Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breeding for low cadmium barley by introgression of a Sukkula-like transposable element

Abstract

Barley is the fourth most produced cereal crop in the world and one of the major dietary sources of cadmium (Cd), which poses serious threats to human health. Here, we identify a gene that encodes a P-type heavy metal ATPase 3 (HvHMA3) responsible for grain Cd accumulation in barley. HvHMA3 from the high Cd barley variety Haruna Nijo in Japan and the low Cd variety BCS318 in Afghanistan shared 97% identity at the amino acid level. In addition, the HvHMA3 from both varieties showed similar transport activity for Cd and the same subcellular localization at the tonoplast. However, the expression of HvHMA3 was double in BCS318 than in Haruna Nijo. A 3.3-kilobase Sukkula-like transposable element was found to be inserted upstream of the gene in the low Cd variety, which functioned as a promoter and enhanced the expression of HvHMA3. Introgression of this insertion to an elite barley cultivar through backcrossing resulted in decreased Cd accumulation in the grain grown in Cd-contaminated soil without yield penalty. The decreased Cd accumulation resulting from the insertion was also found in some other barley landraces in the world. Our results indicate that insertion of the Sukkula-like transposable element plays an important role in upregulating HvHMA3 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fine-mapping of a gene responsible for Cd accumulation in barley grain.
Fig. 2: Functional characterization of two alleles of HvHMA3.
Fig. 3: Expression pattern and genomic copy number of HvHMA3 in two barley varieties.
Fig. 4: Effect of the Sukkula-like transposable element insertion on HvHMA3 expression.
Fig. 5: Characterization of HvHMA3 RNAi lines.
Fig. 6: Characterization of BC3F2 lines derived from a backcross between BCS318 and Haruna Nijo.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Sequence data relating to this article have been registered in the DDBJ/GenBank/European Molecular Biology Laboratory databases (https://www.ddbj.nig.ac.jp) under the accession numbers LC523824 (HvHMA3-H), LC523825 (HvHMA3-B), LC523826 (HvHMA3-H_promoter) and LC523827 (HvHMA3-B_promoter).

References

  1. Bertin, G. & Averbeck, D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88, 1549–1559 (2006).

    Article  CAS  Google Scholar 

  2. Nawrot, T. et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 7, 119–126 (2006).

    Article  CAS  Google Scholar 

  3. Horiguchi, H. et al. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch. Toxicol. 68, 632–636 (1994).

    Article  CAS  Google Scholar 

  4. Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Clemens, S. & Ma, J. F. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 489–512 (2016).

    Article  CAS  Google Scholar 

  6. Wang, W., Yamaji, N. & Ma, J. F. Molecular Mechanism of Cadmium Accumulation in Rice (eds Himeno, S. & Aoshima, K.) 115–124 (Springer, 2019).

  7. Sasaki, A., Yamaji, N., Yokosho, K. & Ma, J. F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155–2167 (2012).

    Article  CAS  Google Scholar 

  8. Yan, H. et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 10, 2562 (2019).

    Article  ADS  Google Scholar 

  9. Ueno, D. et al. Gene limiting cadmium accumulation in rice. Proc. Natl Acad. Sci. USA 107, 16500–16505 (2010).

    Article  ADS  CAS  Google Scholar 

  10. Yamaji, N., Xia, J. X., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 162, 927–939 (2013).

    Article  CAS  Google Scholar 

  11. Uraguchi, S. et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc. Natl Acad. Sci. USA 108, 20959–20964 (2011).

    Article  ADS  CAS  Google Scholar 

  12. Hao, X. et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front. Plant Sci. 9, 476 (2018).

    Article  ADS  Google Scholar 

  13. Luo, J. S. et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 9, 645 (2018).

    Article  ADS  Google Scholar 

  14. Schulte, D. et al. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 149, 142–147 (2009).

    Article  CAS  Google Scholar 

  15. Codex General Standards for Contaminants and Toxins in Food and Feed (Codex Stan 193-1995) (Codex Alimentarius, FAO & WHO, 2019).

  16. Chen, F. et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere 67, 2082–2088 (2007).

    Article  ADS  CAS  Google Scholar 

  17. Wu, D., Sato, K. & Ma, J. F. Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 208, 817–829 (2015).

    Article  CAS  Google Scholar 

  18. Saisho, D., Myoraku, E., Kawasaki, S., Sato, K. & Takeda, K. Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety ‘Haruna Nijo’. Breed. Sci. 57, 29–38 (2007).

    Article  Google Scholar 

  19. Huang, C. F., Yamaji, N., Chen, Z. & Ma, J. F. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 69, 857–867 (2012).

    Article  CAS  Google Scholar 

  20. Yan, J. et al. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 39, 1941–1954 (2016).

    Article  CAS  Google Scholar 

  21. Shirasu, K., Schulman, A. H., Lahaye, T. & Schulze-Lefert, P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 10, 908–915 (2000).

    Article  CAS  Google Scholar 

  22. Kartal-Alacam, G., Yilmaz, S., Marakli, S. & Gozukirmizi, N. Sukkula retrotransposon insertion polymorphisms in barley. Russ. J. Plant Physiol. 61, 828–833 (2014).

    Article  CAS  Google Scholar 

  23. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    Article  CAS  Google Scholar 

  24. Pereira, J. F. & Ryan, P. R. The role of transposable elements in the evolution of aluminium resistance in plants. J. Exp. Bot. 70, 41–54 (2019).

    Article  CAS  Google Scholar 

  25. Zhang, L. et al. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat. Commun. 10, 1494 (2019).

    Article  ADS  Google Scholar 

  26. Fujii, M. et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat. Commun. 3, 713 (2012).

    Article  ADS  Google Scholar 

  27. Kashino-Fujii, M. et al. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions. Plant Physiol. 178, 716–727 (2018).

    Article  CAS  Google Scholar 

  28. Laxa, M. et al. The 5′UTR intron of Arabidopsis GGT1 aminotransferase enhances promoter activity by recruiting RNA polymerase II. Plant Physiol. 172, 313–327 (2016).

    Article  CAS  Google Scholar 

  29. Yokosho, K., Yamaji, N., Fujii-Kashino, M. & Ma, J. F. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol. 172, 2327–2336 (2016).

    Article  CAS  Google Scholar 

  30. Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    Article  CAS  Google Scholar 

  31. Negi, P., Rai, A. N. & Suprasanna, P. Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front. Plant Sci. 7, 1448 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. Pourkheirandish, M. et al. Evolution of the grain dispersal system in barley. Cell 162, 527–539 (2015).

    Article  CAS  Google Scholar 

  33. Sasaki, A., Yamaji, N. & Ma, J. F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 65, 6013–6021 (2014).

    Article  CAS  Google Scholar 

  34. Cai, H., Huang, S., Che, J., Yamaji, N. & Ma, J. F. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice. J. Exp. Bot. 70, 2717–2725 (2019).

    Article  CAS  Google Scholar 

  35. Close, T. J. et al. Development and implementation of high-throughput SNP genotyping in barley. BMC Genom. 10, 582 (2009).

    Article  Google Scholar 

  36. Wang, S., Basten, C. J. & Zeng, Z. B. Windows QTL Cartographer 2.5 (Department of Statistics, North Carolina State University, 2012); http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  37. Fuse, T., Sasaki, T. & Yano, M. Ti-plasmid vectors useful for functional analysis of rice genes. Plant Biotech. 18, 219–222 (2001).

    Article  CAS  Google Scholar 

  38. Tsutsui, T., Yamaji, N. & Ma, J. F. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 156, 925–931 (2011).

    Article  CAS  Google Scholar 

  39. Chen, S. et al. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol. Plant Pathol. 7, 417–427 (2006).

    Article  ADS  CAS  Google Scholar 

  40. Hiei, Y., Ishida, Y., Kasaoka, K. & Komari, T. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 87, 233–243 (2006).

    Article  Google Scholar 

  41. Hiei, Y. & Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 85, 271–283 (2006).

    Article  CAS  Google Scholar 

  42. Hensel, G., Valkov, V., Middlefell-Williams, J. & Kumlehn, J. Efficient generation of transgenic barley: the way forward to modulate plant–microbe interactions. J. Plant Physiol. 165, 71–82 (2008).

    Article  CAS  Google Scholar 

  43. Miki, D. & Shimamoto, K. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45, 490–495 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Specially Promoted Research (JSPS KAKENHI grant number 16H06296 to J.F.M.) and a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics-based Technology for Agricultural Improvement, TRS-1006 and Brain 25013A to J.F.M.). Barley seed samples and DNA were provided through the National Bioresource Project of Barley (MEXT, Japan).

Author information

Authors and Affiliations

Authors

Contributions

J.F.M. designed the research. G.J.L., M.F.-K., D.Z.W., H.H., D.S., F.D., K.S. and J.F.M. performed the research. G.J.L., M.F.-K., D.Z.W., D.S., N.Y., K.S., F.-J.Z. and J.F.M. analysed the data. G.J.L. and J.F.M. wrote the paper.

Corresponding author

Correspondence to Jian Feng Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–3.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, G.J., Fujii-Kashino, M., Wu, D.Z. et al. Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nat Food 1, 489–499 (2020). https://doi.org/10.1038/s43016-020-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-020-0130-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research