Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hindbrain circuits in the control of eating behaviour and energy balance

Abstract

Body weight and adiposity represent biologically controlled parameters that are influenced by a combination of genetic, developmental and environmental variables. Although the hypothalamus plays a crucial role in matching caloric intake with energy expenditure to achieve a stable body weight, it is now recognized that neuronal circuits in the hindbrain not only serve to produce nausea and to terminate feeding in response to food consumption or during pathological states, but also contribute to the long-term control of body weight. Additionally, recent work has identified hindbrain neurons that are capable of suppressing food intake without producing aversive responses like those associated with nausea. Here we review recent advances in our understanding of the hindbrain neurons that control feeding, particularly those located in the area postrema and the nucleus tractus solitarius. We frame this information in the context of new atlases of hindbrain neuronal populations and develop a model of the hindbrain circuits that control food intake and energy balance, suggesting important areas for additional research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Information flow into and out of the dorsal vagal complex.
Fig. 2: Distinct types of nucleus tractus solitarius neurons and downstream circuits mediate the aversive and non-aversive suppression of food intake.
Fig. 3: Known and potential roles for selected populations of transcriptionally defined nucleus tractus solitarius neurons.
Fig. 4: Known and potential roles for specific populations of transcriptionally defined area postrema neurons.

Similar content being viewed by others

References

  1. Data and Statistics on Overweight and Obesity. (Centers for Disease Control and Prevention, accessed 1 April 2022) https://www.cdc.gov/obesity/data/adult.html

  2. Affinati, A. H. & Myers, M. G., Jr. in Endotext (eds Feingold, K. R. et al.) Neuroendocrine control of body energy homeostasis. (South Dartmouth, 2000).

  3. Myers, M. G. Jr., Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 3, 737–750 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Myers, M. G. Jr. & Olson, D. P. SnapShot: neural pathways that control feeding. Cell Metab. 19, 732–732e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Berthoud, H. R., Munzberg, H., Richards, B. K. & Morrison, C. D. Neural and metabolic regulation of macronutrient intake and selection. Proc. Nutr. Soc. 71, 390–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Marks, D. L., Butler, A. A. & Cone, R. D. Melanocortin pathway: animal models of obesity and disease. Ann. Endocrinol. 63, 121–124 (2002).

    CAS  Google Scholar 

  9. Ring, L. E. & Zeltser, L. M. Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J. Clin. Invest. 120, 2931–2941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grill, H. J. & Kaplan, J. M. The neuroanatomical axis for control of energy balance. Front. Neuroendocrinol. 23, 2–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Grill, H. J. & Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 16, 296–309 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, M., Heo, G. & Kim, S. Y. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat. Rev. Neurosci. 23, 135–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan, J. M., Seeley, R. J. & Grill, H. J. Daily caloric intake in intact and chronic decerebrate rats. Behav. Neurosci. 107, 876–881 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. D’Agostino, G. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metab. 28, 619–630 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Macia, L. et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal and obesogenic diets. PLoS ONE 7, e34868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breit, S. N., Tsai, V. W. & Brown, D. A. Targeting obesity and cachexia: identification of the GFRAL receptor-MIC-1/GDF15 pathway. Trends Mol. Med. 23, 1065–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Coester, B. et al. RAMP1 and RAMP3 differentially control amylin’s effects on food intake, glucose and energy balance in male and female mice. Neuroscience 447, 74–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Turek, V. F. et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151, 143–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Burmeister, M. A. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes 66, 372–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Lutz, T. A., Mollet, A., Rushing, P. A., Riediger, T. & Scharrer, E. The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int. J. Obes. Relat. Metab. Disord. 25, 1005–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Adams, J. M. et al. Liraglutide modulates appetite and body weight through glucagon-like peptide 1 receptor-expressing glutamatergic neurons. Diabetes 67, 1538–1548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsu, J. Y. et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550, 255–259 (2017).

    Article  PubMed  CAS  Google Scholar 

  23. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Emmerson, P. J. et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat. Med. 23, 1215–1219 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Worth, A. A. et al. The cytokine GDF15 signals through a population of brainstem cholecystokinin neurons to mediate anorectic signalling. eLife 9, e55164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, W. et al. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nat. Commun. 12, 5175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, W. et al. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. Cell Metab. 31, 301–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanoski, S. E., Rupprecht, L. E., Fortin, S. M., De Jonghe, B. C. & Hayes, M. R. The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 62, 1916–1927 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Roman, C. W., Sloat, S. R. & Palmiter, R. D. A tale of two circuits: CCKNTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. Neuroscience 358, 316–324 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Roman, C. W., Derkach, V. A. & Palmiter, R. D. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat. Commun. 7, 11905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D’Agostino, G. et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. eLife 5, e12225 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Carter, M. E., Han, S. & Palmiter, R. D. Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J. Neurosci. 35, 4582–4586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campos, C. A., Bowen, A. J., Schwartz, M. W. & Palmiter, R. D. Parabrachial CGRP neurons control meal termination. Cell Metab. 23, 811–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campos, C. A. et al. Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial nucleus. Nat. Neurosci. 20, 934–942 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Palmiter, R. D. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 41, 280–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campos, C. A., Bowen, A. J., Roman, C. W. & Palmiter, R. D. Encoding of danger by parabrachial CGRP neurons. Nature 555, 617–622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, D. Y. et al. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Tsang, A. H., Nuzzaci, D., Darwish, T., Samudrala, H. & Blouet, C. Nutrient sensing in the nucleus of the solitary tract mediates non-aversive suppression of feeding via inhibition of AgRP neurons. Mol. Metab. 42, 101070 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beutler, L. R. et al. Dynamics of gut–brain communication underlying hunger. Neuron 96, 461–475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lawrence, C. B., Celsi, F., Brennand, J. & Luckman, S. M. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3, 645–646 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, S. H. et al. Pancreatic beta cell function following liraglutide-augmented weight loss in individuals with prediabetes: analysis of a randomised, placebo-controlled study. Diabetologia 57, 455–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Dodd, G. T. et al. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab. 20, 639–649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ludwig, M. Q. et al. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat. Metab. 3, 530–545 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Opitz, K. & Schafer, G. The effect of lithium on food intake in rats. Int. Pharmacopsychiatry 11, 197–205 (1976).

    Article  CAS  PubMed  Google Scholar 

  46. Gaykema, R. P. et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J. Clin. Invest. 127, 1031–1045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cheng, W. et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight 5, e134359 (2020).

    Article  PubMed Central  Google Scholar 

  48. Richard, J. E. et al. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS ONE 10, e0119034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang, C. et al. Area postrema cell types that mediate nausea-associated behaviors. Neuron 109, 461–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Dowsett, G. K. C. et al. A survey of the mouse hindbrain in the fed and fasted states using single-nucleus RNA sequencing. Mol. Metab. 53, 101240 (2021).

  51. Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aklan, I. et al. NTS catecholamine neurons mediate hypoglycemic hunger via medial hypothalamic feeding pathways. Cell Metab. 31, 313–326 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, J. et al. A vagal–NTS neural pathway that stimulates feeding. Curr. Biol. 30, 3986–3998 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Resch, J. M. et al. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96, 190–206 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Do, J., Chang, Z., Sekerkova, G., McCrimmon, D. R. & Martina, M. A leptin-mediated neural mechanism linking breathing to metabolism. Cell Rep. 33, 108358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huo, L., Gamber, K. M., Grill, H. J. & Bjorbaek, C. Divergent leptin signaling in proglucagon neurons of the nucleus of the solitary tract in mice and rats. Endocrinology 149, 492–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Paul, S., Mondal, G. P., Bhattacharyya, R., Ghosh, K. C. & Bhat, I. A. Neuromyelitis optica spectrum disorders. J. Neurol. Sci. 420, 117225 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Mullican, S. E. & Rangwala, S. M. Uniting GDF15 and GFRAL: therapeutic opportunities in obesity and beyond. Trends Endocrinol. Metab. 29, 560–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Borner, T. et al. GDF15 induces an aversive visceral malaise state that drives anorexia and weight loss. Cell Rep. 31, 107543 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borner, T. et al. GDF15 induces anorexia through nausea and emesis. Cell Metab. 31, 351–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petry, C. J. et al. Associations of vomiting and antiemetic use in pregnancy with levels of circulating GDF15 early in the second trimester: a nested case–control study. Wellcome Open Res. 3, 123 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sabatini, P. V. et al. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc. Natl Acad. Sci. USA 118, e2021357118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ludwig, M. Q., Todorov, P. V., Egerod, K. L., Olson, D. P. & Pers, T. H. Single-cell mapping of GLP-1 and GIP receptor expression in the dorsal vagal complex. Diabetes 70, 1945–1955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lawrence, C. B., Ellacott, K. L. & Luckman, S. M. PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 143, 360–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Boyle, C. N., Lutz, T. A. & Le Foll, C. Amylin—its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol. Metab. 8, 203–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Hayes, M. R. et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 13, 320–330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fortin, S. M., Chartoff, E. H. & Roitman, M. F. The aversive agent lithium chloride suppresses phasic dopamine release through central GLP-1 receptors. Neuropsychopharmacology 41, 906–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Borner, T. et al. GIP receptor agonism attenuates GLP-1 receptor agonist-induced nausea and emesis in preclinical models. Diabetes 70, 2545–2553 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Frias, J. P. et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes. Metab. 22, 938–946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol. Metab. 46, 101090 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Campbell, J. E. Targeting the GIPR for obesity: to agonize or antagonize? potential mechanisms. Mol. Metab. 46, 101139 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Q. et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS–GIPR signaling. Cell Metab. 33, 833–44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boer, G. A., Keenan, S. N., Miotto, P. M., Holst, J. J. & Watt, M. J. GIP receptor deletion in mice confers resistance to high-fat diet-induced obesity via alterations in energy expenditure and adipose tissue lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 320, E835–E845 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin, H., Fishman, Z. H., Ye, M., Wang, L. & Zuker, C. S. Top-down control of sweet and bitter taste in the mammalian brain. Cell 184, 257–271 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, J. et al. Sour sensing from the tongue to the brain. Cell 179, 392–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Biddinger, J. E., Lazarenko, R. M., Scott, M. M. & Simerly, R. Leptin suppresses development of GLP-1 inputs to the paraventricular nucleus of the hypothalamus. eLife 9, e59857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Banbury conference on Integrated Control of Feeding and Energy Balance by Hypothalamic and Hindbrain Circuits stimulated much of the thinking underlying this article and related work, and we thank R. Leshan, L. Heisler and the attendees of the conference for sharing their thoughts. We also thank C. Rhodes, D. Sandoval and D. Olson and members of their laboratories, along with members of the laboratories of R.J.S., T.H.P. and M.G.M. for helpful discussions. Supported by AstraZeneca, National Institutes of Health (grant P01 DK117821), the American Diabetes Association (1-16-PDF-021 to W.C.), the Lundbeck Foundation (grant no. R190-2014-3904 to T.H.P.), the Novo Nordisk Foundation (grant no. NNF18CC0034900 to the Novo Nordisk Foundation Center for Basic Metabolic Research, which is an independent research centre, based at the University of Copenhagen), and the Danish Diabetes Academy, which is funded by the Novo Nordisk Foundation (grant no. NNF17SA0031406).

Author information

Authors and Affiliations

Authors

Contributions

M.G.M., W.C. and R.J.S. wrote the first draft of the manuscript; all the other authors extensively edited and revised the manuscript. M.G.M. drafted the figures, and W.C. revised the figures in line with comments from the other authors. M.G.M. is the guarantor of the paper.

Corresponding author

Correspondence to Martin G. Myers Jr..

Ethics declarations

Competing interests

M.G.M., T.H.P. and R.J.S. receive research support from Novo Nordisk, and M.G.M. and R.J.S. receive research support from AstraZeneca. M.G.M. is a paid consultant for AstraZeneca and Regeneron Pharmaceuticals. R.J.S. also receives research support from Fractyl and is a paid consultant for Novo Nordisk, Scohia, ShouTi Pharma and Fractyl. R.J.S. also has equity positions in Calibrate and Rewind. The other authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Zachary Knight and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ashley Castellanos-Jankiewicz, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Gordian, D., Ludwig, M.Q. et al. Hindbrain circuits in the control of eating behaviour and energy balance. Nat Metab 4, 826–835 (2022). https://doi.org/10.1038/s42255-022-00606-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00606-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing