Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Reviews
  • Published:

Angle-resolved photoemission spectroscopy and its application to topological materials

This article has been updated

Abstract

Angle-resolved photoemission spectroscopy (ARPES) — an experimental technique based on the photoelectric effect — is arguably the most powerful method for probing the electronic structure of solids. The past decade has witnessed notable progress in ARPES, including the rapid development of soft-X-ray ARPES, time-resolved ARPES, spin-resolved ARPES and spatially resolved ARPES, as well as considerable improvements in energy and momentum resolution. Consequently, ARPES has emerged as an indispensable experimental probe in the study of topological materials, which have characteristic non-trivial bulk and surface electronic structures that can be directly detected by ARPES. Over the past few years, ARPES has had a crucial role in several landmark discoveries in topological materials, including the identification of topological insulators and topological Dirac and Weyl semimetals. In this Technical Review, we assess the latest developments in different ARPES techniques and illustrate the capabilities of these techniques with applications in the study of topological materials.

Key points

  • Topological materials are characterized by non-trivial bulk and surface electronic states, which can be detected and distinguished by angle-resolved photoemission spectroscopy (ARPES).

  • Synchrotron-based vacuum ultraviolet and soft-X-ray light make it possible to distinguish surface and bulk states through photon-energy-dependent ARPES measurements.

  • The integration of spin detectors into ARPES photoelectron spectrometers enables the detection and quantification of spin polarization in band structures.

  • Time-resolved ARPES with femtosecond laser pulses facilitates the study of ultrafast electronic dynamics and states above the chemical potential.

  • Spatially resolved ARPES with sub-micrometre spatial resolution can be used to probe the electronic structure of microscale and nanoscale materials as well as materials with phase separation or multiple domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of ARPES measurements.
Fig. 2: Synchrotron-based VUV ARPES in the study of TaAs surface states.
Fig. 3: Laser-based VUV ARPES measurements of a topological Dirac cone on the (001) surface of FeTe0.55Se0.45.
Fig. 4: Soft-X-ray ARPES studies of the bulk electronic structure of TaAs and MoP.
Fig. 5: Spin-resolved ARPES in the study of the spin texture of electronic states in Bi2Te3.
Fig. 6: Time-resolved ARPES studies of grey As and Bi2Se3.
Fig. 7: Spatially resolved ARPES in the study of the topological surface states of β-Bi4I4.

Similar content being viewed by others

Change history

  • 16 October 2019

    This article has been corrected to add a missing image credit to the caption of Fig. 6. The credit line of Fig. 6 now reads “Panels e and i are adapted with permission from ref.64, AAAS.”

References

  1. Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba–La–Cu–O System. Z. Phys. B 64, 267–271 (1986).

    Google Scholar 

  2. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05−0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Google Scholar 

  3. Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    MathSciNet  MATH  Google Scholar 

  4. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Google Scholar 

  5. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  Google Scholar 

  6. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Google Scholar 

  7. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  Google Scholar 

  8. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473 (2003).

    ADS  Google Scholar 

  9. Hufner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 2003). A classic textbook on photoemission spectroscopy.

  10. Campuzano, J. C., Norman, M. R. & Randeria, M. Photoemission in the High T c Superconductors. The Physics of Superconductors 167–273 (Springer, 2004).

  11. Kirchmann, P. S. et al. A time-of-flight spectrometer for angle-resolved detection of low energy electrons in two dimensions. Appl. Phys. A 91, 211–217 (2008).

    ADS  Google Scholar 

  12. Saitoh, Y. et al. Performance of a very high resolution soft X-ray beamline BL25SU with a twin-helical undulator at SPring-8. Rev. Sci. Instrum. 71, 3254–3259 (2000).

    ADS  Google Scholar 

  13. Borisenko, S. V. ‘One-cubed’ ARPES User Facility at BESSY II. Synchrotron Radiat. News 25, 6–11 (2012).

    Google Scholar 

  14. Reininger, R. et al. The electron spectro-microscopy beamline at National Synchrotron Light Source II: A wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies. Rev. Sci. Instrum. 83, 23102 (2012).

    Google Scholar 

  15. Tamura, L. et al. Advanced light source update. Synchrotron Radiat. News 25, 25–30 (2012).

    Google Scholar 

  16. Strocov, V. N. et al. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications. J. Synchrotron Radiat. 21, 32–44 (2014).

    Google Scholar 

  17. Cerenius, Y., Hennies, F. & Fernandes Tavares, P. Status of the MAX IV Laboratory. Synchrotron Radiat. News 29, 34–38 (2016).

    Google Scholar 

  18. Hoesch, M. et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Rev. Sci. Instrum. 88, 13106 (2017).

    Google Scholar 

  19. Koralek, J. D. et al. Experimental setup for low-energy laser-based angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 78, 53905 (2007).

    Google Scholar 

  20. Mathias, S. et al. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer. Rev. Sci. Instrum. 78, 83105 (2007).

    Google Scholar 

  21. Liu, G. et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum. 79, 23105 (2008).

    Google Scholar 

  22. Kiss, T. et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 79, 23106 (2008).

    Google Scholar 

  23. He, Y. et al. Invited article: high resolution angle resolved photoemission with tabletop 11 eV laser. Rev. Sci. Instrum. 87, 11301 (2016).

    Google Scholar 

  24. Peng, Q.-J. et al. DUV/VUV All-solid-state lasers: twenty years of progress and the future. IEEE J. Sel. Top. Quantum Electron. 24, 1–12 (2018).

    Google Scholar 

  25. Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 62101 (2018).

    MathSciNet  Google Scholar 

  26. Okazaki, K. et al. Octet-line node structure parameter in KFe2As2. Science 337, 1314–1317 (2012).

    ADS  Google Scholar 

  27. Zhang, W. et al. High energy dispersion relations for the high temperature Bi2Sr2CaCu2O8 superconductor from laser-based angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 101, 17002 (2008).

    ADS  Google Scholar 

  28. Bok, J. M. et al. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Sci. Adv. 2, e1501329 (2016).

    ADS  Google Scholar 

  29. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of T c in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

    ADS  Google Scholar 

  30. Strocov, V. N. et al. Three-dimensional electron realm in VSe2 by soft-X-ray photoelectron spectroscopy: origin of charge-density waves. Phys. Rev. Lett. 109, 86401 (2012).

    ADS  Google Scholar 

  31. Lev, L. L. et al. Fermi surface of three-dimensional La1−xSrxMnO3 explored by soft-X-ray ARPES: rhombohedral lattice distortion and its effect on magnetoresistance. Phys. Rev. Lett. 114, 237601 (2015).

    ADS  Google Scholar 

  32. Fadley, C. S. Looking deeper: angle-resolved photoemission with soft and hard X-rays. Synchrotron Radiat. News 25, 26–31 (2012).

    Google Scholar 

  33. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Google Scholar 

  34. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). A pioneering ARPES study reporting the experimental discovery of Weyl fermions in condensed matter systems.

    ADS  Google Scholar 

  35. Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017). The initial report of the observation of unconventional three-component fermions in solids using soft-X-ray ARPES.

    ADS  Google Scholar 

  36. Ma, J.-Z. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14, 349–354 (2018).

    Google Scholar 

  37. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Google Scholar 

  38. Hoesch, M. et al. Spin-polarized Fermi surface mapping. J. Electron Spectrosc. Relat. Phenom. 124, 263–279 (2002).

    Google Scholar 

  39. Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).

    Google Scholar 

  40. Yaji, K. et al. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light. Rev. Sci. Instrum. 87, 53111 (2016).

    Google Scholar 

  41. Okuda, T. Recent trends in spin-resolved photoelectron spectroscopy. J. Phys. Condens. Matter 29, 483001 (2017).

    Google Scholar 

  42. Ji, F. et al. Multichannel exchange-scattering spin polarimetry. Phys. Rev. Lett. 116, 177601 (2016).

    ADS  Google Scholar 

  43. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009). A spin-resolved ARPES study that provides direct experimental evidence that topological insulators possess a spin–momentum locking feature.

    ADS  Google Scholar 

  44. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    ADS  Google Scholar 

  45. Lv, B. Q. et al. Observation of Fermi-arc spin texture in TaAs. Phys. Rev. Lett. 115, 217601 (2015).

    ADS  Google Scholar 

  46. Xu, N., Ding, H. & Shi, M. Spin- and angle-resolved photoemission on the topological Kondo insulator candidate: SmB6. J. Phys. Condens. Matter 28, 363001 (2016).

    Google Scholar 

  47. Plumb, N. C. & RadoviĆ, M. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators. J. Phys. Condens. Matter 29, 433005 (2017).

    ADS  Google Scholar 

  48. Dudin, P. et al. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra. J. Synchrotron Radiat. 17, 445–450 (2010).

    Google Scholar 

  49. Avila, J. & Asensio, M. C. First nanoARPES user facility available at SOLEIL: an innovative and powerful tool for studying advanced materials. Synchrotron Radiat. News 27, 24–30 (2014).

    Google Scholar 

  50. Rotenberg, E. & Bostwick, A. MicroARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains. J. Synchrotron Radiat. 21, 1048–1056 (2014).

    Google Scholar 

  51. Koch, R. J. et al. Nano focusing of soft X-rays by a new capillary mirror optic. Synchrotron Radiat. News 31, 50–52 (2018).

    Google Scholar 

  52. Avila, J. et al. Exploring electronic structure of one-atom thick polycrystalline graphene films: a nano angle resolved photoemission study. Sci. Rep. 3, 2439 (2013).

    Google Scholar 

  53. Singh, S. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat. Phys. 14, 355–359 (2018).

    Google Scholar 

  54. Noguchi, R. et al. A weak topological insulator state in quasi-one-dimensional bismuth iodide. Nature 566, 518–522 (2019).

    ADS  Google Scholar 

  55. Ishida, Y. et al. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system. Rev. Sci. Instrum. 87, 123902 (2016).

    ADS  Google Scholar 

  56. Smallwood, C. L., Kaindl, R. A. & Lanzara, A. Ultrafast angle-resolved photoemission spectroscopy of quantum materials. EPL 115, 27001 (2016).

    ADS  Google Scholar 

  57. Rohde, G. et al. Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution. Rev. Sci. Instrum. 87, 103102 (2016).

    ADS  Google Scholar 

  58. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Google Scholar 

  59. Tao, Z., Keller, M., Mavrikakis, M., Kapteyn, H. & Murnane, M. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Perfetti, L. et al. Time evolution of the electronic structure of 1T-TaS2 through the insulator–metal transition. Phys. Rev. Lett. 97, 67402 (2006).

    ADS  Google Scholar 

  61. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3. Science 321, 1649–1652 (2008).

    ADS  Google Scholar 

  62. Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).

    ADS  Google Scholar 

  63. Smallwood, C. L. et al. Tracking Cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137–1139 (2012).

    ADS  Google Scholar 

  64. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). A time-resolved ARPES study reporting the observation of Floquet–Bloch states on the surface of Bi 2 Se 3.

    ADS  Google Scholar 

  65. Greven, M., Damascelli, A., Avella, A. & Fausti, D. Signatures of enhanced superconducting phase coherence in optimally doped Bi2Sr2Y0.08Ca0.92Cu2O8+δ driven by midinfrared pulse excitations. Phys. Rev. Lett. 122, 67002 (2019).

    ADS  Google Scholar 

  66. Rettig, L. et al. Ultrafast momentum-dependent response of electrons in antiferromagnetic EuFe2As2 driven driven by optical excitation. Phys. Rev. Lett. 108, 97002 (2012).

    ADS  Google Scholar 

  67. Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 562, 396–400 (2018).

    ADS  Google Scholar 

  68. Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2019).

    Google Scholar 

  69. Belopolski, I. et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1–xTe2. Nat. Commun. 7, 13643 (2016).

    ADS  Google Scholar 

  70. Zhang, P. et al. Topologically entangled Rashba–split Shockley states on the surface of grey arsenic. Phys. Rev. Lett. 118, 46802 (2017).

    ADS  Google Scholar 

  71. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    ADS  Google Scholar 

  72. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008). Study reporting the experimental realization of a 3D topological insulator, Bi 0.9 Sb 0.1.

    ADS  Google Scholar 

  73. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    Google Scholar 

  74. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009). Study reporting the experimental realization of an excellent 3D topological insulator, Bi 2 Se 3 , with a large bulk bandgap and a single surface Dirac cone.

    Google Scholar 

  75. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    ADS  Google Scholar 

  76. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  77. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    ADS  Google Scholar 

  78. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Google Scholar 

  79. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    ADS  Google Scholar 

  80. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    Google Scholar 

  81. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass fermions. Nature 532, 189–194 (2016).

    ADS  Google Scholar 

  82. Ma, J. et al. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. 3, e1602415 (2017).

    ADS  Google Scholar 

  83. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Google Scholar 

  84. Wang, Z. et al. Dirac semimetal and topological phase transitions in A 3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    ADS  Google Scholar 

  85. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    ADS  Google Scholar 

  86. Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

    ADS  Google Scholar 

  87. Liu, Z. K. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 343, 864–867 (2014). Experimental study reporting the discovery of 3D massless Dirac fermions in a topological Dirac semimetal.

    ADS  Google Scholar 

  88. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  89. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    ADS  Google Scholar 

  90. Huang, S. M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    ADS  Google Scholar 

  91. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 31013 (2015). A pioneering experimental ARPES study that reports the discovery of Weyl fermions in condensed matter systems.

    Google Scholar 

  92. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Google Scholar 

  93. Huang, L. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    ADS  Google Scholar 

  94. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Google Scholar 

  95. Weng, H., Fang, C., Fang, Z., Bernevig, A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 11029 (2015).

    Google Scholar 

  96. Richard, P., Sato, T., Nakayama, K., Takahashi, T. & Ding, H. Fe-based superconductors: an angle-resolved photoemission spectroscopy perspective. Rep. Prog. Phys. 74, 124512 (2011).

    ADS  Google Scholar 

  97. Richard, P., Qian, T. & Ding, H. ARPES measurements of the superconducting gap of Fe-based superconductors and their implications to the pairing mechanism. J. Phys. Condens. Matter 27, 293203 (2015).

    Google Scholar 

  98. Lu, D. et al. Angle-resolved photoemission studies of quantum materials. Annu. Rev. Condens. Matter Phys. 3, 129–167 (2012).

    Google Scholar 

  99. Ye, Z.-R., Zhang, Y., Xie, B.-P. & Feng, D.-L. Angle-resolved photoemission spectroscopy study on iron-based superconductors. Chin. Phys. B 22, 87407 (2013).

    Google Scholar 

  100. Yang, H. et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3, 341–353 (2018).

    ADS  Google Scholar 

  101. Hertz, H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann. Phys. 17, 983–1000 (1887).

    Google Scholar 

  102. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

    MATH  Google Scholar 

  103. Ossiander, M. et al. Absolute timing of the photoelectric effect. Nature 561, 374–377 (2018).

    ADS  Google Scholar 

  104. Xu, Y.-M. et al. Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2. Nat. Phys. 7, 198–202 (2011).

    Google Scholar 

  105. Zhang, Y. et al. Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2. Nat. Phys. 8, 371–375 (2012).

    Google Scholar 

  106. Zhang, Y. et al. Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs. Phys. Rev. B 85, 85121 (2012).

    ADS  Google Scholar 

  107. Wang, X.-P. et al. Orbital characters determined from Fermi surface intensity patterns using angle-resolved photoemission spectroscopy. Phys. Rev. B 85, 214518 (2012).

    ADS  Google Scholar 

  108. Vilmercati, P. et al. Evidence for three-dimensional Fermi-surface topology of the layered electron-doped iron superconductor Ba(Fe1−xCox)2As2. Phys. Rev. B 79, 220503 (2009).

    ADS  Google Scholar 

  109. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    ADS  Google Scholar 

  110. Seah, M. & Dench, W. Quantitative electron spectroscopy of surfaces. Surf. Interface Anal. 2, 2–11 (1979).

    Google Scholar 

  111. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    ADS  Google Scholar 

  112. Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 12, 634–640 (2013).

    ADS  Google Scholar 

  113. Shi, X. et al. Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer. Nat. Commun. 8, 14988 (2017).

    ADS  Google Scholar 

  114. Wu, Y. et al. Electronic structure of the topological superconductor candidate Au2Pb. Phys. Rev. B 98, 161107 (2018).

    ADS  Google Scholar 

  115. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    ADS  Google Scholar 

  116. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    ADS  Google Scholar 

  117. Souma, S., Sato, T., Takahashi, T. & Baltzer, P. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy. Rev. Sci. Instrum. 78, 123104 (2007).

    ADS  Google Scholar 

  118. Annemie, Bogaerts, Neyts, E., Gijbels, R., Mullen, J. & Van der. Gas discharge plasmas and their applications. Spectrochim. Acta B 57, 609–658 (2002).

    ADS  Google Scholar 

  119. Thompson, A. et al. X-ray Data Booklet. http://cxro.lbl.gov//PDF/X-Ray-Data-Booklet.pdf (LBNL Center for X-ray Optics, 2009).

  120. Zhou, X. J. et al. Space charge effect and mirror charge effect in photoemission spectroscopy. J. Electron Spectros. Relat. Phenom. 142, 27–38 (2005).

    Google Scholar 

  121. Passlack, S. et al. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. 100, 24912 (2006).

    Google Scholar 

  122. Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 35402 (2009).

    ADS  Google Scholar 

  123. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    ADS  Google Scholar 

  124. Weyl, H. Electron and gravitation. Z. Phys. 56, 330–352 (1929).

    ADS  MATH  Google Scholar 

  125. Dakovski, G. L., Li, Y., Durakiewicz, T. & Rodriguez, G. Tunable ultrafast extreme ultraviolet source for time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 81, 73108 (2010).

    Google Scholar 

  126. Berntsen, M. H., Götberg, O. & Tjernberg, O. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 95113 (2011).

    Google Scholar 

  127. Frietsch, B. et al. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy. Rev. Sci. Instrum. 84, 75106 (2013).

    Google Scholar 

  128. Winterfeldt, C., Spielmann, C. & Gerber, G. Colloquium: Optimal control of high-harmonic generation. Rev. Mod. Phys. 80, 117–140 (2008).

    ADS  Google Scholar 

  129. Koch, T. L. & Bowers, J. E. Nature of wavelength chirping in directly modulated semiconductor lasers. Electron. Lett. 20, 1038–1040 (1984).

    Google Scholar 

  130. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018). Study in which high-resolution laser-ARPES measurements provide direct evidence for the existence of topological superconductivity on the (001) surface of an iron-based superconductor.

    ADS  Google Scholar 

  131. Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 105, 14262–14264 (2008).

    ADS  Google Scholar 

  132. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    ADS  Google Scholar 

  133. Wu, X., Qin, S., Liang, Y., Fan, H. & Hu, J. Topological characters in Fe(Te1–xSex) thin films. Phys. Rev. B 93, 115129 (2016).

    ADS  Google Scholar 

  134. Xu, G., Lian, B., Tang, P., Qi, X. & Zhang, S. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 47001 (2016).

    ADS  Google Scholar 

  135. Chen, F. et al. Electronic structure of Fe1.04(Te0.66Se0.34). Phys. Rev. B 81, 14526 (2010).

    ADS  Google Scholar 

  136. Miao, H. et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45. Phys. Rev. B 85, 94506 (2012).

    ADS  Google Scholar 

  137. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 96407 (2008).

    ADS  Google Scholar 

  138. Wang, D. et al. Evidence for majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    ADS  Google Scholar 

  139. Solterbeck, C. & Schattke, W. Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface. Phys. Rev. Lett. 79, 4681 (1997).

    ADS  Google Scholar 

  140. Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Data Nucl. Data Tables 32, 1–155 (1985).

    ADS  Google Scholar 

  141. Heikkilä, T. T. & Volovik, G. E. Nexus and Dirac lines in topological materials. New J. Phys. 17, 93019 (2015).

    Google Scholar 

  142. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    ADS  Google Scholar 

  143. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    MathSciNet  MATH  Google Scholar 

  144. Weng, H., Fang, C., Fang, Z. & Dai, X. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys. Rev. B 94, 165201 (2016).

    ADS  Google Scholar 

  145. Weng, H., Fang, C., Fang, Z. & Dai, X. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 93, 241202 (2016).

    ADS  Google Scholar 

  146. Zhu, Z., Winkler, G. W., Wu, Q., Li, J. & Soluyanov, A. A. Triple point topological metals. Phys. Rev. X 6, 31003 (2016).

    Google Scholar 

  147. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    ADS  Google Scholar 

  148. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    ADS  Google Scholar 

  149. Zhang, T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018).

    ADS  Google Scholar 

  150. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    ADS  Google Scholar 

  151. Kirschner, J. & Feder, R. Spin polarization in double diffraction of low-energy electrons from W(001): experiment and theory. Phys. Rev. Lett. 42, 1008–1011 (1979).

    Google Scholar 

  152. Unguris, J., Pierce, D. T. & Celotta, R. J. Low‐energy diffuse scattering electron‐spin polarization analyzer. Rev. Sci. Instrum. 57, 1314–1323 (1986).

    ADS  Google Scholar 

  153. Tillmann, D., Thiel, R. & Kisker, E. Very-low-energy spin-polarized electron diffraction from Fe(001). Z. Phys. B 77, 1–2 (1989).

    ADS  Google Scholar 

  154. Winkelmann, A., Hartung, D., Engelhard, H., Chiang, C.-T. & Kirschner, J. High efficiency electron spin polarization analyzer based on exchange scattering at Fe/W(001). Rev. Sci. Instrum. 79, 83303 (2008).

    Google Scholar 

  155. Jozwiak, C. et al. A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 81, 53904 (2010).

    Google Scholar 

  156. Souma, S., Takayama, A., Sugawara, K., Sato, T. & Takahashi, T. Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector. Rev. Sci. Instrum. 81, 95101 (2010).

    Google Scholar 

  157. Berntsen, M. H. et al. A spin- and angle-resolving photoelectron spectrometer. Rev. Sci. Instrum. 81, 35104 (2010).

    Google Scholar 

  158. Okuda, T. et al. Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. Rev. Sci. Instrum. 82, 103302 (2011).

    ADS  Google Scholar 

  159. Kolbe, M. et al. Highly efficient multichannel spin-polarization detection. Phys. Rev. Lett. 107, 207601 (2011).

    ADS  Google Scholar 

  160. Strocov, V. N., Petrov, V. N. & Dil, J. H. Concept of a multichannel spin-resolving electron analyzer based on Mott scattering. J. Synchrotron Radiat. 22, 708–716 (2015).

    Google Scholar 

  161. Jozwiak, C. et al. Widespread spin polarization effects in photoemission from topological insulators. Phys. Rev. B 84, 165113 (2011).

    ADS  Google Scholar 

  162. Heinzmann, U. & Dil, J. H. Spin–orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets. J. Phys. Condens. Matter 24, 173001 (2012).

    ADS  Google Scholar 

  163. Osterwalder, J. Can spin-polarized photoemission measure spin properties in condensed matter? J. Phys. Condens. Matter 24, 171001 (2012).

    ADS  Google Scholar 

  164. Westphal, C., Bansmann, J., Getzlaff, M. & Schönhense, G. Circular dichroism in the angular distribution of photoelectrons from oriented CO molecules. Phys. Rev. Lett. 63, 151–154 (1989).

    ADS  Google Scholar 

  165. Schneider, C. M. & Kirschner, J. Spin- and angle-resolved photoelectron spectroscopy from solid surfaces with circularly polarized light. Crit. Rev. Solid State Mater. Sci. 20, 179–283 (1995).

    ADS  Google Scholar 

  166. Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

    ADS  Google Scholar 

  167. Weinelt, M. Time-resolved two-photon photoemission from metal surfaces. J. Phys. Condens. Matter 14, R1099–R1141 (2002).

    ADS  Google Scholar 

  168. Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).

    ADS  Google Scholar 

  169. Ge, N.-H., Wong, C. M. & Harris, C. B. Femtosecond studies of electron dynamics at interfaces. Acc. Chem. Res. 33, 111–118 (2000).

    Google Scholar 

  170. Hellmann, S. et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 3, 1069 (2012).

    ADS  Google Scholar 

  171. Haight, R. Electron dynamics at surfaces. Surf. Sci. Rep. 21, 275–325 (1995).

    ADS  Google Scholar 

  172. Hertel, T., Knoesel, E., Wolf, M. & Ertl, G. Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation. Phys. Rev. Lett. 76, 535–538 (1996).

    ADS  Google Scholar 

  173. Hofer, U. Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces. Science 277, 1480–1482 (1997).

    Google Scholar 

  174. Kirchmann, P. S., Loukakos, P. A., Bovensiepen, U. & Wolf, M. Ultrafast electron dynamics studied with time-resolved two-photon photoemission: intra- and interband scattering in C6F6/Cu(111). New J. Phys. 7, 113–113 (2005).

    ADS  Google Scholar 

  175. Sobota, J. A. et al. Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3. Phys. Rev. Lett. 111, 136802 (2013).

    ADS  Google Scholar 

  176. Carpene, E. et al. A versatile apparatus for time-resolved photoemission spectroscopy via femtosecond pump-probe experiments. Rev. Sci. Instrum. 80, 55101 (2009).

    Google Scholar 

  177. Rossnagel, K. Shooting electronic structure movies with time-resolved photoemission. Synchrotron Radiat. News 25, 12–18 (2012).

    Google Scholar 

  178. Smallwood, C. L., Jozwiak, C. & Lanzara, A. An ultrafast angle-resolved photoemission apparatus for measuring complex materials. Rev. Sci. Instrum. 83, 123904 (2012).

    ADS  Google Scholar 

  179. Jiang, R. et al. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy. Rev. Sci. Instrum. 85, 33902 (2014).

    Google Scholar 

  180. Ishida, Y. et al. Time-resolved photoemission apparatus achieving sub-20-meV energy resolution and high stability. Rev. Sci. Instrum. 85, 123904 (2014).

    ADS  Google Scholar 

  181. Galitskii, V. M., Goreslavskii, S. P. & Elesin, V. F. Electric and magnetic properties of a semiconductor in the field of a strong electromagnetic wave. Sov. Phys. JETP 30, 117–122 (1970).

    ADS  Google Scholar 

  182. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Google Scholar 

  183. Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013).

    ADS  Google Scholar 

  184. Koralek, J. D. et al. Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-like spectral peaks in Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 96, 17005 (2006).

    ADS  Google Scholar 

  185. Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 99, 197001 (2007).

    ADS  Google Scholar 

  186. Cortés, R. et al. Momentum-resolved ultrafast electron dynamics in superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 107, 97002 (2011).

    ADS  Google Scholar 

  187. Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump–probe angle-resolved photoemission. Nat. Phys. 7, 805–809 (2011).

    Google Scholar 

  188. Rameau, J. D. et al. Photoinduced changes in the cuprate electronic structure revealed by femtosecond time- and angle-resolved photoemission. Phys. Rev. B 89, 115115 (2014).

    ADS  Google Scholar 

  189. Zhang, W. et al. Ultrafast quenching of electron–boson interaction and superconducting gap in a cuprate superconductor. Nat. Commun. 5, 4959 (2014).

    ADS  Google Scholar 

  190. Yang, S.-L. et al. Inequivalence of single-particle and population lifetimes in a cuprate superconductor. Phys. Rev. Lett. 114, 247001 (2015).

    ADS  Google Scholar 

  191. Rameau, J. D. et al. Energy dissipation from a correlated system driven out of equilibrium. Nat. Commun. 7, 13761 (2016).

    ADS  Google Scholar 

  192. Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416–420 (2018).

    ADS  Google Scholar 

  193. Rettig, L. et al. Electron–phonon coupling in 122 Fe pnictides analyzed by femtosecond time-resolved photoemission. New J. Phys. 15, 83023 (2013).

    Google Scholar 

  194. Yang, L. X. et al. Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons. Phys. Rev. Lett. 112, 207001 (2014).

    ADS  Google Scholar 

  195. Avigo, I. et al. Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and time-resolved photoemission spectroscopy. Phys. Status Solidi 254, 1600382 (2017).

    Google Scholar 

  196. Suzuki, H. et al. Ultrafast melting of spin density wave order in BaFe2As2 observed by time- and angle-resolved photoemission spectroscopy with extreme-ultraviolet higher harmonic generation. Phys. Rev. B 95, 165112 (2017).

    ADS  Google Scholar 

  197. Yang, S. et al. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films. Nano Lett. 15, 4150–4154 (2015).

    ADS  Google Scholar 

  198. Petersen, J. C. et al. Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 177402 (2011).

    ADS  Google Scholar 

  199. Rettig, L. et al. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave. Nat. Commun. 7, 10459 (2016).

    ADS  Google Scholar 

  200. Sobota, J. A. et al. Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3. Phys. Rev. Lett. 108, 117403 (2012).

    ADS  Google Scholar 

  201. Hajlaoui, M. et al. Ultrafast surface carrier dynamics in the topological insulator Bi2Te3. Nano Lett. 12, 3532–3536 (2012).

    ADS  Google Scholar 

  202. Crepaldi, A. et al. Evidence of reduced surface electron–phonon scattering in the conduction band of Bi2Se3 by nonequilibrium ARPES. Phys. Rev. B 88, 121404 (2013).

    ADS  Google Scholar 

  203. Sobota, J. A. et al. Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy. J. Electron Spectros. Relat. Phenom. 195, 249–257 (2014).

    Google Scholar 

  204. Sobota, J. A. et al. Distinguishing bulk and surface electron–phonon coupling in the topological insulator Bi2Se3. Phys. Rev. Lett. 113, 157401 (2014).

    ADS  Google Scholar 

  205. Hajlaoui, M. et al. Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron–hole asymmetry. Nat. Commun. 5, 3003 (2014).

    ADS  Google Scholar 

  206. Cacho, C. et al. Momentum-resolved spin dynamics of bulk and surface excited states in the topological insulator Bi2Se3. Phys. Rev. Lett. 114, 97401 (2015).

    ADS  Google Scholar 

  207. Wang, Y. H. et al. Measurement of intrinsic Dirac fermion cooling on the surface of the topological insulator Bi2Se3 using time-resolved and angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 109, 127401 (2012).

    ADS  Google Scholar 

  208. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 27403 (2013).

    ADS  Google Scholar 

  209. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    ADS  Google Scholar 

  210. Ulstrup, S. et al. Ultrafast dynamics of massive Dirac fermions in bilayer graphene. Phys. Rev. Lett. 112, 257401 (2014).

    ADS  Google Scholar 

  211. Ulstrup, S. et al. Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy. J. Phys. Condens. Matter 27, 164206 (2015).

    ADS  Google Scholar 

  212. Papalazarou, E. et al. Coherent phonon coupling to individual Bloch states in photoexcited bismuth. Phys. Rev. Lett. 108, 256808 (2012).

    ADS  Google Scholar 

  213. Sterzi, A. et al. SmB6 electron–phonon coupling constant from time- and angle-resolved photoelectron spectroscopy. Phys. Rev. B 94, 81111 (2016).

    ADS  Google Scholar 

  214. Bostwick, A., Rotenberg, E., Avila, J. & Asensio, M. C. Zooming in on electronic structure: NanoARPES at SOLEIL and ALS. Synchrotron Radiat. News 25, 19–25 (2012).

    Google Scholar 

  215. Sutter, P., Hybertsen, M. S., Sadowski, J. T. & Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 9, 2654–2660 (2009).

    ADS  Google Scholar 

  216. Brown, L. et al. Polycrystalline graphene with single crystalline electronic structure. Nano Lett. 14, 5706–5711 (2014).

    ADS  Google Scholar 

  217. Johansson, L. I. et al. Multiple π-bands and Bernal stacking of multilayer graphene on C-face SiC, revealed by nano-angle resolved photoemission. Sci. Rep. 4, 4157 (2015).

    Google Scholar 

  218. Lin, L. et al. Tuning chemical potential difference across alternately doped graphene P–N junctions for high-efficiency photodetection. Nano Lett. 16, 4094–4101 (2016).

    ADS  Google Scholar 

  219. Pierucci, D. et al. Band alignment and minigaps in monolayer MoS2–graphene van der Waals heterostructures. Nano Lett. 16, 4054–4061 (2016).

    ADS  Google Scholar 

  220. Yuan, H. et al. Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett. 16, 4738–4745 (2016).

    ADS  Google Scholar 

  221. Wang, E. et al. Electronic structure of transferred graphene/h-BN van der Waals heterostructures with nonzero stacking angles by nano-ARPES. J. Phys. Condens. Matter 28, 444002 (2016).

    Google Scholar 

  222. Chen, C., Maria, C., Zhang, C., Song, J. & Chen, C. Electronic structure of graphene/hexagonal boron nitride heterostructure revealed by nanoARPES. J. Phys. Conf. Ser. 864, 012005 (2017).

    Google Scholar 

  223. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    ADS  Google Scholar 

  224. Arango, Y. C. et al. Quantum transport and nano angle-resolved photoemission spectroscopy on the topological surface states of single Sb2Te3 nanowires. Sci. Rep. 6, 29493 (2016).

    ADS  Google Scholar 

  225. Kar, N., Zheng, B., Sun, Y., Fa-xian, X. & Tong-tong, Z. Nano-angle resolved photoemission spectroscopy on topological insulator Sb2Te3 nanowires responsible of quantum transport. J. Phys. Conf. Ser. 864, 12041 (2017).

    Google Scholar 

  226. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 45302 (2007).

    ADS  Google Scholar 

  227. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    ADS  Google Scholar 

  228. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    ADS  Google Scholar 

  229. Patterson, B. D. et al. Coherent science at the SwissFEL X-ray laser. New J. Phys. 12, 35012 (2010).

    Google Scholar 

  230. Allaria, E. et al. Tunability experiments at the FERMI@Elettra free-electron laser. New J. Phys. 14, 113009 (2012).

    ADS  Google Scholar 

  231. Yabashi, M. et al. Compact XFEL and AMO sciences: SACLA and SCSS. J. Phys. B 46, 164001 (2013).

    ADS  Google Scholar 

  232. Kang, H.-S., Kim, K.-W. & Ko, I. S. Status of PAL-XFEL. Proc. SPIE Vol. 9512, 95120P (2015).

    ADS  Google Scholar 

  233. Pellegrini, C. X-ray free-electron lasers: from dreams to reality. Phys. Scr. T169, 14004 (2016).

    ADS  Google Scholar 

  234. Wurth, W. FLASH: running two FELs in parallel. Synchrotron Radiat. News 30, 3–6 (2017).

    Google Scholar 

  235. Altarelli, M. The European X-ray Free-electron Laser: toward an ultra-bright, high repetition-rate X-ray source. High Power Laser Sci. Eng. 3, e18 (2015).

    Google Scholar 

  236. Gotlieb, K., Hussain, Z., Bostwick, A., Lanzara, A. & Jozwiak, C. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer. Rev. Sci. Instrum. 84, 93904 (2013).

    Google Scholar 

  237. Jozwiak, C. et al. Spin-polarized surface resonances accompanying topological surface state formation. Nat. Commun. 7, 13143 (2016).

    ADS  Google Scholar 

  238. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Google Scholar 

  239. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Gedik, A. Zong, B. Fichera, C. Belvin, N. Koirala and Y. Su for useful discussions and feedback in the preparation of this manuscript. This work was supported by the Ministry of Science and Technology of China (grant nos 2016YFA0401000, 2016YFA0300600 and 2015CB921300), the Chinese Academy of Sciences (grant nos XDB28000000, XDB07000000 and QYZDB-SSW-SLH043), the National Natural Science Foundation of China (grant nos 11622435 and U1832202) and the Beijing Municipal Science and Technology Commission (grant no. Z171100002017018). B.Q.L. acknowledges support from the National Science Foundation under grant no. NSF DMR-1809815 (data analysis) and the Gordon and Betty Moore Foundation’s EPiQS Initiative grant GBMF4540 (manuscript writing).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and researched data for the article. B.Q.L. wrote the manuscript with critical input from H.D. and T.Q.

Corresponding authors

Correspondence to Tian Qian or Hong Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ARTOF-2 analyser: https://www.scientaomicron.com/en/products/artoff2/instrument-concept

DA30-L spin spectrometer: https://www.scientaomicron.com/en/products/353/1170

LCLS-II: https://lcls.slac.stanford.edu/instruments/l2si

RoentDek delay-line detectors: http://www.roentdek.de/info/Delay_Line/

VUV5k He lamp: https://www.scientaomicron.com/en/products/359/1231

Supplementary information

Glossary

Fermi arc

An open contour at the Fermi energy, arising from a chiral surface state owing to the non-trivial topology of band-crossing points in bulk states.

Space-charge effect

The spectral redistribution of the energy and momentum of photoelectrons induced by Coulombic repulsion.

Bogoliubov quasiparticles

Elementary excitations of a Bardeen–Cooper–Schrieffer-type superconductor, corresponding to quantum superpositions of electrons and holes near the Fermi energy.

Delay-line detector

A position-sensitive detector that can determine the position of the signal source by measuring the difference in the signal arrival times at different ends of the delay line.

Shockley states

Interfacial electronic states that arise from the abrupt change in electric potential on the crystal surface or at the boundary of two materials.

Photoemission electron microscopy

A surface-sensitive technique that uses photoemitted electrons from the surface; these electrons are accelerated and collected by an area detector to generate a magnified image of the surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat Rev Phys 1, 609–626 (2019). https://doi.org/10.1038/s42254-019-0088-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0088-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing