Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Atoms and molecules in the search for time-reversal symmetry violation

Abstract

New fundamental particles at the mass scale of a few TeV c–2 could account for observed phenomena that cannot be explained by the standard model (SM) of particle physics, including the microscopic origin of dark matter and the macroscopic imbalance of matter over antimatter in the Universe. However, no beyond-the-SM (BSM) particles at the TeV scale have yet been detected at the Large Hadron Collider (LHC). With recent innovations, searches for time-reversal symmetry (T) violation through low-energy precision measurements of electric dipole moments (EDMs) of atoms and molecules have attained the sensitivity to detect indirect signatures of certain particles with masses of more than  10 TeV c–2. In this Perspective, we discuss recent developments in the measurement and interpretation of EDMs, and assess proposed techniques for future experiments that could push experimental limits on T-violating BSM physics to the PeV scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Context of EDM experiments.
Fig. 2: Interpretation of EDM experiments.
Fig. 3: Signatures and detection of T-violating permanent EDMs in atoms and molecules.
Fig. 4: Recent progress in AMO EDM experiments.
Fig. 5: Future methods for EDM searches.

Similar content being viewed by others

References

  1. CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).

    Article  ADS  Google Scholar 

  2. ATLAS Collaboration. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  3. Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    Article  ADS  Google Scholar 

  4. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984).

    Article  ADS  Google Scholar 

  5. Feng, J. L. Naturalness and the status of supersymmetry. Annu. Rev. Nucl. Part. Sci. 63, 351–382 (2013).

    Article  ADS  Google Scholar 

  6. Dine, M. & Kusenko, A. Origin of the matter–antimatter asymmetry. Rev. Mod. Phys. 76, 1–30 (2004).

    Article  ADS  Google Scholar 

  7. Sakharov, A. D. Violation of CP-invariance, C-asymmetry, and baryon asymmetry of the Universe. JETP Lett. 5, 24–27 (1967).

    ADS  Google Scholar 

  8. Branco, G. C., Lavoura, L. & Silva, J. P. CP violation. Int. Ser. Monogr. Phys. 103, 1–536 (1999).

    Google Scholar 

  9. Alavi-Harati, A. et al. Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system. Phys. Rev. D 67, 012005 (2003).

    Article  ADS  Google Scholar 

  10. Abe, K. et al. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett. 87, 091802 (2001).

    Article  ADS  Google Scholar 

  11. Engel, J., Ramsey-Musolf, M. J. & Van Kolck, U. Electric dipole moments of nucleons, nuclei, and atoms: the standard model and beyond. Prog. Part. Nucl. Phys. 71, 21–74 (2013).

    Article  ADS  Google Scholar 

  12. Khriplovich, I. B. & Lamoreaux, S. K. CP Violation Without Strangeness (Springer, 1997).

  13. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  14. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  Google Scholar 

  15. DeMille, D., Doyle, J. M. & Sushkov, A. O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990–994 (2017).

    Article  ADS  Google Scholar 

  16. Feng, J. L. Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495–545 (2010).

    Article  ADS  Google Scholar 

  17. Abel, C. et al. Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields. Phys. Rev. X 7, 041034 (2017).

    Google Scholar 

  18. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  Google Scholar 

  19. Chupp, T., Fierlinger, P., Ramsey-Musolf, M. & Singh, J. Electric dipole moments of the atoms, molecules, nuclei and particles. Rev. Mod. Phys. 91, 015001 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. Appelquist, T. & Carazzone, J. Infrared singularities and massive fields. Phys. Rev. D 11, 2856–2861 (1975).

    Article  ADS  Google Scholar 

  21. Grzadkowski, B., Iskrzyński, M., Misiaka, M. & Rosieka, J. Dimension-six terms in the standard model Lagrangian. J. High Energy Phys. 2010, 85 (2010).

    Article  ADS  Google Scholar 

  22. Chupp, T. & Ramsey-Musolf, M. Electric dipole moments: a global analysis. Phys. Rev. C 91, 035502 (2014).

    Article  ADS  Google Scholar 

  23. Fleig, T. & Jung, M. Model-independent determinations of the electron EDM and the role of diamagnetic atoms. J. High Energy Phys. 2018, 12 (2018).

    Article  Google Scholar 

  24. DekensW., De VriesJ. Jung M. & Vos K. K. The phenomenology of electric dipole moments in models of scalar leptoquarks. J. High Energy Phys. 1901, 69 (2019).

    Article  ADS  Google Scholar 

  25. Inoue, S., Ramsey-Musolf, M. J. & Zhang, Y. CP-violating phenomenology of flavor conserving two Higgs doublet models. Phys. Rev. D 89, 115023 (2014).

    Article  ADS  Google Scholar 

  26. Cesarotti, C., Lu, Q., Nakai, Y., Parikh, A. & Reece, M. Interpreting the electron EDM constraint. Preprint at https://arxiv.org/abs/1810.07736 (2018).

  27. Schiff, L. I. Measurability of nuclear electric dipole moments. Phys. Rev. 132, 2194–2200 (1963).

    Article  ADS  Google Scholar 

  28. Sandars, P. G. H. The electric dipole moment of an atom. Phys. Lett. 14, 194–196 (1965).

    Article  ADS  Google Scholar 

  29. Commins, E. D., Jackson, J. D. & DeMille, D. P. The electric dipole moment of the electron: an intuitive explanation for the evasion of Schiff’s theorem. Am. J. Phys. 75, 532–536 (2007).

    Article  ADS  Google Scholar 

  30. Hinds, E. A. Testing time reversal symmetry using molecules. Phys. Scr. T70, 34–41 (1997).

    Article  ADS  Google Scholar 

  31. Flambaum, V. V. Enhanced nuclear Schiff moment and time reversal violation in 229Th-containing molecules. Preprint at https://arxiv.org/abs/1808.03629 (2018).

  32. Sushkov, O. P. & Flambaum, V. V. Parity breaking effects in diatomic molecules. Sov. Phys. JETP 48, 608–611 (1978).

    ADS  Google Scholar 

  33. Haxton, W. C. & Henley, E. M. Enhanced T-nonconserving nuclear moments. Phys. Rev. Lett. 51, 1937–1940 (1983).

    Article  ADS  Google Scholar 

  34. Sushkov, P., Flambaum, V. V. & Khriplovich, I. B. Possibility of investigating P- and T-odd nuclear forces in atomic and molecular experiments. JETP 60, 873–883 (1984).

    Google Scholar 

  35. Griffith, W. C. et al. Improved limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 102, 872–874 (2009).

    Article  Google Scholar 

  36. Bishof, M. et al. Improved limit on the 225Ra electric dipole moment. Phys. Rev. C 94, 025501 (2016).

    Article  ADS  Google Scholar 

  37. Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    Article  ADS  Google Scholar 

  38. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).

    Article  ADS  Google Scholar 

  39. Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    Article  ADS  Google Scholar 

  40. Graner, B., Chen, Y., Lindahl, E. G. & Heckel, B. R. Reduced limit on the permanent electric dipole moment of 199Hg. Phys. Rev. Lett. 116, 161601 (2016).

    Article  ADS  Google Scholar 

  41. Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).

    Article  ADS  Google Scholar 

  42. Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    Article  ADS  Google Scholar 

  43. Kuchler, F. et al. A new search for the atomic EDM of 129Xe at FRM-II. Hyperfine Interact. 237, 1–5 (2016).

    Article  Google Scholar 

  44. Tardiff, E. R. et al. The radon EDM apparatus. Hyperfine Interact. 225, 197–206 (2014).

    Article  ADS  Google Scholar 

  45. Norrgard, E. B. et al. Hyperfine structure of the B3Π1 state and predictions of optical cycling behavior in the X→B transition of TlF. Phys. Rev. A 95, 062506 (2017).

    Article  ADS  Google Scholar 

  46. Dobaczewski, J. & Engel, J. Nuclear time-reversal violation and the schiff moment of 225Ra. Phys. Rev. Lett. 94, 232502 (2005).

    Article  ADS  Google Scholar 

  47. Auerbach, N., Flambaum, V. V. & Spevak, V. Collective T- and P-odd electromagnetic moments in nuclei with octupole deformations. Phys. Rev. Lett. 76, 4316–4319 (1996).

    Article  ADS  Google Scholar 

  48. Flambaum, V. V. & Zelevinsky, V. G. Enhancement of nuclear Schiff moments and time-reversal violation in atoms due to soft nuclear octupole vibrations. Phys. Rev. C 68, 035502 (2003).

    Article  ADS  Google Scholar 

  49. Parker, R. H. et al. First measurement of the atomic electric dipole moment of 225Ra. Phys. Rev. Lett. 114, 233002 (2015).

    Article  ADS  Google Scholar 

  50. Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  Google Scholar 

  51. Bollen, G. FRIB — Facility for Rare Isotope Beams. AIP Conf. Proc. 1224, 432–441 (2010).

    Article  ADS  Google Scholar 

  52. Regan, B. C., Commins, E. D., Schmidt, C. J. & DeMille, D. New limit on the electron electric dipole moment. Phys. Rev. Lett. 88, 718051–718054 (2002).

    Article  Google Scholar 

  53. Hutzler, N. R., Lu, H. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    Article  Google Scholar 

  54. West, E. P. A Thermochemical Cryogenic Buffer Gas Beam Source of ThO for Measuring the Electric Dipole Moment of the Electron. PhD thesis, Harvard Univ. (2017).

  55. Baron, J. et al. Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide. New J. Phys. 19, 73029–73068 (2017).

    Article  Google Scholar 

  56. Lasner, Z. Order-of-Magnitude-Tighter Bound on the Electron Electric Dipole Moment. PhD thesis, Yale Univ. (2019).

  57. Lasner, Z. & Demille, D. Statistical sensitivity of phase measurements via laser-induced fluorescence with optical cycling detection. Phys. Rev. A 98, 053823 (2018).

    Article  ADS  Google Scholar 

  58. Cairncross, W. B. Searching for time-reversal symmetry with molecular ions: quantum state control and photofragment imaging. PhD thesis, Univ. Colorado (2019).

  59. Zhu, K., Solmeyer, N., Tang, C. & Weiss, D. S. Absolute polarization measurement using a vector light shift. Phys. Rev. Lett. 111, 243005–243006 (2013).

    Article  ADS  Google Scholar 

  60. Inoue, T. et al. Experimental search for the electron electric dipole moment with laser cooled francium atoms. Hyperfine Interact. 231, 157–162 (2015).

    Article  ADS  Google Scholar 

  61. The NL-eEDM Collaboration. Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D 72, 197 (2018).

    Article  Google Scholar 

  62. Norrgard, E. B. et al. Hyperfine structure of the B 3Π1 state and predictions of optical cycling behavior in the X→B transition of TlF. Phys. Rev. A 95, 062506 (2017).

    Article  ADS  Google Scholar 

  63. Flambaum, V. V., Demille, D. & Kozlov, M. G. Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments. Phys. Rev. Lett. 113, 103003 (2014).

    Article  ADS  Google Scholar 

  64. Fleig, T. TaO+ as a candidate molecular ion for searches of physics beyond the standard model. Phys. Rev. A 95, 022504 (2017).

    Article  ADS  Google Scholar 

  65. Skripnikov, L. V., Titov, A. V. & Flambaum, V. V. Enhanced effect of CP-violating nuclear magnetic quadrupole moment in a HfF+ molecule. Phys. Rev. A 95, 1220 (2017).

    Google Scholar 

  66. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002–133006 (2017).

    Article  ADS  Google Scholar 

  67. Cossel, K. C. Techniques in Molecular Spectroscopy: From Broad Bandwidth to High Resolution. PhD thesis, Univ. of Colorado, Boulder (2014).

  68. Zhou, Y. et al. Visible and ultraviolet laser spectroscopy of ThF. J. Mol. Spectrosc. 358, 1–6 (2019).

    Article  ADS  Google Scholar 

  69. Collopy, A. L. et al. 3D Magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    Article  ADS  Google Scholar 

  70. Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article  ADS  Google Scholar 

  71. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  72. Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article  Google Scholar 

  73. Lim, J. et al. Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett. 120, 123201 (2018).

    Article  ADS  Google Scholar 

  74. Tarbutt, M. R., Sauer, B. E., Hudson, J. J. & Hinds, E. A. Design for a fountain of YbF molecules to measure the electron’s electric dipole moment. New J. Phys. 15, 53018–53034 (2013).

    Article  MathSciNet  Google Scholar 

  75. DeMille, D. Search for the electric dipole moment of the electron using metastable PbO. AIP Conf. Proc. 596, 72–83 (2001).

    Article  ADS  Google Scholar 

  76. Meyer, E. R., Bohn, J. L. & Deskevich, M. P. Candidate molecular ions for an electron electric dipole moment experiment. Phys. Rev. A 73, 62108–62110 (2006).

    Article  ADS  Google Scholar 

  77. Nakhate, S., Steimle, T. C., Pilgram, N. H. & Hutzler, N. R. The pure rotational spectrum of YbOH. Chem. Phys. Lett. 715, 105–108 (2018).

    Article  ADS  Google Scholar 

  78. Braverman, B., Kawasaki, A. & Vuletic, V. Impact of non-unitary spin squeezing on atomic clock performance. New J. Phys. 20, 103019 (2018).

    Article  ADS  Google Scholar 

  79. Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

    Article  ADS  Google Scholar 

  80. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  81. Heidenreich, B. J. et al. Limit on the electron electric dipole moment in gadolinium-iron garnet. Phys. Rev. Lett. 95, 253004 (2005).

    Article  ADS  Google Scholar 

  82. Eckel, S., Sushkov, A. O. & Lamoreaux, S. K. Limit on the electron electric dipole moment using paramagnetic ferroelectric Eu0.5Ba0.5TiO3. Phys. Rev. Lett. 109, 193003 (2012).

    Article  ADS  Google Scholar 

  83. Kozlov, M. G. & Derevianko, A. Proposal for a sensitive search for the electric dipole moment of the electron with matrix-isolated radicals. Phys. Rev. Lett. 97, 63001 (2006).

    Article  ADS  Google Scholar 

  84. Vutha, A. C., Horbatsch, M. & Hessels, E. A. Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron. Atoms 6, 3–10 (2017).

    Article  ADS  Google Scholar 

  85. Vutha, A. C., Horbatsch, M. & Hessels, E. A. Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: a scheme for measuring the electron electric dipole moment. Phys. Rev. A 98, 032513 (2018).

    Article  ADS  Google Scholar 

  86. Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).

    Article  Google Scholar 

  87. Tureanu, A. CPT and Lorentz invariance: their relation and violation. J.Phys. Conf. Ser. 474, 12031 (2013).

    Article  Google Scholar 

  88. Purcell, E. M. & Ramsey, N. F. On the possibility of electric dipole moments for elementary particles and nuclei. Phys. Rev. 78, 807 (1950).

    Article  ADS  Google Scholar 

  89. Smith, J. H., Purcell, E. M. & Ramsey, N. F. Experimental measurement to the electric dipole moment of the neutron. Phys. Rev. 108, 120–122 (1957).

    Article  ADS  Google Scholar 

  90. Lee, T. D. & Yang, C. N. Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956).

    Article  ADS  Google Scholar 

  91. Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D. & Hudson, R. P. Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank E. A. Cornell, N. R. Hutzler, A. Vutha, E. A. Hessels, C. D. Panda and D. DeMille for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William B. Cairncross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairncross, W.B., Ye, J. Atoms and molecules in the search for time-reversal symmetry violation. Nat Rev Phys 1, 510–521 (2019). https://doi.org/10.1038/s42254-019-0080-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0080-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing