Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Black phosphorus and its isoelectronic materials

Abstract

The family of 2D and layered materials has been expanding rapidly for more than a decade. Within this large family of hundreds of materials, black phosphorus and its isoelectronic group IV monochalcogenides have a unique place. These puckered materials have distinctive crystalline symmetries and exhibit various exciting properties, such as high carrier mobility, strong infrared responsivity, widely tunable bandgap, in-plane anisotropy and spontaneous electric polarization. Here, we review their basic properties, highlight new electronic and photonic device concepts and novel physical phenomena and discuss future directions.

Key points

  • The crystalline symmetries of layered black phosphorus and its isoelectronic group IV monochalcogenides play a very important role in the determination of their physical properties.

  • Black phosphorus is likely to be the layered semiconductor material with the highest carrier mobility at room temperature, making it promising for high-performance electronic applications.

  • Black phosphorus, arsenic phosphorus and other group V alloys may find applications in mid-infrared photonics as alternative material systems owing to their layered nature and moderate bandgap.

  • Monolayer group IV monochalcogenides have a broken inversion symmetry and spontaneous in-plane electric polarization. They present a great platform for the exploration of piezoelectricity, ferroelectricity, ferroelasticity and multiferroics.

  • In black phosphorus and other group V alloys, the interplay between the crystal symmetry and spin–orbit coupling may lead to the realization of rich topological states.

  • Wafer-scale synthesis of this group of materials remains challenging. Future research may leverage the phase transition induced by pressure, temperature or high-intensity light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and stability of black phosphorus and monolayer SnSe.
Fig. 2: Few-layer black phosphorus transistors.
Fig. 3: Black phosphorus and AsP photonics.
Fig. 4: Tunable topological insulating properties.
Fig. 5: Polarization properties in monolayer MXs.

Similar content being viewed by others

References

  1. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article  Google Scholar 

  2. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  ADS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  5. Zhang, Y., Tan, Y., W., Störmer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  6. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  7. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  ADS  Google Scholar 

  8. Mak, K. F. et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys.Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  9. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  10. Hunt, B. et al. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  11. Xu, G., Zhang, Y., Duan, X., Balandin, A. A. & Wang, K. L. Variability effects in graphene: challenges and opportunities for device engineering and applications. Proc. IEEE 101, 1670–1688 (2013).

    Article  Google Scholar 

  12. Yu, Z. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014).

    Article  Google Scholar 

  13. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  ADS  Google Scholar 

  14. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer scale homogeneity. Nature 520, 656–660 (2015).

    Article  ADS  Google Scholar 

  15. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  ADS  Google Scholar 

  16. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  ADS  Google Scholar 

  17. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). This paper demonstrates the first BP transistor.

    Article  ADS  Google Scholar 

  18. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).This paper reported on monolayer black phosphorus and introduced “phosphorene”. It also showed high hole mobility in thin-film BP.

    Google Scholar 

  19. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).In this paper, black phosphorus was reintroduced as a layered thin-film material with anisotropic in-plane optical conductivity and Hall mobility.

    Article  ADS  Google Scholar 

  20. Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  ADS  Google Scholar 

  21. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  Google Scholar 

  22. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  ADS  Google Scholar 

  23. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  Google Scholar 

  24. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  ADS  Google Scholar 

  25. Rudenko, A. N. & Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single and bilayer black phosphorus. Phys. Rev. B 89, 201408 (2014).

    Article  ADS  Google Scholar 

  26. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  Google Scholar 

  27. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).

    Article  ADS  Google Scholar 

  28. Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article  Google Scholar 

  29. Yuan, H. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707–713 (2015).

    Article  ADS  Google Scholar 

  30. Youngblood, N., Chen, C., Koester, S. J. & Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 9, 247–252 (2015).

    Article  ADS  Google Scholar 

  31. Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

    Article  Google Scholar 

  32. Du, Y. et al. Auxetic black phosphorus: 2D material with negative Poisson’s ratio. Nano Lett. 16, 6701–6708 (2016).

    Article  ADS  Google Scholar 

  33. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016). This paper reported Quantum Hall Effect in thin-film black phosphorus.

    Article  ADS  Google Scholar 

  34. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  ADS  Google Scholar 

  35. Deng, B. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).

    Article  ADS  Google Scholar 

  36. Cao, T., Li, Z., Qiu, Q. Y. & Louie, S. G. Gate switchable transport and optical anisotropy in 90o twisted bilayer black phosphorus. Nano Lett. 16, 5542–5546 (2016).

    Article  ADS  Google Scholar 

  37. Liu, Q., Zhang, X., Abdalla, L. B., Fazzio, A. & Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15, 1222–1228 (2015). This paper predicts the topological phase transition in biased BP.

    Article  ADS  Google Scholar 

  38. Zhang, G. et al. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 8, 14071 (2017).

    Article  ADS  Google Scholar 

  39. Liu, Y. et al. Gate-tunable giant Stark effect in few-layer black phosphorus. Nano Lett. 17, 1970–1977 (2017).

    Article  ADS  Google Scholar 

  40. Singh, A. K. & Hennig, R. G. Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 105, 042103 (2014).

    Article  ADS  Google Scholar 

  41. Gomes, L. C. & Carvalho, A. Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 92, 085406 (2015).

    Article  ADS  Google Scholar 

  42. Shi, G. & Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 15, 6926–6931 (2015).

    Article  ADS  Google Scholar 

  43. Fei, R., Li, W., Li, J. & Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015). In this paper, giant piezoelectricity in monochalcogenides was predicted.

    Article  ADS  Google Scholar 

  44. Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117, 097601 (2016).

    Article  ADS  Google Scholar 

  45. Gomes, L. C., Carvalho, A. & Castro Neto A. H. Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Phys.Rev. B 94, 054103 (2016).

    Article  ADS  Google Scholar 

  46. Rodin, A. S., Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Valley physics in tin (II) sulfide. Phys. Rev. B 93, 045431 (2016). This paper predicted that equivalent valleys in monolayer tin sulfide can be selectively addressed by linear polarized light.

    Article  ADS  Google Scholar 

  47. Hanakata., P. Z., Carvalho, A., Campbell, D. K. & Park, H. S. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B 94, 035304 (2016).

    Article  ADS  Google Scholar 

  48. Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group-IV monochalcogenides. 2D Mater. 4, 015042 (2017).

    Article  Google Scholar 

  49. Kamal, C. & Ezawa, M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015).

    Article  ADS  Google Scholar 

  50. Zhu, Z., Guan, J. & Tománek, D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: a computational study. Phys. Rev. B 91, 161404 (2015).

    Article  ADS  Google Scholar 

  51. Zhang, S. et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. 128, 1698–1701 (2016).

    Article  Google Scholar 

  52. Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

    Article  ADS  Google Scholar 

  53. Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

    Article  Google Scholar 

  54. Liu, B. et al. Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015).

    Article  Google Scholar 

  55. Sofer, Z. et al. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem. Int. Ed. 55, 3382–3386 (2016).

    Article  Google Scholar 

  56. Mayorga-Martinez, C. C., Sofer, Z. & Pumera, M. Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54, 14317–14320 (2015).

    Article  Google Scholar 

  57. Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).

    Article  Google Scholar 

  58. Castellanos-Gomez, A. J. Black phosphorus: narrow gap, wide applications. Phys. Chem. Lett. 6, 4280–4291 (2015).

    Google Scholar 

  59. Wang, X. & Lan, S. Optical properties of black phosphorus. Adv. Opt. Photon. 8, 618–655 (2016).

    Article  Google Scholar 

  60. Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

    Article  ADS  Google Scholar 

  61. Morita, A., Asahina, H., Kaneta, C. & Sasaki, T. Proc. 17th Int. Conf. Phys. Semiconductors (eds Chadi, J. D. & Harrison, W. A.) 1320–1324 (Springer, New York 1985).

  62. Gaddemane, G. et al. Theoretical studies of electronic transport in mono- and bi-layer phosphorene: a critical overview. Phys. Rev. B 98, 115416 (2018).

    Article  ADS  Google Scholar 

  63. Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016).

    Article  ADS  Google Scholar 

  64. Kuriakose, S. et al. Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Appl. Mater. Today 12, 244–249 (2018).

    Article  Google Scholar 

  65. Zhao, L.-D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article  ADS  Google Scholar 

  66. Ballipinar, F. & Rastogi, A. Single-step organic vapor phase sulfurization synthesis of p-SnS photo-absorber for graded band-gap thin film heterojunction solar cells with n-ZnO1-xSx. MRS Adv. 1, 2801–2806 (2016).

    Article  Google Scholar 

  67. Xue, D. et al. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 139, 858–965 (2017).

    Google Scholar 

  68. Wang, G., Pandey, R. & Karna, S. P. Atomically thin group V elemental films: theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).

    Article  Google Scholar 

  69. Pizzi, G. et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).

    Article  ADS  Google Scholar 

  70. Drozdov, I. K. et al. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 10, 664–669 (2014).

    Article  Google Scholar 

  71. Whitney, W. S. et al. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 17, 78–84 (2017).

    Article  ADS  Google Scholar 

  72. Peng, R. et al. Mid-infrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 17, 6315–6320 (2017).

    Article  ADS  Google Scholar 

  73. Lin, C., Grassi, R., Low, T. & Helmy, A. S. Multilayer black phosphorus as a versatile mid-infrared electro-optic materials. Nano Lett. 16, 1683–1689 (2016).

    Article  ADS  Google Scholar 

  74. Low, T. et al. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    Article  ADS  Google Scholar 

  75. Xiang, Z. J. et al. Pressure-induced electronic transition in black phosphorus. Phys. Rev. Lett. 115, 186403 (2015).

    Article  ADS  Google Scholar 

  76. Fei, R., Tan, V. & Yang, L. Topologically protected Dirac cones in compressed bulk black phosphorus. Phys. Rev. B. 91, 195319 (2015).

    Article  ADS  Google Scholar 

  77. Gomes, L. C., Carvalho, A. & Castro Neto, A. H. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92, 214103 (2015).

    Article  ADS  Google Scholar 

  78. Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F. & Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 114, 046801 (2015). In this paper, the oxidation effect of BP is investigated theoretically.

    Article  ADS  Google Scholar 

  79. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    Article  ADS  Google Scholar 

  80. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014). This paper demonstrates the effect passivation scheme of BP.

    Article  ADS  Google Scholar 

  81. Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015). This paper shows the long-term stability of monolayer and few-layer BP encapsulated by hBN and reports on their transport properties.

    Article  ADS  Google Scholar 

  82. Artel, V. et al. Protective molecular passivation of black phosphorus. 2D Mater. Appl. 1, 6 (2017).

    Article  Google Scholar 

  83. Illarionov, Y. et al. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 10, 9543–9549 (2016).

    Article  Google Scholar 

  84. Jiang, J. et al. Two-step fabrication of single-layer rectangular SnSe flakes. 2D Mater. 4, 021026 (2017).

    Article  Google Scholar 

  85. Hu, W. & Yang, J. Defects in phosphorene. J. Phys. Chem. C. 119, 20474–20480 (2015).

    Article  Google Scholar 

  86. Cai, Y., Ke, Q., Zhang, G., Yakobson, B. & Zhang, Y.-W. Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016).

    Article  Google Scholar 

  87. Köpf, M. et al. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405, 6–10 (2014).

    Article  ADS  Google Scholar 

  88. Osters, O. et al. Synthesis and identification of metastable compounds: black arsenic-science or fiction? Angew. Chem. Int. Ed. 51, 2994–2997 (2012).

    Article  Google Scholar 

  89. Smith, J. B., Hagaman, D. & Ji, H. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27, 215602 (2016).

    Article  ADS  Google Scholar 

  90. Li, X. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 1–6 (2015).

    Google Scholar 

  91. Yang, Z. et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27, 3748–3754 (2015).

    Article  Google Scholar 

  92. Hanlon, D. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).

    Article  Google Scholar 

  93. Li, C. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1703748 (2018).

    Article  Google Scholar 

  94. Sorgato, I., Guarise, G. B. & Marani, A. Red to black phosphorus transition up to 65 kbar. High. Temp. High. Press. 2, 105–111 (1970).

    Google Scholar 

  95. Sun, Q. et al. Pressure quenching: a new route for the synthesis of black phosphorus. Inorg. Chem. Front. 5, 669–674 (2018).

    Article  Google Scholar 

  96. Jang, A.-R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    Article  ADS  Google Scholar 

  97. Zhang, J. L. et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903–4908 (2016).

    Article  ADS  Google Scholar 

  98. Gao, J., Zhang, G. & Zhang, Y.-W. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J. Am. Chem. Soc. 138, 4763–4771 (2016).

    Article  Google Scholar 

  99. Zhao, S. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 8, 288–295 (2015).

    Article  Google Scholar 

  100. Zhang, L. et al. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Sci. Rep. 6, 19830 (2016).

    Article  ADS  Google Scholar 

  101. Li, L. et al. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 135, 1213–1216 (2013).

    Article  Google Scholar 

  102. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  ADS  Google Scholar 

  103. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    Article  ADS  Google Scholar 

  104. Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Article  ADS  Google Scholar 

  105. del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    Article  ADS  Google Scholar 

  106. Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 479, 324–328 (2011).

    Article  ADS  Google Scholar 

  107. Koenig, S. P. et al. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 16, 2145–2151 (2016).

    Article  ADS  Google Scholar 

  108. Prakash, A., Cai, Y., Zhang, G., Zhang, Y.-W. & Ang, K.-W. Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 13, 1602909 (2017).

    Article  Google Scholar 

  109. Luo, X. et al. Continuous-wave and transient characteristics of phosphorene microwave transistors. Dig. IEEE MTT-S Int. Microwave Symp. https://doi.org/10.1109/MWSYM.2016.7540290 (2016).

  110. Li, T. et al. Black phosphorus radio frequency electronics at cryogenic temperatures. Adv. Electron. Mater. 4, 1800138 (2018).

    Article  Google Scholar 

  111. Lundstrom, M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18, 361–363 (1997).

    Article  ADS  Google Scholar 

  112. Dorgan, V. E., Bae, M. H. & Pop, E. Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97, 082112 (2010).

    Article  ADS  Google Scholar 

  113. Chen, X. et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 12, 5003–5010 (2018).

    Article  Google Scholar 

  114. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  115. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  Google Scholar 

  116. Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).

    Article  ADS  Google Scholar 

  117. Sylvia, S. S. et al. Material selection for minimizing direct tunneling in nanowire transistors. IEEE Trans. Electron Devices 59, 2064–2069 (2012).

    Article  ADS  Google Scholar 

  118. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

    Article  ADS  Google Scholar 

  119. Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).

    Article  ADS  Google Scholar 

  120. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  ADS  Google Scholar 

  121. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black arsenic phosphorus alloys. ACS Nano 11, 11724–11731 (2017).

    Article  Google Scholar 

  122. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  ADS  Google Scholar 

  123. Younis, U. et al. Germanium-on-SOI waveguides for mid-infrared wavelengths. Opt. Express 24, 11987–11993 (2016).

    Article  ADS  Google Scholar 

  124. Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

    Article  ADS  Google Scholar 

  125. Kang, J., Takenaka, M. & Takagi, S. Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express 24, 11855–11864 (2016).

    Article  ADS  Google Scholar 

  126. Deckoff-Jones, S. et al. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors. J. Opt. 20, 044004 (2018).

    Article  ADS  Google Scholar 

  127. Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019).

    Article  Google Scholar 

  128. Malik, A. et al. Germanium-on-silicon mid-infrared arrayed waveguide grating multiplexers. IEEE Photon. Technol. Lett. 25, 1805–1808 (2013).

    Article  ADS  Google Scholar 

  129. Martyniuk, P., Antoszewski, J., Martyniuk, M., Faraone, L. & Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014).

    Article  Google Scholar 

  130. Zhu, Z., Guan, J. & Tomanek, D. Structural transition in layered As1–xPx compounds: a computational study. Nano Lett. 15, 6042–6046 (2015).

    Article  ADS  Google Scholar 

  131. ŽutiĆ, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  132. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall Effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  ADS  Google Scholar 

  133. Kim, J. et al. Two-dimensional Dirac Fermions protected by space-time inversion symmetry in black phosphorus. Phys. Rev. Lett. 119, 226801 (2017).

    Article  ADS  Google Scholar 

  134. Haleoot, R. et al. Photostrictive two-dimensional materials in the monochalcogenide family. Phys. Rev. Lett. 118, 227401 (2017).

    Article  ADS  Google Scholar 

  135. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  136. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 8703–9709 (2011).

    Article  Google Scholar 

  137. Michel, K. H. & Verberck, B. Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B 80, 224301 (2009).

    Article  ADS  Google Scholar 

  138. Duerloo, K. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    Article  Google Scholar 

  139. Wu, W. Z. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  ADS  Google Scholar 

  140. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

    Article  ADS  Google Scholar 

  141. Schick, V. et al. Optical writing of magnetic properties by remanent photostriction. Phys. Rev. Lett. 117, 107403 (2016).

    Article  ADS  Google Scholar 

  142. Paillard, C., Xu, B., Dkhil, B., Geneste, G. & Bellaiche, L. Photostriction in ferroelectrics from density functional theory. Phys. Rev. Lett. 116, 247401 (2016).

    Article  ADS  Google Scholar 

  143. Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16, 3236–3241 (2016).

    Article  ADS  Google Scholar 

  144. Liu, C., Qin, H. & Mather, P. T. Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007).

    Article  Google Scholar 

  145. Wang, H. & Qian, X. Giant optical second harmonic generation in two-dimensional multiferroics. Nano Lett. 17, 5027–5034 (2017).

    Article  ADS  Google Scholar 

  146. Safari, A. & Akdoğan, E. K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications 17–38 (Springer, 2008).

  147. Jaffe, B., Cook, W. R. Jr. & Jaffe, H. Piezoelectric Ceramics. (Academic Press, London, 1971).

    Google Scholar 

  148. Batra, I. P., Wurfel, P. & Silverman, B. D. New type of first-order phase transition in ferroelectric thin films. Phys. Rev. Lett. 30, 384 (1973).

    Article  ADS  Google Scholar 

  149. Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splitting in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618 (1994).

    Article  ADS  Google Scholar 

  150. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003).

    Article  ADS  Google Scholar 

  151. Seixas, L., Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 116, 206803 (2016).

    Article  ADS  Google Scholar 

  152. Cao, T., Li, Z. & Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 114, 236602 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this manuscript to the memory of their wonderful mentor and collaborator, Mildred Dresselhaus of Massachusetts Institute of Technology, USA, who passed away in the planning stage of this Review. The authors are deeply indebted to her for her guidance, encouragement and support since the very early stage of research on BP and its related materials. Her warmness, generosity, great vision and unfailing optimism in science will always be remembered. F.X. acknowledges the financial and/or technical support from the Office of Naval Research, National Science Foundation, Air Force Office of Scientific Research, IBM Corporation and Yale University. L.Y. is thankful for support from the National Science Foundation, Air Force Office of Scientific Research and Washington University in St Louis. H.W. acknowledges support from the Army Research Office, Army Research Laboratory, Air Force Office of Scientific Research, National Science Foundation, Northrop Grumman Corporation and University of Southern California. J.H. acknowledges support from the Office of Naval Research, Air Force Office of Scientific Research and National Science Foundation. The authors thank T.-P. Ma and Y. Zhou at Yale University for helpful discussions on black phosphorus transistor scaling and MX synthesis, respectively.

Author information

Authors and Affiliations

Authors

Contributions

F.X. drafted the outline with inputs from H.W. and L.Y. F.X., L.Y. and H.W. co-wrote the manuscript. J.C.M.H. and A.H.C.N. provided comments and revised the manuscript.

Corresponding authors

Correspondence to Fengnian Xia, Han Wang or Li Yang.

Ethics declarations

Competing interests

F.X. has a pending patent application on the synthesis of encapsulated few-layer and thin-film black phosphorus and other group V compounds.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, F., Wang, H., Hwang, J.C.M. et al. Black phosphorus and its isoelectronic materials. Nat Rev Phys 1, 306–317 (2019). https://doi.org/10.1038/s42254-019-0043-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0043-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing