Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity

Abstract

Depleting creatine levels in thermogenic adipocytes by inhibiting creatine biosynthesis reduces thermogenesis and causes obesity. However, whether creatine import from the circulation affects adipocyte thermogenesis is unknown. Here we show that deletion of the cell-surface creatine transporter (CrT) selectively in fat (AdCrTKO) substantially reduces adipocyte creatine and phosphocreatine levels, and reduces whole-body energy expenditure in mice. AdCrTKO mice are cold intolerant and become more obese than wild-type animals when fed a high-fat diet. Loss of adipocyte creatine transport blunts diet- and β3-adrenergic-induced thermogenesis, whereas creatine supplementation during high-fat feeding increases whole-body energy expenditure in response to β3-adrenergic agonism. In humans, CRT expression in purified subcutaneous adipocytes correlates with lower body mass index and increased insulin sensitivity. Our data indicate that adipocyte creatine abundance depends on creatine sequestration from the circulation. Given that it affects whole-body energy expenditure, enhancing creatine uptake into adipocytes may offer an opportunity to combat obesity and obesity-associated metabolic dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inactivation of creatine transport depletes creatine abundance in adipocytes.
Fig. 2: AdCrTKO mice have impaired energy expenditure.
Fig. 3: AdCrTKO mice become obese on a high-fat diet.
Fig. 4: Increased kininogen expression from BAT and SQ of AdCrTKO mice.
Fig. 5: AdCrTKO mice incur adaptive increases in the cold-inducible high-molecular-weight isoform of Kng1.
Fig. 6: CRT expression in human adipocytes is negatively correlated with obesity and insulin resistance.

Similar content being viewed by others

Data availability

All proteomic data generated or analysed during this study are included in this published article (and its supplementary information files). Additional data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Lengyel, E., Makowski, L., DiGiovanni, J. & Kolonin, M. G. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4, 374–384 (2018).

    Article  CAS  Google Scholar 

  2. Twig, G. et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 374, 2430–2440 (2016).

    Article  Google Scholar 

  3. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467–472 (1988).

    Article  CAS  Google Scholar 

  4. Jung, R. T., Shetty, P. S., James, W. P., Barrand, M. A. & Callingham, B. A. Reduced thermogenesis in obesity. Nature 279, 322–323 (1979).

    Article  CAS  Google Scholar 

  5. Hofmann, W. E., Liu, X., Bearden, C. M., Harper, M. E. & Kozak, L. P. Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J. Biol. Chem. 276, 12460–12465 (2001).

    Article  CAS  Google Scholar 

  6. Liu, X. et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399–407 (2003).

    Article  CAS  Google Scholar 

  7. Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014).

    Article  CAS  Google Scholar 

  8. Muller, S. et al. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci. Rep. 6, 30030 (2016).

    Article  CAS  Google Scholar 

  9. Rowland, L. A., Maurya, S. K., Bal, N. C., Kozak, L. & Periasamy, M. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another. Obesity (Silver Spring) 24, 1430–1433 (2016).

    Article  CAS  Google Scholar 

  10. Ukropec, J., Anunciado, R. P., Ravussin, Y., Hulver, M. W. & Kozak, L. P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J. Biol. Chem. 281, 31894–31908 (2006).

  11. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  Google Scholar 

  12. Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 e814 (2017).

    Article  CAS  Google Scholar 

  13. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  Google Scholar 

  14. Wakatsuki, T. et al. Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats. Jpn J. Physiol. 46, 171–175 (1996).

    Article  CAS  Google Scholar 

  15. Yamashita, H. et al. Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid. Biochim. Biophys. Acta 1230, 69–73 (1995).

    Article  Google Scholar 

  16. Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671 e663 (2017).

    Article  CAS  Google Scholar 

  17. Fitch, C. D., Shields, R. P., Payne, W. F. & Dacus, J. M. Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J. Biol. Chem. 243, 2024–2027 (1968).

    CAS  PubMed  Google Scholar 

  18. Berlet, H. H., Bonsmann, I. & Birringer, H. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim. Biophys. Acta 437, 166–174 (1976).

    Article  CAS  Google Scholar 

  19. Skelton, M. R. et al. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS ONE 6, e16187 (2011).

    Article  CAS  Google Scholar 

  20. Lee, J., Choi, J., Aja, S., Scafidi, S. & Wolfgang, M. J. Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality. Cell Rep. 14, 1308–1316 (2016).

    Article  CAS  Google Scholar 

  21. Kazak, L. et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc. Natl Acad. Sci. USA 114, 7981–7986 (2017).

    Article  CAS  Google Scholar 

  22. Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011).

    Article  CAS  Google Scholar 

  23. Speakman, J. R., Krol, E. & Johnson, M. S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77, 900–915 (2004).

    Article  Google Scholar 

  24. Bloom, J. D. et al. Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent beta-adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent. J. Med. Chem. 35, 3081–3084 (1992).

    Article  CAS  Google Scholar 

  25. Himms-Hagen, J., Hogan, S. & Zaror-Behrens, G. Increased brown adipose tissue thermogenesis in obese (ob/ob) mice fed a palatable diet. Am. J. Physiol. 250, E274–E281 (1986).

    CAS  PubMed  Google Scholar 

  26. Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    Article  CAS  Google Scholar 

  27. Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979).

    Article  CAS  Google Scholar 

  28. Leibel, R. L. & Hirsch, J. Diminished energy requirements in reduced-obese patients. Metabolism 33, 164–170 (1984).

    Article  CAS  Google Scholar 

  29. Eringa, E. C. et al. Regulation of vascular function and insulin sensitivity by adipose tissue: focus on perivascular adipose tissue. Microcirculation 14, 389–402 (2007).

    Article  CAS  Google Scholar 

  30. Singhal, A. et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 106, 1919–1924 (2002).

    Article  CAS  Google Scholar 

  31. Shimizu, I. et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124, 2099–2112 (2014).

    Article  CAS  Google Scholar 

  32. Ernande, L. et al. Relationship of brown adipose tissue perfusion and function: a study through beta2-adrenoreceptor stimulation. J. Appl. Physiol. (1985) 120, 825–832 (2016).

    Article  CAS  Google Scholar 

  33. Hankir, M. K. & Klingenspor, M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 19, e46404 (2018).

    Article  Google Scholar 

  34. Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763.e6 (2018).

    Article  CAS  Google Scholar 

  35. Rosell, M. et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab. 306, E945–E964 (2014).

    Article  CAS  Google Scholar 

  36. Svensson, P. A. et al. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 27, 227–232 (2011).

    Article  CAS  Google Scholar 

  37. Gerngross, C., Schretter, J., Klingenspor, M., Schwaiger, M. & Fromme, T. Active brown fat during (18)F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J. Nucl. Med. 58, 1104–1110 (2017).

    Article  Google Scholar 

  38. Din, M. U. et al. Postprandial oxidative metabolism of human brown fat indicates thermogenesis. Cell Metab. 28, 207–216.e3 (2018).

    Article  Google Scholar 

  39. Fischer, A. W., Cannon, B. & Nedergaard, J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol. Metab. 7, 161–170 (2018).

    Article  CAS  Google Scholar 

  40. Speakman, J. R. & Keijer, J. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9 (2012).

    Article  Google Scholar 

  41. Wada, S. et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 30, 2551–2564 (2016).

    Article  CAS  Google Scholar 

  42. Perna, M. K. et al. Creatine transporter deficiency leads to increased whole body and cellular metabolism. Amino Acids 48, 2057–2065 (2016).

    Article  CAS  Google Scholar 

  43. Streijger, F. et al. Mice lacking brain-type creatine kinase activity show defective thermoregulation. Physiol. Behav. 97, 76–86 (2009).

    Article  CAS  Google Scholar 

  44. Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).

    Article  CAS  Google Scholar 

  45. Katz, A. et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402–2410 (2000).

    Article  CAS  Google Scholar 

  46. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  Google Scholar 

  47. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  Google Scholar 

  48. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  Google Scholar 

  49. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  Google Scholar 

  50. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  Google Scholar 

  51. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  Google Scholar 

  52. Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

  53. Kammers, K., Cole, R. N., Tiengwe, C. & Ruczinski, I. Detecting significant changes in protein abundance. EuPA Open Proteom. 7, 11–19 (2015).

    Article  CAS  Google Scholar 

  54. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (CIHR; grant PJT-159529), Goodman Cancer Research Centre and McGill University New Investigator Program, and DK114528-01 NIH/NIDDK K99 Pathway to Independence award (to L.K.). We acknowledge funding from a Canderel Fellowship (to J.F.R.). We acknowledge technical assistance from the McGill/GCRC Metabolomics core facility. The GCRC Metabolomics Core Facility is funded by the Dr. John R and Clara M. Fraser Memorial Trust, the Terry Fox Foundation, the Québec Breast Cancer Foundation and McGill University. We acknowledge funding from NIH R01HL 85744 and U24DK100469 Mayo Clinic Metabolomics Resource Core (to P.D.), AHA 13POST14540015 and NIH/NIDDK P30 DK057521 (to L.T.), NIH/NIDDK P30 DK057521, NIH/NIDDK R01 DK102173 and R01 ES017690 (to E.D.R.), and NIH DK31405 and JPB Foundation (to B.M.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.K. conceptualized the study, designed research, performed biochemical, cellular and in vivo experiments, analysed data and wrote the paper. J.F.R., B.S., G.Z.L. and F.Y.D. performed in vivo experiments. M.P.J. performed proteomics experiments. M.L., L.C.R. and I.R.W. analysed proteomics data. S.Z. performed and analysed NMR experiments. E.T.C., P.D. and E.D.R. provided resources. L.T. recruited human subjects and isolated adipocytes, and D.T. performed RNA-seq experiments. L.K. and B.M.S. co-wrote the paper, with assistance from co-authors.

Corresponding authors

Correspondence to Lawrence Kazak or Bruce M. Spiegelman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 and Supplementary Table 1

Reporting Summary

Supplementary Data 1

Proteomics inventory from AdCrTKO and CrTlox/y controls at 30 °C (CrTlox/y, n = 5; AdCrTKO, n = 5).

Supplementary Data 2

Proteomics inventory from AdCrTKO and CrTlox/y controls at 22 °C (CrTlox/y, n = 5; AdCrTKO, n = 5).

Supplementary Data 3

Cross-referenced proteomics inventory from AdCrTKO and CrTlox/y controls at 30 °C and 22 °C (CrTlox/y, n = 10; AdCrTKO, n = 10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazak, L., Rahbani, J.F., Samborska, B. et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 1, 360–370 (2019). https://doi.org/10.1038/s42255-019-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0035-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing