Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic substrate cofeeding stimulates reductive metabolism

Abstract

Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as ‘dopant’ substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gCDW−1 h−1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW−1 h−1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continuous glucose cofeeding relieves repression of acetate in Y. lipolytica.
Fig. 2: Cofeeding substrates near the oxidative PPP accelerates cell growth and lipogenesis from acetate.
Fig. 3: Gluconate generates NADPH via the pentose cycle.
Fig. 4: Glucose generates ATP for CO2 fixation but leads to decarboxylation in M. thermoacetica.
Fig. 5: Continuous glucose cofeeding accelerates acetogenesis from CO2 fixation at the autotrophic limit.
Fig. 6: Synergy and coordination of substrate cofeeding accelerate the conversion of CO2 and H2 into lipids.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Supplementary Files and from the corresponding author upon request.

Code availability

The code for the metabolic flux and free energy analysis is available on the GitHub public repository at https://github.com/jopark/moorella_yarrowia. The data that support the findings of this study are available in the Supplementary Files and from the corresponding author upon request.

References

  1. Ledesma-Amaro, R. & Nicaud, J. M. Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol. 34, 798–809 (2016).

    Article  CAS  Google Scholar 

  2. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  Google Scholar 

  3. Xue, Z. et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 31, 734–740 (2013).

    Article  CAS  Google Scholar 

  4. Qiao, K. J., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    Article  CAS  Google Scholar 

  5. Kita, A. et al. Development of genetic transformation and heterologous expression system in carboxydotrophic thermophilic acetogen Moorella thermoacetica. J. Biosci. Bioeng. 115, 347–352 (2013).

    Article  CAS  Google Scholar 

  6. MonodJ. Recherches sur la Croissance des Cultures Bactériennes. (Hermann: 1942).

  7. Aristilde, L., Lewis, I. A., Park, J. O. & Rabinowitz, J. D. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. Appl. Environ. Microbiol. 81, 1452–1462 (2015).

    Article  Google Scholar 

  8. Görke, B. & Stülke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  Google Scholar 

  9. Bren, A. et al. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6, 24834 (2016).

    Article  CAS  Google Scholar 

  10. Joshua, C. J., Dahl, R., Benke, P. I. & Keasling, J. D. Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J. Bacteriol. 193, 1293–1301 (2011).

    Article  CAS  Google Scholar 

  11. Hermsen, R., Okano, H., You, C., Werner, N. & Hwa, T. A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 11, 801 (2015).

    Article  Google Scholar 

  12. Kanno, M., Carroll, A. L. & Atsumi, S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat. Commun. 8, 14724 (2017).

    Article  CAS  Google Scholar 

  13. Martinez, K. et al. Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb. Cell Fact. 7, 1 (2008).

    Article  Google Scholar 

  14. Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).

    Article  Google Scholar 

  15. Garcia Sanchez, R. et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 3, 13 (2010).

    Article  Google Scholar 

  16. Kim, S. M. et al. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab. Eng. 30, 141–148 (2015).

    Article  CAS  Google Scholar 

  17. Jones, S. W. et al. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat. Commun. 7, 12800 (2016).

    Article  CAS  Google Scholar 

  18. Bowes, G., Ogren, W. L. & Hageman, R. H. Light saturation, photosynthesis rate, RuDP carboxylase activity, and specific leaf weight in soybeans grown under different light intensities. Crop Sci. 12, 77 (1972).

    Article  CAS  Google Scholar 

  19. Xu, J., Liu, N., Qiao, K., Vogg, S. & Stephanopoulos, G. Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proc. Natl Acad. Sci. USA 114, E5308–E5316 (2017).

    Article  CAS  Google Scholar 

  20. Ratledge, C. & Wynn, J. P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51, 1–51 (2002).

    Article  CAS  Google Scholar 

  21. Qiao, K. et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 29, 56–65 (2015).

    Article  CAS  Google Scholar 

  22. Fontanille, P., Kumar, V., Christophe, G., Nouaille, R. & Larroche, C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour. Technol. 114, 443–449 (2012).

    Article  CAS  Google Scholar 

  23. Liu, N., Qiao, K. & Stephanopoulos, G. 13C metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica. Metab. Eng. 38, 86–97 (2016).

    Article  CAS  Google Scholar 

  24. Gancedo, J. M. Carbon catabolite repression in yeast. Eur. J. Biochem. 206, 297–313 (1992).

    Article  CAS  Google Scholar 

  25. Casazza, J. P. & Veech, R. L. The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats. J. Biol. Chem. 261, 690–698 (1986).

    CAS  PubMed  Google Scholar 

  26. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873–1898 (2008).

    Article  CAS  Google Scholar 

  27. Mall, A. et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 359, 563–567 (2018).

    Article  CAS  Google Scholar 

  28. Nunoura, T. et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 359, 559–563 (2018).

    Article  CAS  Google Scholar 

  29. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    Article  CAS  Google Scholar 

  30. Daniell, J., Köpke, M. & Simpson, S. Commercial biomass syngas fermentation. Energies 5, 5372–5417 (2012).

    Article  CAS  Google Scholar 

  31. Hu, P., Rismani-Yazdi, H. & Stephanopoulos, G. Anaerobic CO2 fixation by the acetogenic bacterium Moorella thermoacetica. AIChE J. 59, 3176–3183 (2013).

    Article  CAS  Google Scholar 

  32. Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5, 3131 (2014).

    Article  Google Scholar 

  33. Babel, W., Brinkmann, U. & Muller, R. H. The auxiliary substrate concept: an approach for overcoming limits of microbial performances. Acta Biotechnol. 13, 211–242 (1993).

    Article  CAS  Google Scholar 

  34. Babel, W. The auxiliary substrate concept: from simple considerations to heuristically valuable knowledge. Eng. Life Sci. 9, 285–290 (2009).

    Article  CAS  Google Scholar 

  35. Daniel, S. L., Hsu, T., Dean, S. I. & Drake, H. L. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172, 4464–4471 (1990).

    Article  CAS  Google Scholar 

  36. Ledesma-Amaro, R., Dulermo, R., Niehus, X. & Nicaud, J. M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 38, 38–46 (2016).

    Article  CAS  Google Scholar 

  37. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  Google Scholar 

  38. Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331–339 (2014).

    Article  CAS  Google Scholar 

  39. Tai, M. & Stephanopoulos, G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9 (2013).

    Article  CAS  Google Scholar 

  40. Michaelis, L. & Guzman Barron, E. S. Oxidation-reduction systems of biological significance. II. Reducing effect of cysteine induced by free metals. J. Biol. Chem. 81, 29–40 (1929).

    CAS  Google Scholar 

  41. Rabinowitz, J. D. & Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal. Chem. 79, 6167–6173 (2007).

    Article  CAS  Google Scholar 

  42. Clasquin, M. F., Melamud, E. & Rabinowitz, J. D. LC–MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr. Protoc. Bioinformatics Chapter 14, Unit14.11 (2012).

    PubMed  Google Scholar 

  43. Tracy, B. P., Jones, S. W., Fast, A. G., Indurthi, D. C. & Papoutsakis, E. T. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr. Opin. Biotechnol. 23, 364–381 (2012).

    Article  CAS  Google Scholar 

  44. Islam, M. A., Zengler, K., Edwards, E. A., Mahadevan, R. & Stephanopoulos, G. Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr. Biol. (Camb.) 7, 869–882 (2015).

    Article  CAS  Google Scholar 

  45. Schellenberger, J. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011).

    Article  CAS  Google Scholar 

  46. Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007).

    Article  CAS  Google Scholar 

  47. Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab. Eng. 8, 324–337 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Lewis and E. Freinkman for their help with the LC–MS. This research was supported by the U.S. Department of Energy grant nos. DE-AR0000433, DE-SC0008744 and DE-SC0012377, as well as a Mobility Plus Fellowship no. 1284/MOB/IV/2015/0.

Author information

Authors and Affiliations

Authors

Contributions

J.O.P, N.L. and G.S. designed the study and wrote the paper. J.O.P., N.L. and K.M.H performed the experiments and flux analysis. J.O.P., N.L., B.M.W. and C.V. developed the methods for the LC–MS and gas chromatography–mass spectrometry. J.O.P., N.L., D.F.E. and J.X. designed the bioreactors. J.O.P. and M.A.I. developed the updated metabolic model. J.O.P., N.L., K.Q., Z.L., P.R.G. and G.S. analysed the data.

Corresponding author

Correspondence to Gregory Stephanopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Primary Handling Editor: Ana Mateus.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Supplementary Tables 1–7 and Supplementary Note

Reporting Summary

Supplementary Dataset 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.O., Liu, N., Holinski, K.M. et al. Synergistic substrate cofeeding stimulates reductive metabolism. Nat Metab 1, 643–651 (2019). https://doi.org/10.1038/s42255-019-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0077-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research