Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging the nucleus with high-energy photons

Abstract

Understanding how quarks and gluons behave in the nuclear environment is an important focus of modern nuclear physics. Recent measurements have provided an improved understanding of how quark and gluon densities are altered in heavy nuclei. It has also become possible to make multi-dimensional pictures of the nucleus, exploring how these alterations are distributed within heavy nuclei. The modifications are naturally expected to be largest in the core of a nucleus and smaller near its periphery; this variation can change the effective shape of the nucleus. Experiments have also started to explore the transverse momentum distribution of the partons in the nuclei, and, by using incoherent photoproduction as a probe, measure event-by-event fluctuations in nucleon and nuclei parton densities. This Review explores recent progress in measurements of nuclear structure at high energy, emphasizing these multi-dimensional pictures. We also discuss how a future electron–ion collider with high luminosity and centre-of-mass energy will make exquisitely detailed images of partons in a nucleus.

Key points

  • The partonic (quark and gluon) content of the nucleus is different from what one would get by simply combining protons and neutrons.

  • The density of partons carrying only a small fraction of the nucleon momentum (partons with small Bjorken-x) is very high. The resulting increase in parton–parton interactions modifies the parton momentum distribution and may lead to qualitatively different behaviour.

  • The high-energy photons that are produced in ultra-peripheral collisions of heavy ions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) can be used to study nuclear structure at small Bjorken-x.

  • Coherent vector meson photoproduction can be used to determine the location of interactions within the nucleus, thereby probing the spatial dependence of nuclear modifications to the parton distribution.

  • Incoherent vector meson photoproduction can be used to study event-by-event fluctuations in nuclear parton distributions and thereby determine whether nuclei are smooth or clumpy.

  • Studies of photoproduction and electroproduction at a future electron–ion collider should make it possible to make detailed three-dimensional maps of parton distributions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the nuclear effects seen when using deep inelastic scattering with nuclear targets.
Fig. 2: Diagrams of collisions used to probe parton distributions.
Fig. 3: Coherent photoproduction cross section for the \({\boldsymbol{J}}/{\boldsymbol{\psi }}\) meson in Pb–Pb collisions at 2.76 TeV centre of mass energy.
Fig. 4: Effect of nucleon shape fluctuations on the nuclear structure.
Fig. 5: Determination of the 2D profile of interaction sites.
Fig. 6: Best-fit proton configurations.
Fig. 7: Coincidence probability C for the production of two nearly back-to-back jets.

Similar content being viewed by others

References

  1. Ellis, R. K., Stirling, W. J. & Webber, B. R. QCD and collider physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1–435 (1996).

    Google Scholar 

  2. Aubert, J. J. et al. Measurement of the nucleon structure function F 2 in muon–iron interactions at 120-GeV, 250-GeV and 280-GeV. Phys. Lett. B 105, 322–328 (1981).

    ADS  Google Scholar 

  3. Bodek, A. et al. Electron scattering from nuclear targets and quark distributions in nuclei. Phys. Rev. Lett. 50, 1431–1434 (1983).

    ADS  Google Scholar 

  4. Emel’yanov, V., Khodinov, A., Klein, S. R. & Vogt, R. The effect of shadowing on initial conditions, transverse energy and hard probes in ultrarelativistic heavy ion collisions. Phys. Rev. C 61, 044904 (2000).

    ADS  Google Scholar 

  5. Thomas, A. W. Reflections on the origin of the EMC effect. Int. J. Mod. Phys. E 27, 1840001 (2018).

    ADS  Google Scholar 

  6. Hen, O., Miller, G. A., Piasetzky, E. & Weinstein, L. B. Nucleon–nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89, 045002 (2017).

    ADS  Google Scholar 

  7. Ball, R. D. et al. Parton distributions from high-precision collider data. Eur. Phys. J. C 77, 663 (2017).

    ADS  Google Scholar 

  8. Hou, T.-J. et al. CTEQ-TEA parton distribution functions and HERA Run I and II combined data. Phys. Rev. D 95, 034003 (2017).

    ADS  Google Scholar 

  9. Kovarik, K. et al. nCTEQ15 — global analysis of nuclear parton distributions with uncertainties in the CTEQ framework. Phys. Rev. D 93, 085037 (2016).

    ADS  Google Scholar 

  10. Eskola, K. J., Paakkinen, P., Paukkunen, H. & Salgado, C. A. EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. 77, 163 (2017).

    ADS  Google Scholar 

  11. Abramowicz, H. et al. Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75, 580 (2015).

    ADS  Google Scholar 

  12. Adams, M. R. et al. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x Bj. Z. Phys. C 67, 403–410 (1995).

    ADS  Google Scholar 

  13. Airapetian, A. et al. Hadronization in semi-inclusive deep-inelastic scattering on nuclei. Nucl. Phys. B 780, 1–27 (2007).

    ADS  Google Scholar 

  14. Helenius, I., Eskola, K. J., Honkanen, H. & Salgado, C. A. Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes. J. High. Energy Phys. 1207, 073 (2012).

    ADS  Google Scholar 

  15. ATLAS Collaboration. Photo-nuclear dijet production in ultra-peripheral Pb+Pb collisions. ATLAS Conference Note ATLAS-CONF-2017-011 (2017).

  16. Budnev, V. M., Ginzburg, I. F., Meledin, G. V. & Serbo, V. G. The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. 15, 181–281 (1975).

    ADS  Google Scholar 

  17. Accardi, A. et al. Electron ion collider: the next QCD frontier. Eur. Phys. J. A52, 268 (2016).

    ADS  Google Scholar 

  18. Chen, X. A plan for electron ion collider in China. Proc. Sci. DIS2018, 170 (2018).

  19. Abelleira Fernandez, J. L. et al. A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector. J. Phys. G 39, 075001 (2012).

    ADS  Google Scholar 

  20. Bertulani, C. A., Klein, S. R. & Nystrand, J. Physics of ultra-peripheral nuclear collisions. Annu. Rev. Nucl. Part. Sci. 55, 271–310 (2005).

    ADS  Google Scholar 

  21. Baltz, A. J. The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458, 1–171 (2008).

    ADS  Google Scholar 

  22. Abelev, B. I. et al. Observation of two-source interference in the photoproduction reaction \({\rm{AuAu}}\to {\rm{AuAu}}{\rho }^{0}\). Phys. Rev. Lett. 102, 112301 (2009).

    Google Scholar 

  23. Klein, S. R. & Nystrand, J. Interference in exclusive vector meson production in heavy ion collisions. Phys. Rev. Lett. 84, 2330–2333 (2000).

    ADS  Google Scholar 

  24. Acharya, S. et al. Energy dependence of exclusive \(J/\psi \) photoproduction off protons in ultra-peripheral p–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Preprint at ArXiv https://arxiv.org/abs/1809.03235 (2018).

  25. Aaij, R. et al. Central exclusive production of \(J/\psi \) and \(\psi (2S)\) mesons in pp collisions at \(\sqrt{s}=13\) TeV. J. High Energy Phys. 10, 167 (2018).

    Google Scholar 

  26. Klein, S. R. & Nystrand, J. Photoproduction of quarkonium in proton-proton and nucleus-nucleus collisions. Phys. Rev. Lett. 92, 142003 (2004).

    ADS  Google Scholar 

  27. Adler, C. et al. Coherent ρ 0 production in ultraperipheral heavy ion collisions. Phys. Rev. Lett. 89, 272302 (2002).

    Google Scholar 

  28. Nystrand, J. & Klein, S. Two photon physics in nucleus–nucleus collisions at RHIC. In Photon Interactions and the Photon Structure. Proc. Lund Workshop, 263–277 Preprint at https://arxiv.org/abs/nucl-ex/9811007 (1998).

  29. Bauer, T. H., Spital, R. D., Yennie, D. R. & Pipkin, F. M. The hadronic properties of the photon in high-energy interactions. Rev. Mod. Phys. 50, 261–436 (1978).

    ADS  Google Scholar 

  30. Good, M. L. & Walker, W. D. Diffraction disssociation of beam particles. Phys. Rev. 120, 1857–1860 (1960).

    ADS  Google Scholar 

  31. Caldwell, A. & Kowalski, H. Investigating the gluonic structure of nuclei via \(J/\psi \) scattering. Phys. Rev. C 81, 025203 (2010).

    Google Scholar 

  32. Miettinen, H. I. & Pumplin, J. Diffraction scattering and the parton structure of hadrons. Phys. Rev. D 18, 1696–1708 (1978).

    ADS  Google Scholar 

  33. Lansberg, J. P. Massacrier, L., Szymanowski, L. & Wagner, J. Single-transverse-spin asymmetries in exclusive photo-production of \(J/\psi \) in ultra-peripheral collisions in the fixed-target mode at the LHC and in the collider mode at RHIC. Phys. Lett. B793, 33–40 (2019).

  34. Rezaeian, A. H., Siddikov, M., Van de Klundert, M. & Venugopalan, R. Analysis of combined HERA data in the impact-parameter dependent saturation model. Phys. Rev. D 87, 034002 (2013).

    ADS  Google Scholar 

  35. Kowalski, H., Motyka, L. & Watt, G. Exclusive diffractive processes at HERA within the dipole picture. Phys. Rev. D 74, 074016 (2006).

    ADS  Google Scholar 

  36. Ryskin, M. G. Diffractive \(J/\psi \) electroproduction in LLA QCD. Z. Phys. C 57, 89–92 (1993).

    ADS  Google Scholar 

  37. Abbas, E. et al. Charmonium and e + e pair photoproduction at mid-rapidity in ultra-peripheral Pb–Pb collisions at \(\sqrt{{s}_{{\rm{N}}N}}\) = 2.76 TeV. Eur. Phys. J. C 73, 2617 (2013).

    Google Scholar 

  38. Khachatryan, V. et al. Coherent \(J/\psi \) photoproduction in ultra-peripheral PbPb collisions at \(\sqrt{{s}_{NN}}\) = 2.76 TeV with the CMS experiment. Phys. Lett. B 772, 489–511 (2017).

    Google Scholar 

  39. Guzey, V. & Zhalov, M. Exclusive \(J/\psi \) production in ultraperipheral collisions at the LHC: constraints on the gluon distributions in the proton and nuclei. J. High. Energy Phys. 10, 207 (2013).

    Google Scholar 

  40. Frankfurt, L., Guzey, V. & Strikman, M. Leading twist nuclear shadowing phenomena in hard processes with nuclei. Phys. Rep. 512, 255–393 (2012).

    ADS  Google Scholar 

  41. Adler, S. S. et al. Centrality dependence of π 0 and η production at large transverse momentum in √s NN = 200 GeV d+Au collisions. Phys. Rev. Lett. 98, 172302 (2007).

    ADS  Google Scholar 

  42. Klein, S. R. Ultra-peripheral collisions and hadronic structure. Nucl. Phys. A967, 249–256 (2017).

    ADS  Google Scholar 

  43. Jones, S. P., Martin, A. D., Ryskin, M. G. & Teubner, T. Probes of the small x gluon via exclusive \(J/\psi \) and Y production at HERA and the LHC. J. High. Energy Phys. 11, 085 (2013).

    Google Scholar 

  44. Boussarie, R., Grabovsky, A. V., Ivanov, D. Y., Szymanowski, L. & Wallon, S. Next-to-leading order computation of exclusive diffractive light vector meson production in a saturation framework. Phys. Rev. Lett. 119, 072002 (2017).

    ADS  Google Scholar 

  45. Jones, S. P., Martin, A. D., Ryskin, M. G. & Teubner, T. The exclusive \(J/\psi \) process at the LHC tamed to probe the low x gluon. Eur. Phys. J. C 76, 633 (2016).

    Google Scholar 

  46. Amaldi, U. & Schubert, K. R. Impact parameter interpretation of proton proton scattering from a critical review of all ISR Data. Nucl. Phys. B166, 301–320 (1980).

    ADS  Google Scholar 

  47. Diehl, M. Paper presented at INT Workshop “Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography” (2010). Available at http://www.int.washington.edu/talks/WorkShops/int_10_3/People/Diehl_M/Diehl1.pdf

  48. Toll, T. & Ullrich, T. Exclusive diffractive processes in electron–ion collisions. Phys. Rev. C87, 024913 (2013).

    ADS  Google Scholar 

  49. Abelev, B. I. et al. ρ 0 photoproduction in ultraperipheral relativistic heavy ion collisions at \(\sqrt{{s}_{NN}}\) = 200 GeV. Phys. Rev. C77, 034910 (2008).

    Google Scholar 

  50. Klein, S. R. Dipion photoproduction and the Q 2 evolution of the shape of the gold nucleus. Proc. Sci. DIS2018, 047 (2018).

  51. Alexa, C. et al. Elastic and proton-dissociative photoproduction of J/ψ mesons at HERA. Eur. Phys. J. C73, 2466 (2013).

    ADS  Google Scholar 

  52. Klein, S. R. Heavy ion beam loss mechanisms at an electron-ion collider. Phys. Rev. ST Accel. Beams 17, 121003 (2014).

    ADS  Google Scholar 

  53. Mäntysaari, H. & Schenke, B. Evidence of strong proton shape fluctuations from incoherent diffraction. Phys. Rev. Lett. 117, 052301 (2016).

    ADS  Google Scholar 

  54. Mäntysaari, H. & Schenke, B. Revealing proton shape fluctuations with incoherent diffraction at high energy. Phys. Rev. D94, 034042 (2016).

    ADS  Google Scholar 

  55. Mäntysaari, H. & Schenke, B. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions. Phys. Lett. B772, 832–838 (2017).

    ADS  Google Scholar 

  56. Cepila, J., Contreras, J. G. & Takaki, J. D. T. Energy dependence of dissociative \(J/\psi \) photoproduction as a signature of gluon saturation at the LHC. Phys. Lett. B766, 186–191 (2017).

    Google Scholar 

  57. Mäntysaari, H. & Schenke, B. Confronting impact parameter dependent JIMWLK evolution with HERA data. Phys. Rev. D98, 034013 (2018).

    ADS  Google Scholar 

  58. Traini, M. & Blaizot, J.-P. Fluctuation effects in diffractive \(J/\psi \) photoproduction off protons: a NNLO quark model correlated approach. 2018. Preprint at ArXiv https://arxiv.org/abs/1804.06110.

  59. Gelis, F., Iancu, E., Jalilian-Marian, J. & Venugopalan, R. The color glass condensate. Ann. Rev. Nucl. Part. Sci. 60, 463–489 (2010)

  60. Albacete, J. L. & Marquet, C. Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate. Phys. Rev. Lett. 105, 162301 (2010).

    Google Scholar 

  61. Lappi, T. & Mäntysaari, H. Forward dihadron correlations in deuteron-gold collisions with the Gaussian approximation of JIMWLK. Nucl. Phys. A908, 51–72 (2013).

    ADS  Google Scholar 

  62. Adare, A. et al. Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at \(\sqrt{{s}_{NN}}=200\) GeV. Phys. Rev. Lett. 107, 172301 (2011).

    Google Scholar 

  63. Frankfurt, L., Strikman, M. & Zhalov, M. Signals for black body limit in coherent ultraperipheral heavy ion collisions. Phys. Lett. B537, 51–61 (2002).

    ADS  Google Scholar 

  64. Cepila, J., Contreras, J. G., Krelina, M. & Tapia Takaki, J. D. Mass dependence of vector meson photoproduction off protons and nuclei within the energy-dependent hot-spot model. Nucl. Phys. B934, 330–340 (2018).

    ADS  MATH  Google Scholar 

  65. Abelev, B. B. et al. Exclusive \(J/\psi \) photoproduction off protons in ultra-peripheral p-Pb collisions at \(\sqrt{{s}_{NN}}=5.02\) TeV. Phys. Rev. Lett. 113, 232504 (2014).

    Google Scholar 

  66. Cepila, J., Contreras, J. G. & Krelina, M. Coherent and incoherent \(J/\psi \) photonuclear production in an energy-dependent hot-spot model. Phys. Rev. C97, 024901 (2018).

    Google Scholar 

  67. Guzey, V. & Klasen, M. Inclusive dijet photoproduction in ultraperipheral heavy-ion collisions at the LHC in next-to-leading order QCD. Preprint at ArXiv https://arxiv.org/abs/1811.10236 (2018).

  68. Dumitru, A., Skokov, V. & Ullrich, T. Measuring the Weizsaecker-Williams distribution of linearly polarized gluons at an EIC through dijet azimuthal asymmetries. Phys. Rev. C99, 015204 (2019).

    ADS  Google Scholar 

  69. Acosta, D. et al. Diffractive dijet production at \(\sqrt{s}=630\) GeV and 1800 GeV at the Fermilab Tevatron. Phys. Rev. Lett. 88, 151802 (2002).

    Google Scholar 

  70. Hatta, Y., Xiao, B.-W. & Yuan, F. Probing the small-x gluon tomography in correlated hard diffractive dijet production in deep inelastic scattering. Phys. Rev. Lett. 116, 202301 (2016).

    ADS  Google Scholar 

  71. Altinoluk, T., Armesto, N., Beuf, G. & Rezaeian, A. H. Diffractive dijet production in deep inelastic scattering and photon-hadron collisions in the color glass condensate. Phys. Lett. B758, 373–383 (2016).

    ADS  MATH  Google Scholar 

  72. Mäntysaari H., Mueller, N. & Schenke, B. Diffractive dijet production and wigner distributions from the color glass condensate. Preprint at ArXiv https://arxiv.org/abs/1902.05087 (2019).

  73. Paatelainen, R., Eskola, K. J., Holopainen, H. & Tuominen, K. Multiplicities and p T spectra in ultrarelativistic heavy ion collisions from a next-to-leading order improved perturbative QCD + saturation + hydrodynamics model. Phys. Rev. C87, 044904 (2013).

    ADS  Google Scholar 

  74. Dusling, K., Li, W. & Schenke, B. Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions. Int. J. Mod. Phys. E25, 1630002 (2016).

    ADS  Google Scholar 

  75. Aad, G. et al. Measurement of long-range pseudorapidity correlations and azimuthal harmonics in \(\sqrt{{s}_{NN}}=5.02\) TeV proton-lead collisions with the ATLAS detector. Phys. Rev. C90, 044906 (2014).

    Google Scholar 

  76. Abelev, B. B. et al. Long-range angular correlations of π, K and p in p-Pb collisions at \(\sqrt{{s}_{{\rm{N}}N}}\) = 5.02 TeV. Phys. Lett. B726, 164–177 (2013).

    Google Scholar 

  77. Chatrchyan, S. et al. Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B724, 213–240 (2013).

    ADS  Google Scholar 

  78. Mäntysaari, H., Schenke, B., Shen, C. & Tribedy, P. Imprints of fluctuating proton shapes on flow in proton–lead collisions at the LHC. Phys. Lett. B772, 681–686 (2017).

    ADS  Google Scholar 

  79. Mace, M., Skokov, V. V., Tribedy, P. & Venugopalan, R. Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the color glass condensate. Phys. Rev. Lett. 121, 052301 (2018).

    ADS  Google Scholar 

  80. Gallmeister, K., Niemi, H., Greiner, C. & Rischke, D. H. Exploring the applicability of dissipative fluid dynamics to small systems by comparison to the Boltzmann equation. Phys. Rev. C98, 024912 (2018).

    ADS  Google Scholar 

  81. Niemi, H. & Denicol, G. S. How large is the Knudsen number reached in fluid dynamical simulations of ultrarelativistic heavy ion collisions? Preprint at ArXiv https://arxiv.org/abs/1404.7327 (2014).

  82. Bird, D. J. et al. Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys. J. 441, 144–150 (1995).

    ADS  Google Scholar 

  83. Aab, A. et al. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory. Phys. Rev. Lett. 117, 192001 (2016).

    ADS  Google Scholar 

  84. Abbasi, R. U. et al. Study of muons from ultrahigh energy cosmic ray air showers measured with the telescope array experiment. Phys. Rev. D98, 022002 (2018).

    ADS  Google Scholar 

  85. Tricomi, A. Forward physics with the LHCf Experiment. Proc. Sci. https://doi.org/10.22323/1.321.0207 (2018).

  86. Pajares, C., Sousa, D. & Vazquez, R. A. Consequences of parton’s saturation and string’s percolation on the developments of cosmic ray showers. Phys. Rev. Lett. 86, 1674–1677 (2001).

    ADS  Google Scholar 

  87. Pierog, T. & Werner., K. Muon production in extended air shower simulations. Phys. Rev. Lett. 101, 171101 (2008).

    ADS  Google Scholar 

  88. Abbasi, R. et al. Lateral distribution of muons in icecube cosmic ray events. Phys. Rev. D87, 012005 (2013).

    ADS  Google Scholar 

  89. Citron, Z. et al. Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams. Preprint at ArXiv https://arxiv.org/abs/1812.06772 (2019).

  90. Gonçalves, V. P. et al. Inclusive heavy quark photoproduction in pp, pPb and PbPb collisions at Run 2 LHC energies. Nucl. Phys. A976, 33–45 (2018).

    ADS  Google Scholar 

  91. Klein, S. R., Nystrand, J. & Vogt, R. Heavy quark photoproduction in ultraperipheral heavy ion collisions. Phys. Rev. C66, 044906 (2002).

    ADS  Google Scholar 

  92. Strikman, M., Vogt, R. & White, S. N. Probing small x parton densities in ultraperipheral AA and pA collisions at the LHC. Phys. Rev. Lett. 96, 082001 (2006).

    ADS  Google Scholar 

  93. Dembinski, H. P. et al. Report on tests and measurements of hadronic interaction properties with air showers. Preprint at arXiv https://arxiv.org/abs/1902.08124 (2019).

  94. Lomnitz, M. & Klein, S. Exclusive vector meson production at an electron-ion collider. Phys. Rev. C99, 015203 (2019).

    ADS  Google Scholar 

  95. Adamczyk, L. et al. Coherent diffractive photoproduction of ρ 0 mesons on gold nuclei at 200 GeV/nucleon-pair at the relativistic heavy ion collider. Phys. Rev. C96, 054904 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

H.M. is supported by the Academy of Finland, project 314764, and by the European Research Council, grant ERC-2015-CoG-681707. S.K.’s work was funded by the US Department of Energy under contract number DE-AC02-05-CH11231.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Spencer R. Klein or Heikki Mäntysaari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Virtuality

A measure of how far the squared four-momentum of a particle is from its mass. For photons, this is a measure of their mass. Owing to the uncertainty principle, virtual particles must be short-lived; the larger the virtuality, the shorter the lifetime.

Impact parameter

The perpendicular distance between the path of a particle and the centre of a target off which it scatters.

Transverse momentum

The component of a particle’s momentum that is transverse to the beam line, which arises from interactions.

Inclusive

Refers to processes in which some interaction products may not be measured.

Dijets

Events containing two jets, produced in collisions containing two energetic partons in the final state.

Jets

Showers of particles (with a typical opening angle of 45°) produced when a high-momentum parton emerges from a hadronic collision.

Mesons

Bound quark–antiquark pairs.

Exclusive

Refers to processes in which all decay products are measured.

Rapidity

A measure of the momentum of a particle along the beam line; ranges from 0 (no momentum along beam line) to infinity (particle travelling at speed c along the beam line).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, S.R., Mäntysaari, H. Imaging the nucleus with high-energy photons. Nat Rev Phys 1, 662–674 (2019). https://doi.org/10.1038/s42254-019-0107-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0107-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing