 1395–1410 (1997).

    Google Scholar 

  98. Kuebbeler, M., Lohmann, U. & Feichter, J. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds. Geophys. Res. Lett. 39, L23803 (2012).

    Google Scholar 

  99. Cirisan, A. et al. Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. J. Geophys. Res. Atmos. 118, 4533–4548 (2013).

    Google Scholar 

  100. Joshi, M. M. & Shine, K. P. A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Clim. 16, 3525–3534 (2003).

    Google Scholar 

  101. Mills, M. J. et al. Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. Atmos. 122, 13061–13078 (2017).

    Google Scholar 

  102. Timmreck, C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev. Clim. Change 3, 545–564 (2012).

    Google Scholar 

  103. Arfeuille, F. et al. Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmos. Chem. Phys. 13, 11221–11234 (2013).

    Google Scholar 

  104. Rosenlof, K. H. et al. Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett. 28, 1195–1198 (2001).

    Google Scholar 

  105. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    Google Scholar 

  106. Dessler, E., Schoeberl, M. R., Wang, T., Davis, S. M. & Rosenlof, K. H. Stratospheric water vapor feedback. Proc. Natl Acad. Sci. USA 110, 18087–18091 (2013).

    Google Scholar 

  107. Stuber, N., Ponater, M. & Sausen, R. Is the climate sensitivity to ozone perturbations enhanced by stratospheric water vapor feedback? Geophys. Res. Lett. 28, 2887–2890 (2001).

    Google Scholar 

  108. Tilmes, S. et al. Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations. J. Geophys. Res. Atmos. 122, 12591–12615 (2017).

    Google Scholar 

  109. Chapman, S. On ozone and atomic oxygen in the upper atmosphere. Philos. Mag. 10, 369–383 (1930).

    Google Scholar 

  110. Chapman, S. The photochemistry of atmospheric oxygen. Rep. Prog. Phys. 9, 92–100 (1942).

    Google Scholar 

  111. Groves, K. S., Mattingly, S. R. & Tuck, A. F. Increased atmospheric carbon dioxide and stratospheric ozone. Nature 273, 711–715 (1978).

    Google Scholar 

  112. Eyring, V. et al. Comprehensive summary on the workshop on “Process-oriented validation of coupled chemistry-climate models” (SPARC, 2010).

  113. Butchart, N. The Brewer-Dobson circulation. Rev. Geophys. 52, 157–184 (2014).

    Google Scholar 

  114. Diallo, M., Legras, B. & Chédin, A. Age of stratospheric air in the ERA-Interim. Atmos. Chem. Phys. 12, 12133–12154 (2012).

    Google Scholar 

  115. Sassen, K. et al. The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols. J. Atmos. Sci. 52, 97–123 (1995).

    Google Scholar 

  116. Luo, Z., Rossow, W. B., Inoue, T. & Stubenrauch, C. J. Did the eruption of the Mt. Pinatubo volcano affect cirrus properties? J. Clim. 15, 2806–2820 (2002).

    Google Scholar 

  117. Zanchettin, D. et al. The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geosci. Model. Dev. 9, 2701–2719 (2016).

    Google Scholar 

  118. Timmreck, C. et al. The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design. Geosci. Model. Dev. 11, 2581–2608 (2018).

    Google Scholar 

  119. MacMartin, D. G., Kravitz, B., Keith, D. W. & Jarvis, A. Dynamics of the coupled human–climate system resulting from closed-loop control of solar geoengineering. Clim. Dyn. 43, 243–258 (2014).

    Google Scholar 

  120. Kravitz, B., MacMartin, D. G., Rasch, P. J. & Jarvis, A. J. A new method of comparing forcing agents in climate models. J. Clim. 28, 8203–8218 (2015).

    Google Scholar 

  121. Yu, X. et al. Impacts, effectiveness and regional inequalities of the GeoMIP G1 to G4 solar radiation management scenarios. Glob. Planet. Change 129, 10–22 (2015).

    Google Scholar 

  122. MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Phil. Trans. R. Soc. A. Math. Phys. Eng. Sci. 376, 20160454 (2018).

    Google Scholar 

  123. Govindasamy, B. & Caldeira, K. Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett. 27, 2141–2144 (2000).

    Google Scholar 

  124. Henry, M. & Merlis, T. M. Forcing dependence of atmospheric lapse rate changes dominates residual polar warming in solar radiation management scenarios. Nat. Commun. (under review).

  125. Bala, G., Duffy, P. B. & Taylor, K. E. Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl Acad. Sci. USA 105, 7664–7669 (2008).

    Google Scholar 

  126. Richter, J. H. et al. Stratospheric dynamical response and ozone feedbacks in the presence of SO2 injections. J. Geophys. Res. Atmos. 122, 12557–12573 (2017).

    Google Scholar 

  127. Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. & Stenchikov, G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 117, D17105 (2012).

    Google Scholar 

  128. Glienke, S., Irvine, P. J. & Lawrence, M. G. The impact of geoengineering on vegetation in experiment G1 of the GeoMIP. J. Geophys. Res. 120, 10196–10213 (2015).

    Google Scholar 

  129. Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Google Scholar 

  130. Robock, A., Bunzl, M., Kravitz, B. & Stenchikov, G. L. A test for geoengineering? Science 327, 530–531 (2010).

    Google Scholar 

  131. MacMynowski, D. G., Keith, D. W., Caldeira, K. & Shin, H.-J. Can we test geoengineering? Energy Environ. Sci. 4, 5044–5052 (2011).

    Google Scholar 

  132. MacMartin, D. G. et al. Timescale for detecting the climate response to stratospheric aerosol geoengineering. J. Geophys. Res. 124, 1233–1347 (2019).

    Google Scholar 

  133. IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field, C. B. et al.) 1–32 (Cambridge University Press, 2014).

  134. Kravitz, B. et al. The Geoengineering Model Intercomparison Project – introduction to the second special issue. Atmos. Chem. Phys. https://doi.org/10.5194/acp-special_issue376-preface (2018).

  135. Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Google Scholar 

  136. Madronich, S., Tilmes, S., Kravitz, B., MacMartin, D. G. & Richter, J. H. Response of surface ultraviolet and visible radiation to stratospheric SO2 injections. Atmosphere 9, 432 (2018).

    Google Scholar 

  137. Nowack, P. J., Abraham, N. L., Braesicke, P. & Pyle, J. A. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmos. Chem. Phys. 16, 4191–4203 (2016).

    Google Scholar 

  138. Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2010).

    Google Scholar 

  139. Xia, L., Robock, A., Tilmes, S. & Neely, R. R. III. Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos. Chem. Phys. 16, 1479–1489 (2016).

    Google Scholar 

  140. Irvine, P. J. et al. Towards a comprehensive climate impacts assessment of solar geoengineering. Earths Future 5, 93–106 (2017).

    Google Scholar 

  141. Mengis, N., Keller, D. P. & Oschlies, A. Systematic Correlation Matrix Evaluation (SCoMaE) – a bottom–up, science-led approach to identifying indicators. Earth Syst. Dyn. 9, 15–31 (2018).

    Google Scholar 

  142. Sugiyama, M., Arino, Y., Kosugi, T., Kurosawa, A. & Watanabe, S. Next steps in geoengineering scenario research: limited deployment scenarios and beyond. Clim. Policy 18, 681–689 (2018). Describes the importance of and process towards building inclusive scenarios.

    Google Scholar 

  143. Talberg, A. et al. How geoengineering scenarios frame assumptions and create expectations. Sustain. Sci. 13, 1093–1104 (2018).

    Google Scholar 

  144. McLaren, D. P. Whose climate and whose ethics? Conceptions of justice in solar geoengineering modelling. Energy Res. Soc. Sci. 44, 209–221 (2018).

    Google Scholar 

  145. Kravitz, B., MacMartin, D. G., Leedal, D. T., Rasch, P. J. & Jarvis, A. J. Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering. Environ. Res. Lett. 9, 044006 (2014).

    Google Scholar 

  146. Smith, S. J. & Rasch, P. J. The long-term policy context for solar radiation management. Clim. Change 121, 487–497 (2013).

    Google Scholar 

  147. Ribeiro, S. Against geoengineering. Geoengineering Monitor http://www.geoengineeringmonitor.org/2018/11/against-geoengineering/ (2018).

  148. Lempert, R. J., Popper, S. W. & Bankes, S. C. Shaping the Next One Hundred Years (RAND Corporation, 2003). A fundamental reference for adaptive management strategies in climate science.

  149. Flegal, J. A. & Gupta, A. Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity. Int. Environ. Agreem. 18, 45–61 (2018).

    Google Scholar 

  150. Reynolds, J. L. Solar geoengineering to reduce climate change: A review of governance proposals. Proc. R. Soc. A 475, 20190255 (2019).

    Google Scholar 

  151. MacMartin, D. G., Irvine, P. J., Kravitz, B. & Horton, J. B. Technical characteristics of a solar geoengineering deployment and implications for governance. Clim. Policy 19, 1325–1339 (2019).

    Google Scholar 

  152. Lo, Y. T. E., Charlton-Perez, A. J., Lott, F. C. & Highwood, E. J. Detecting sulphate aerosol geoengineering with different methods. Sci. Rep. 6, 39169 (2016).

    Google Scholar 

  153. Boettcher, M., Schäfer, S., Low, S. & Parker, A. Climate Engineering Conference 2017. Conference report (CEC, 2017).

  154. Rahman, A. A., Artaxo, P., Asrat, A. & Parker, A. Developing countries must lead on solar geoengineering research. Nature 556, 22–24 (2018). Describes the importance of building solar geoengineering research capacity in developing countries.

    Google Scholar 

  155. Solar Radiation Management Governance Initiative. DECIMALS Fund. http://www.srmgi.org/decimals-fund/, last accessed 15 September 2019.

  156. Robock, A., Marquardt, A., Kravitz, B. & Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 36, L19703 (2009).

    Google Scholar 

  157. Smith, W. & Wagner, G. Stratospheric aerosol injection tactics and costs in the first 15 years of deployment. Environ. Res. Lett. 13, 124001 (2018).

    Google Scholar 

  158. Marshall, L. et al. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora. Atmos. Chem. Phys. 18, 2307–2328 (2018).

    Google Scholar 

  159. Hardiman, S. C. et al. Processes controlling tropical tropopause temperature and stratospheric water vapor in climate models. J. Clim. 28, 6516–6535 (2015).

    Google Scholar 

  160. Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S. & Nielsen, J. E. Understanding the changes of stratospheric water vapor in coupled chemistry–climate model simulations. J. Atmos. Sci. 65, 3278–3291 (2008).

    Google Scholar 

  161. Hansen, J. E. et al. Efficacy of climate forcings. J. Geophys. Res. 110, D18104 (2005).

    Google Scholar 

  162. Waliser, D. et al. Cloud ice: a climate model challenge with signs and expectations of progress. J. Geophys. Res. 114, D00A21 (2009).

    Google Scholar 

  163. Seinfeld, J. H. et al. Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl Acad. Sci. USA 113, 5781–5790 (2016).

    Google Scholar 

  164. Wennberg, P. O. et al. Removal of stratospheric O3 by radicals: in situ measurements of OH, HO2, NO, NO2, ClO, and BrO. Science 266, 398–404 (1994).

    Google Scholar 

  165. Pickett, H. M. & Peterson, D. B. Comparison of measured stratospheric OH with prediction. J. Geophys. Res. 101, 16789–16796 (1996).

    Google Scholar 

  166. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).

    Google Scholar 

  167. Hartmann, D. L., Wallace, J. M., Limpasuvan, V., Thompson, D. W. J. & Holton, J. R. Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl Acad. Sci. USA 97, 1412–1417 (2000).

    Google Scholar 

  168. Polvani, L. M., Banerjee, A. & Schmidt, A. Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: reconciling models and observations. Atmos. Chem. Phys. 19, 6351–6366 (2019).

    Google Scholar 

  169. McCusker, K. E., Armour, K. C., Bitz, C. M. & Battisti, D. S. Rapid and extensive warming following cessation of solar radiation management. Environ. Res. Lett. 9, 024005 (2014).

    Google Scholar 

  170. Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).

    Google Scholar 

  171. Daily, G. C. Nature’s Services: Societal Dependence on Natural Ecosystems (Island Press, 1997).

  172. McClellan, J., Keith, D. W. & Apt, J. Cost analysis of stratospheric albedo modification delivery systems. Environ. Res. Lett. 7, 034019 (2012).

    Google Scholar 

  173. Moriyama, R. et al. The cost of stratospheric climate engineering revisited. Mitig. Adapt. Strateg. Glob. Change 22, 1207–1228 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank D. Visioni for helpful comments on the manuscript. Support for B.K. was provided in part by the National Science Foundation through agreement CBET-1931641, the Indiana University Environmental Resilience Institute and the Prepared for Environmental Change Grand Challenge initiative. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Support for D.G.M. was provided by the Atkinson Center for a Sustainable Future at Cornell University and by the National Science Foundation through agreement CBET-1818759.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ben Kravitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravitz, B., MacMartin, D.G. Uncertainty and the basis for confidence in solar geoengineering research. Nat Rev Earth Environ 1, 64–75 (2020). https://doi.org/10.1038/s43017-019-0004-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-019-0004-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing