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Meta-learning for T cell receptor binding  
specificity and beyond

Duolin Wang, Fei He, Yang Yu & Dong Xu

Predicting whether T cell receptors bind to 
specific peptides is a challenging problem 
because most binding examples in the  
training data involve only a few peptides.  
A new approach uses meta-learning to improve 
predictions for binding to peptides for which 
no or little binding data exists.

The T cell receptor (TCR), as a protein complex expressed on T cells, 
has a critical role in the adaptive immune system by recognizing and 
binding to specific antigen peptides1. TCRs are highly diverse, allow-
ing T cells to attack a wide range of antigens from pathogen-infected 
cells and cancer cells. A given antigen peptide can trigger a specific 
set of TCRs, resulting in a targeted immune response. There are many 
different peptide motifs and significant differences in the numbers 
of corresponding TCRs. Predicting which TCRs can bind to a specific 
antigen peptide has broad clinical applications, such as large-scale 
screening of potential TCR targets for cancer neoantigen therapy2. In 
this issue of Nature Machine Intelligence, Gao et al. propose PanPep3, a 
meta-learning-based framework to address the TCR–antigen binding 
recognition problem for any type of antigen peptide. In particular, the 
method can predict binding to antigens that have never been seen in 
the immune system. The study could also motivate developments with 
meta-learning in other small-data bioinformatics problems.

The prediction of peptide-specific TCR binding, like many other 
bioinformatics problems, is challenged by the long-tail distribution 
of TCR binding (Fig. 1a), whereby a small number of peptides have 
many known binding TCRs, while many peptides have small num-
bers of known binding TCRs. Predictions may therefore be highly 
biased toward a few peptides represented in a majority of training 
data, with low utility for the majority of peptides for which insuf-
ficient or no training data are available. As a result, existing tools 
perform poorly on predictions for peptides located in the long-tail 
region — antigens with a few known TCRs and previously unseen 
antigens — in what are known as the few-shot and zero-shot learn-
ing problems. In recent years, various machine learning approaches 
have been developed to address long-tail problems, such as trans-
fer learning4, domain adaptation methods5 and, most notably,  
meta-learning.

The concept of meta-learning has evolved over time, and this 
continues to be an active area of machine learning research. Initially, 
the meta-learning approach aimed to improve algorithm performance 
by sharing information across tasks and learning how to best apply 
existing learning algorithms to new ones. Over time, the focus has 
shifted toward developing models that can quickly adapt to new tasks 
with limited data, as used in PanPep. Training a meta-learner typically 

requires two learning stages: meta-training and meta-testing. During 
meta-training, the model is exposed to a variety of different tasks to 
learn a general problem-solving strategy that can be applied to new 
tasks. During meta-testing, the model is presented with a new task 
and uses the knowledge gained during meta-training to quickly adapt 
to the new task and solve it.

To tackle the long-tail distribution problem, PanPep employs 
meta-learning in three settings: (i) the majority setting, for peptides 
with a large number of known binding TCRs, (ii) few-shot learning, 
for peptides with a small number (<10) of known binding TCRs and 
(ii) zero-shot learning, for peptides not present in the training data. 
PanPep applies a widely used optimization-based adaptation method, 
model-agnostic meta-learning (MAML6), to target the majority and 
few-shot settings. Specifically, in the meta-training stage, the model 
is trained on a set of peptide-specific TCR binding tasks to obtain a 
series of peptide-specific learners and optimize the meta-learner. 
Then, in the meta-testing procedure, the meta-learner is fine-tuned 
on a new peptide-specific binding recognition task. PanPep proposes 
a disentanglement distillation module to handle the zero-shot setting. 
A mapping between peptide embedding and the peptide-specific 
learners is constructed based on a neural Turing machine (NTM)7  
(Fig. 1b). The read head of the NTM is used to map a peptide embedding 
to a new embedding space called peptide-specific learner genera-
tion space (PLGS), and a write head of the NTM is used to extract the 
peptide-specific learners. The NTM’s memory stores the mapping 
between peptide embedding and the extracted peptide-specific learn-
ers. This NTM-based module is trained based on all the peptide-specific 
learners through knowledge distillation. In this way, PanPep can extend 
the few-shot settings to zero-shot settings. Once an unseen peptide 
arises, the trained read head will map it into the PLGS, and then the PLGS 
will be used to retrieve the memory to generate a new peptide-specific 
learner for the inference of the unseen peptide. This innovative design 
makes PanPep a powerful tool for predicting TCR binding specificity 
of TCRs with few or unseen antigens.

In the evaluations using the curated independent data, PanPep 
achieved excellent performance on various peptide-specific tasks, 
especially for unseen peptides. Furthermore, Gao et al. demonstrate 
PanPep’s utility in several clinical applications. The output scores 
of PanPep indicated a relatively high correlation with clonal T cell 
expansion ratios, suggesting its potential to provide accurate bind-
ing identification for clonal T cells. In neoantigen therapy, PanPep 
effectively identified immune-responsive T cells and detected 
neoantigen-reactive T cell signatures, which may help improve adop-
tive cell transfer (ACT)-based tumour immunotherapy. In a COVID-19 
study, PanPep demonstrated substantial improvement in recognizing 
peptide-specific TCRs over three other tools. Moreover, it provided 
interpretability by unveiling the nature of peptide and TCR interactions 
through protein structure modelling. Finally, PanPep displayed high 
computational efficiency.
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sequences as the input for all tasks, such an approach assumes that the 
data in all tasks follow the identically independent distribution (i.i.d.), 
which is not the case for peptide-specific tasks. The meta-learning and 
the NTM-based disentanglement distillation proposed in PanPep can 
take advantage of the peptide-specific data distribution to adapt to 
new tasks well. These methods may be further improved using newer 
machine learning methods, such as the NTM’s successor, the differen-
tiable neural computer8. It may also be beneficial to use graph neural 
networks to represent all the peptides and TCRs by leveraging the 
global relationships among peptides and TCRs.

It is often perceived that deep learning requires massive datasets 
of labelled training samples to be effective. However, labelled data 
may be sparse in many real-world applications, especially in biologi-
cal and medical areas. One class of ‘small data’ cases is the long-tail 
problem. The work by Gao et al. represents a promising application of 
meta-learning in addressing long-tail distribution problems in bioin-
formatics. In particular, PanPep fills the gap in handling the zero-shot 
setting for TCR binding specificity prediction by integrating the 
meta-learning modules with disentanglement distillation. Although 
one can build a task-blind model using the peptide and TCR–CDR3 
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Fig. 1 | The PanPep workflow of meta-learning augmented with a neural 
Turing machine. a, Definition of the long-tail distribution problem and 
potential bioinformatics applications using meta-learning. b, Model workflow. 
For peptide-specific TCR binding prediction, the input comprises a peptide 
sequence and the CDR3 region of a TCR protein sequence that binds to antigens. 
The output is information on whether this peptide–TCR pair represents a 
bona fide biological interaction. In the meta-training stage, a model is trained 
on a series of peptide-specific TCR binding tasks to obtain peptide-specific 
learners and optimize a meta-learner (with model-agnostic machine learning, 

MAML). In the meta-testing stage, the meta-learner is fine-tuned on new binding 
recognition tasks for peptides with a large number of supporting TCRs (majority 
setting) or with a small number of supporting TCRs (few-shot setting). The neural 
Turing machine (NTM) maps a peptide embedding to an embedding space 
using the read head and extracts the peptide-specific learners using the write 
head. The NTM memory stores the mapping between the peptide embedding 
and disentangled learners, capable of generating new peptide-specific learners 
through memory retrieval for unseen peptides in the zero-shot setting.
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PanPep can potentially serve as a general framework for many new 
bioinformatics applications. It may be extended to tackle other pep-
tide binding prediction tasks that are subject to long-tail distribution 
problems, such as peptide–HLA binding prediction and kinase-specific 
phosphorylation-site prediction9. The few-shot meta-learning methods 
may be applicable to protein function predictions, such as protein 
localization prediction10 and Enzyme Commission Number prediction. 
PanPep also has some limitations and new challenges. One limitation 
is that the proposed method did not provide superior performance, 
compared with existing methods, for the majority setting, involving 
predictions where ample training data is available. This may be because 
the meta-learner needs to balance between all the tasks to ensure that 
the model can generalize well to new tasks. Therefore, further regulari-
zation techniques or hyperparameter selection techniques may need 
to be implemented to ensure optimal training results in the majority 
setting. It is also noteworthy that even though the peptides are ‘unseen’ 
in the training procedure, the TCR may be ‘seen’ by other peptide–TCR 
binding pairs in the training procedure. It would be interesting to assess 
the performance difference between the unknown (peptides)–known 
(TCR) scenario and the unknown–unknown scenario. In summary, 
PanPep delivered great promise of using meta-learning to address 
bioinformatics' long-tail distribution problems. We anticipate that 

many new meta-learning methods will be developed for a wide range 
of bioinformatics applications.
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