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Evidence from both theoretical and empirical studies suggests that higher-order networks have
emerged as powerful tools for modeling social contagions, such as opinion formation. In this article,
we develop a model of social contagion on directed hypergraphs by considering the heterogeneity of
individuals and environments in terms of reinforcing contagion effects. By distinguishing the
directedness between nodes and hyperedges, we find that the bistable interval of the discontinuous
phase transition decreases as the directedness strength decreases. Additionally, directed
hypergraphs tend togenerate bistable intervalswhennodeswith a large hyperdegree aremore likely to
adopt a specific opinion, as evidenced by simulations of directionality assignments for three sets of
real networks. These findings provide two approaches to enhance the accuracy of predicting social
contagion dynamics: one is to increase the stubbornness of all individuals, and the other is to prioritize
increasing the stubbornness of highly influential individuals.

The study of complex networks has fundamentally transformed our
understanding of various natural systems and social structures1–5, providing
a comprehensive framework to analyze interactions across diverse dis-
ciplines. These networks have been instrumental in shedding light on
phenomena ranging fromdisease spreading6–8 and diffusion processes9–11 to
the consensus ofmulti-agent systems12,13 and the formation of opinions14–16.
For instance, in epidemiology, networks model the spread of diseases17 by
categorizing nodes as healthy or infected, thus facilitating the simulation of
infection dynamics across populations. Such models have extended their
applicability to the realm of social sciences, where they serve to understand
social contagion processes, including the spread of opinions and behaviors
through populations.

Despite their broad applications, traditional network models pre-
dominantly focus on pairwise interactions, a simplification that, while
useful, often fails to capture the complexity inherent in many natural and
social systems. These systems, exemplified by brain networks18, social
networks19, and ecological networks20, featuremulti-body interactions that
play a crucial role in their dynamics. The limitations of traditional models
in accurately representing these interactions have prompted a
growing interest among scholars in higher-order network structures21,22,
such as simplicial complexes23–25 and hypergraphs26–28. These advanced
models are better suited to capturing the multifaceted interactions

occurring within complex systems, offering a more nuanced under-
standing of their dynamics.

However, a notable gap in the current body of research is the pre-
dominantly symmetric structure of these higher-order interactions, which
overlooks the potential for asymmetry29,30 and the unique roles that different
nodesmay play within the same interaction group. This oversight limits the
models’ ability to fully grasp the complexity of interaction dynamics, par-
ticularly in social systems where individual differences significantly influ-
ence the overall process.

Addressing this gap, directed hypergraphs31,32 emerge as a powerful
tool, enabling the differentiation between nodes within higher-order edges
and reflecting the variability in individual roles and influences. This
approach represents a significant advancement in modeling complex sys-
tems, particularly in the context of social contagion. Social contagion33,34,
akin to biological contagion35 but involving the spread of ideas, behaviors,
and norms, can be significantly affected by the directional influence of
individuals within a network. Understanding these directional influences is
crucial for accurately modeling and predicting the dynamics of social
contagion.

In thiswork,we explore the impact of social contagion through the lens
of M-directed hypergraphs31, an approach that allows for the detailed
examination of directed properties assigned to both nodes and hyperedges.
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By distinguishing between these two types of directedness, our model
provides a richer understanding of how individual differences and the
structure of interactions influence contagion processes. Through rigorous
analysis,we investigate howvariations indirectedness affect the stability and
accuracy of contagion dynamics, offering new insights into the underlying
mechanisms of social spread. Our findings reveal that as the intensity of
directedness decreases, the bistability interval of the discontinuous phase
transition diminishes, suggesting that the accuracy of contagion processes
improves with increased directedness among individuals. Furthermore, our
analysis of real-world networks demonstrates that networks featuring nodes
with high hyperdegree and directedness properties exhibit increased bist-
ability intervals, highlighting the complex interplay between network
structure and contagion dynamics.

Results
M-directed hypergraph
To introduce the concept of a directedhypergraph,we define a 1-directed d-
hyperedge as a set of d+ 1 nodes, where d nodes are “source” nodes col-
lectively pointing towards the remaining one node31. This definition allows
us to consider anundirectedd-hyperedge as the unionofd+ 11-directedd-
hyperedges (see Fig. 1a). This decomposition framework is a natural
extension of the pairwise interactions, where an undirected interaction edge

in a simple network can be decomposed into two directed interaction edges.
With the directed hypergraph definition, we can classify nodes into two
categories: “source” nodes and “point” nodes31. A 1-directed d-hyperedge,
where the source nodes are denoted as j1, j2,…, jd pointing to node i, can be
represented as a tensor matrix A(d)31:

AðdÞ
ij1...jd

¼ 1 ) AðdÞ
iπðj1 ...jd Þ ¼ 1 ð1Þ

whereπ(j1…jd) represents anypermutationof the indices j1,…, jd. Similarly,
we can define m-directed d-hyperedges composed of d+ 1 nodes, where
d+ 1−m source nodes point toward the remaining m nodes. Letting
s = d+ 1−m, the tensor matrix for this type of hyperedge is given by31:

AðdÞ
πðj1...jmÞπ0ðj1 ...jsÞ ¼ 1; ð2Þ

where π(j1…jm) and π0ðj1 . . . jsÞ represent any permutation of the indices
j1,…, jm and j1,…, js, respectively.

In this paper, we focus on weighted 1-directed 2-hyperedges. The
weight is p, where p∈ [0, 1]. The three nodes i, j, and k in the hypergraph
network with weighted 1-directed 2-hyperedges form a hyperedge, where
the source nodes are i and j. The elements in the tensor matrix A2 are

Fig. 1 | The contagion process of M-directed
hypergraphs. Panel a illustrates the decomposition
of an undirected 2-hyperedge into three directed
hyperedges. Panel b showcases a weighted
1-directed 2-hyperedge, which signifies a directed
hyperedge when p = 0 and transitions back to an
undirected 2-hyperedge as p increases to 1. Panels
c through (i) present all contagion scenarios under a
1-directed 2-hyperedge, supplemented by two
pairwise couplings. In Panels c–h, the squares
represent higher-order interactions. The color
scheme used is light blue to indicate that the higher-
order interaction did not have an effect and orange
to indicate that the higher-order interaction had an
effect. In these panels, k is designated as the “point”
node, while i and j serve as the “source” nodes.
Lastly, Panel i indicates that all infected nodes revert
to the susceptible state with a probability of μ at each
time step. (Panels (a) and (b) are considered suitable
adaptations of Fig. 1 and Fig. 531).
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represented as:

A2
ijk ¼ p A2

jik ¼ p A2
kij ¼ 1

A2
ikj ¼ p A2

jki ¼ p A2
kji ¼ 1:

ð3Þ

As the value of p increases, the value of i and j pointing towards k direction
will gradually increase. The hypergraph reverts to an undirected one when
p = 1 (refer to Fig. 1b).

Contagion model in directed hypergraphs
In the original study of contagion models in higher-order networks, it was
initiatedwith a simplicial complex15. This complex involves a d-simplex that
infects a susceptible node with a probability of βd only if the d-simplex
contains a susceptible state and the remaining d nodes are in an infected
state.Additionally, a d-simplex can also be affected by its lower-dimensional
simplex with infectious probability βd−1…β1. For example, a 2-simplex
where consider two nodes are in an infected state. The susceptible nodes
within this 2-simplex have a probability of being infected equal to 2β1+ β2.
It takes into accountboth the triangular structure formedby threenodes and
the contributions from the two edges.

The simplicial complex is a specific type case of hypergraphs, so our
focus shifts to studying the contagion model on hypergraphs and its
extension to directed hypergraphs. In this context, we introduce the
weighted 1-directed 2-hyperedge consisting of three nodes i, j, and k, where i
and j are the source nodes directed towards node k. The weights assigned to
these hyperedges are denoted as p. The contagion process in hypergraphs is
akin to that in simplicial complexes, with one crucial distinction: hyper-
graphs can represent subsets of the complete setwithin a simplicial complex.
This paper exploresaweighteddirectedhypergraph,where requiredweights
are assigned to the probability of contagion. For example, if node i is sus-
ceptible and nodes j and k are infected, the probability of node i becoming
infected in this hypergraph is pβ2. Similarly, if node j is susceptible, it is also
infected with a probability of pβ2. In all other cases, the probability of
infection remains β2. The recovery rate for all infected nodes is denoted as μ
(refer to Fig. 1c–i).

Contagion model in directed uniform hypergraphs
To study the contagionprocess ondirecteduniformhypergraphs,weuse the
mean-field model. The directed uniform hypergraph maintains identical
dimensionsof thehyperedges and the samehyperdegree for eachnode,with
each node having an equal probability of being a “source” node within each
hyperedge. First, we give the equations in the general 1-directed d-hyper-
edges of the uniformly weighted directed hypergraph. Define the set of
infection probabilities as B≡ {β1,…, βd} and the recovery rate as μ. The
hypergraph consists of N nodes, and the infection probability of node i at
moment t is xi(t), where xi(t)∈ [0, 1]. At each moment t, the infection
density is represented by the macroscopic parameter ρðtÞ ¼ 1

N

PN
i¼1 xiðtÞ.

We canwrite the equation for the infection density ρ(t) using themean field
method:

ρðt þ 1Þ ¼ ð1� μÞρðtÞ þ βd < kd > ρðtÞdð1� ρðtÞÞ 1
d þ 1

þ d
d þ 1

p

� �
;

ð4Þ
where <kd > denotes the d-dimensional average hyperdegree of the node.
Note that even in a more general hypergraph model, where hyperedges of
eachdimensionarepresent, the assumptionsmade still hold. In this case, the
hyperedges of different dimensions are all 1-directed i-hyperedges (i > 1).
The equation is as follows:

ρðt þ 1Þ ¼ ð1� μÞρðtÞ þ
Xd
i¼2

βi < ki > ρðtÞið1� ρðtÞÞ 1
iþ 1

þ i
iþ 1

p

� �

þ β1 < k1 > ρðtÞð1� ρðtÞÞ;
ð5Þ

where the last term represents a pairwise interaction network, without
higher order. If the higher order terms are removed, Eq. (5) degenerates to
the standard Susceptible-Infectious-Susceptible (SIS) model.

We primarily focus on the case where d = 2. In Eq. (5), we simplify the
equation to:

ρðt þ 1Þ ¼ ð1� μÞρðtÞ þ β2 < k2 > ρðtÞ2ð1� ρðtÞÞ 1
3
þ 2
3
p

� �
þ β1 < k1 > ρðtÞð1� ρðtÞÞ:

ð6Þ

To find the equilibrium point, we define λ1 ¼ β1<k1>
μ , λ2 ¼ β2<k2>ð13þ2

3pÞ
μ and

equate the right side of Eq. (6) to zero. By letting lim
t!þ1

ρðtÞ ¼ ρ, we obtain

ρðλ2ρ2 þ ðλ1 � λ2Þρþ ð1� λ1ÞÞ ¼ 0: ð7Þ

We get three solutions to this equation, which are ρ1 = 0,

ρ2þ ¼ �ðλ1�λ2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1�λ2Þ2�4λ2ð1�λ1Þ

p
2λ2

, and ρ2� ¼ �ðλ1�λ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1�λ2Þ2�4λ2ð1�λ1Þ

p
2λ2

.

These solutions are meaningful only when ρ∈ [0, 1]. Please refer to Sup-
plementary Note 3 for using the function image analysis method, which
differs from the analysis in the original article15.

To ensure that Eq. (7) has three solutions, the conditions λ2 > 1 and
0 < λc1 < λ1 < 1 < λ2 must be satisfied. The contagion process and the net-
work parameters, such as setting <k1 > , <k2 > , β2, and μ are fixed as con-
stants. When parameter conditions p = 1, λ2 > 1 and p = 0, 0 < λ2 < 1 are
met, a critical case of a discontinuous phase transition occurs. Specifically,
when p = 1, the maximum phase transition interval is obtained, resulting in
a bistable interval with two locally stable points ρ1 and ρ2+. However, as p
gradually decreases, the bistable interval decreases as well. Eventually, there
is a certain critical value of p where the phase transition disappears. This
critical value for λ2 = 1 is

p� ¼ 3
2

μ

β2<k2>
� 1

2
; ð8Þ

where β2<k2>μ >1 and β2<k2>
3μ <1 need tobe satisfied. In theparameter settings of

Fig. 2, it is ensured thatλ2 > 1and 1
3 λ2<1. FromFig. 2a, different initial values

do not produce a phase transition interval due to p < p*. However, when
p > p*, p increasing leads to an increase in the phase transition interval, as
observed inFig. 2b–d. InFig. 3, the relationshipbetweenp,β1 andρ is plotted
for different values of β2 using Eq. (7). Fig. 3a, b correspond to β2 = 0.03 and
β2 = 0.01, respectively. It is evident fromcomparing the twopanels thatphas
little effect on the contagion threshold when β2 is relatively small (i.e., when
higher-order contagion is relatively weak). However, as β2 gradually
increases, the directedness parameter p begins to influence the contagion
threshold. This corresponds to the increase in the phase transition interval
observed in Fig. 2. Additionally, the stability of the solution in various cases
is analyzed in Supplementary Note 3. The conclusions are further verified
through simulations depicted in Supplementary Fig. 4.

We can draw an analogy between disease contagion and viewpoint
contagion. From a viewpoint contagion process, we would expect the out-
come to be more accurate. To achieve this, we need to have more nodes in
the network that are either stubborn or haveweak receptivity to information
within each hyperedge. This is the only way to demonstrate the impact of
directedness on the outcome of the contagion in a directed hypergraph. The
accuracy of the contagion outcome is achieved by eliminating the bistable
interval through the influence of directed connections.

Contagion model in k-adjacency-3-directed uniform
hypergraphs
We need to discuss a crucial question of whether directedness is a char-
acteristic of the node itself or the hyperedge. We illustrate the need to dis-
tinguish between the two kinds of directedness in SupplementaryNote 1. If it
is considered a property of the hyperedges, the directedness can be assigned
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by probabilistic homogenization to obtain Eq. (6) when studying directed
uniformhypergraphs. However, if the direction is a property of the node, the
model needs to be reconstructed. Here, we will begin with the simplest case,
focusing on k-adjacency-3-directed uniform hypergraphs. The properties of
“source” and “point” are inherent to the nodes themselves and exhibit uni-
form characteristics within each hyperedge they participate in. Due to the
characteristics of the k-adjacency-3-directed uniform hypergraphs, the
hyperdegree of each node is k and the dimension of each hyperedge is 3 (see
Fig. 4a, b). We can classify the nodes into two categories: ρpoint and ρsource,
denoting themasρ1 = ρpoint andρ2 = ρsource. It isnecessary for eachhyperedge
to include one “point” and two “sources”. With this specification, we can
formulate the equation based on the contagion model as follows:

ρ1ðt þ 1Þ ¼ ð1� μÞρ1ðtÞ þ kβ2ð1� ρ1ðtÞÞρ2ðtÞ2;
ρ2ðt þ 1Þ ¼ ð1� μÞρ2ðtÞ þ pkβ2ð1� ρ2ðtÞÞρ1ðtÞρ2ðtÞ;

(
ð9Þ

where k is the 3-dimensional hyperdegree of each node. To determine the
equilibrium point of the equation, we make the right-hand side of Eq. (9)
equal to 0:

�μρ1 þ kβ2ð1� ρ1Þρ22 ¼ 0;

μρ2 þ pkβ2ð1� ρ2Þρ1ρ2 ¼ 0:

�
ð10Þ

Solving Eq. (10), one solution is ρ1 = 0 and ρ2 = 0.When neither ρ1 nor ρ2 is
not 0, the second equation of Eq. (10) yields:

ρ1 ¼
μ

pkβ2ð1� ρ2Þ
: ð11Þ

By iteratively solving the above equations, the following conclusions have
been obtained (please refer to Supplementary Note 4):

1. When 0 < p ≤ μ
kβ2
, ρ = 0 is the only equilibrium point of the equa-

tion in the interval [0, 1].
2. When μ

kβ2
< p < p�, ρ = 0 is the only equilibriumpoint of the equation in

the interval [0, 1].
3. When p = p*, both ρ = 0 and ρ ¼ 1

3 ρ
�
1 þ 2

3 ρ
�
2 are equilibrium points of

the equation in the interval [0, 1].
4. When p* < p < 1, the equation has three solutions in the interval [0, 1].

The value of p* is obtained by solving the cubic equation for ρ* in the
interval [0, 1]. The critical point for the equation to undergo a phase tran-
sition is determined to be p = p*. Since solving the cubic equation involving
ρ*depends onβ2, it follows thatp

* is also a function ofβ2. Fig. 5 illustrates the
relationship betweenp,β2, and ρ. It is evident thatwhenβ2 is relatively small,
no matter how much p increases, transmission cannot occur even if the
system reverts to an undirected hypergraph. However, as β2 increases, the
contagion threshold slowly starts to decrease. It only requires a small
amount of directedness represented by p, to make the k-adjacency-3-
directed hypergraph contagious.

The “point” node and the “source” node in the k-adjacency-3-directed
uniform hypergraph represent the acceptant individual and the stubborn
individual, respectively. A low directedness value p indicates that the stub-
born individual is highly resistant to accepting the views of others. In this
case, the viewpoint contagion scale is 0 for a given contagion rate β2.
However, as the directedness p increases, the contagion scale of views gra-
dually rises reaching a certain threshold of p*, where stubborn individuals
start to gradually accept certain information. Therefore, the presence of

 weight  

0 0.3

0.6

1

∗
0.25

Fig. 2 | Directed hypergraph contagious mean-field model for d= 2 in the syn-
thetic directed uniform hypergraph. The parameters μ, <k1 > , <k2 > , and β2 are
kept constant at values of 0.9, 10, 6, and 0.3, respectively. a, b, c, and d correspond to
p-values of 0, 0.3, 0.6, and 1, respectively. Utilizing Eq. (8), we compute p* = 0.25. The

solid line in the graph represents the theoretical result derived fromEq. (6), while the
circles and squares illustrate the results obtained from Monte Carlo (MC) simula-
tions. The colors blue and red are used to indicate the initial infection proportions of
0.01 and 0.11, respectively.
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directedness in directed hypergraphs significantly influences the contagion
process within the network.

The influence of directedness in the process of hypergraph
contagion
Tomodel themore general directedhypergraphnetwork, we cannot use the
mean-field approach. Instead, we introduce the general individual-based
mean-filed (IBMF) theory36 and incorporate directedness to obtain the
contagion model. Since the IBMF theory assumes independence between
node states, it ignores correlations between nodes. Consequently, we can
describe the directed hypergraph contagion process as follows:

ρiðt þ 1Þ ¼ ð1� μÞρiðtÞ þ ð1� ρiðtÞÞð1� q1i ðtÞq2i ðtÞ . . . qdi ðtÞÞ: ð12Þ

Here, q1i ðtÞ represents the probability that node i is not infected by any pairs
of interacting neighbors:

q1i ðtÞ ¼
YN
j1

ð1� β1aij1ρj1 ðtÞÞ: ð13Þ

Similarity, q2i ðtÞ represents the probability that node i is not infected by any
of its 3 directed hyperedges:

q2i ðtÞ ¼
YN
j1 ;j2

fi;j1 ;j2 g2NðiÞ

ð1� β2aij1j2ρj1 ðtÞρj2 ðtÞÞ; ð14Þ

Fig. 4 | The k-adjacency-3-directed uniform
hypergraphs and directed hyperstar networks.
Panels a and b depict two distinct cases of k-adja-
cency-3-directed uniform hypergraphs, both of
which can be expressed using Eq. (9). Panel
c designates the center node as the “point” and the
leaf node as the “source”. Conversely, Panel
d identifies the center node as the “source” and the
leaf node as the “point”.

Fig. 3 | Influence of parameters on theoretical values in directed uniform
hypergraphs.Wediscussed the correlation between infection density ρ, parameter p,
and β1, with β2 held constant. a and b present the results for parameters β2 = 0.3 and

β2 = 0.1, respectively. The value of ρ is derived from Eq. (7). Since Eq. (7) yields two
results, we graphically represent the outcome for the stable ρ2+.
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where N(i) denotes the 2-dimensional hyperedge associated with node i.
Finally, qdi ðtÞ indicates the probability that node i is not infected by any of its
d+ 1 directed hyperedges:

qdi ðtÞ ¼
YN

j1 ;j2 ;...;jd
fi;j1 ;j2 ;;jd g2NðiÞ

ð1� βdaij1 j2...jdρj1 ðtÞρj2 ðtÞ . . . ρjd ðtÞÞ: ð15Þ

In Eqs. (13), (14), and (15), aij1...jd represents the elements in the

d-dimensional tensor, while N(i) denotes the d-dimensional hyperedge
associated with node i. Additionally, it is necessary to order
the node coordinates using concatenation numbers to avoid redundant
calculations of hyperedges when the results are concatenated.
If the direction is considered a node property, then for “point” node i,

aij1 ...jd ¼
1; fi; j1; . . . ; jdg 2 NðiÞ
0; fi; j1; . . . ; jdg =2NðiÞ

�
and for “source” node i, aij1 ...jd ¼

p; fi; j1; . . . ; jdg 2 NðiÞ
0; fi; j1; . . . ; jdg =2 NðiÞ

�
. On the other hand, if the direction is treated as a

hyperedge property, the elements of the tensor matrix positions
corresponding to “source” nodes and “point” nodes in a hyperedge are
assigned the values p and 1, respectively. Furthermore, if the correlation
betweennodes is taken into account, the contagionprocess canbe accurately
simulated using the epidemic link equations method37.

We applied the aforementioned method to examine the impact of
directedness in a specific hypergraph called the hyperstar network, also
known as the sunflower network38. In this study, we set the dimension of
each hyperedge to be 3, with each hyperedge associated with a central node.
For our analysis, consider a hyperstar network consisting of r hyperedges,
resulting in a total ofN = 2r+ 1 nodes. To observe the effect of directedness,
we focus on two different hyperedges within the network. In one case, the
central node serves as the “point” node, while the leaf nodes act as the
“source”nodes. In the other case, the center is considered the “source”node,
and the leaf nodes are the “point” nodes. This configuration can be visua-
lized in Fig. 4c, d.

In the first case, where the center node is the “point” and the leaf nodes
are the “sources”, we can categorize the nodes into two groups: the center

nodedenoted as ρc, and the leaf nodes denoted as ρl. The contagion equation
in this case can be expressed as:

ρcðt þ 1Þ ¼ ð1� μÞρcðtÞ þ ð1� ρcðtÞÞ½1� ð1� β2ρ
2
l ðtÞÞr�;

ρlðt þ 1Þ ¼ ð1� μÞρlðtÞ þ ð1� ρlðtÞÞ½1� ð1� β2pρcðtÞρlðtÞÞ�:

(

ð16Þ

Equation (16) is a high-dimensional equation, and our objective is to study
the effect of directedness near the contagion threshold. To achieve this, we
perform a Taylor expansion of the equation around 0 and obtain the
following conclusions through iterations (refer to Supplementary Note 5):
1. When 0 < p≤ μ

β2
, ρ = 0 is the only equilibrium point of the equation in

the interval [0, 1].
2. When μ

β2
< p < p�, ρ = 0 is still the only equilibrium point of the

equation in the interval [0, 1].
3. When p = p*, both ρ = 0 and ρ ¼ 1

2rþ1 ρ
�
c þ 2r

2rþ1 ρ
�
l are equilibrium

points of the equation in the interval [0, 1].
4. When p* < p < 1, the equation has three solutions within the inter-

val [0, 1].

In the second case, we can analyze the case where the leaf nodes are
considered the “points” and the center nodes are the “sources” in the
hyperstar network. Similarly, we can express the equation as follows:

ρcðt þ 1Þ ¼ ð1� μÞρcðtÞ þ ð1� ρcðtÞÞ½1� ð1� β2pρ
2
l ðtÞÞr�;

ρlðt þ 1Þ ¼ ð1� μÞρlðtÞ þ ð1� ρlðtÞÞ½1� ð1� β2ρcðtÞρlðtÞÞ�:

(

ð17Þ

Based on our analysis (refer to Supplementary Note 5), we can draw the
following conclusions:
1. When 0 < p < p*, ρ = 0 is the only equilibrium point of the equation in

the interval [0, 1].
2. When p = p*, both ρ = 0 and ρ ¼ 1

2rþ1 ρ
�
c þ 2r

2rþ1 ρ
�
l are equilibrium

points of the equation in the interval [0, 1].
3. When p* < p < 1, the equation has three solutions within the inter-

val [0, 1].

Fig. 5 | The relationship between p, β2, and ρ. The
value of ρ is computed using Eq. (10), which yields
four solutions, one of which is zero. Among the
remaining three solutions, atmost two fall within the
interval [0, 1], as illustrated in Supplementary
Note 4. The stability analysis in Supplementary
Note 4 indicates that the solutionwith themaximum
value is stable. If a numerical solution within the
[0, 1] interval exists, the maximum stable numerical
solution is depicted.
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In Fig. 6, by comparing the two cases mentioned above and fixing
the parameter β2, we observe that the critical threshold p�a for Fig. 6a is
much smaller than the critical threshold p�c for Fig. 6c. A hyperstar
network can be seen as analogous to a scientific research team in reality.
The central node represents the team leader who has multiple research
directions, with each direction being a hyperedge. The researchers
working on those research directions are represented by the leaf nodes.
In Fig. 6a, the center node is considered as the “point” node, indicating
the team leader is an open-minded person who accepts different points
(acceptant person). The other researchers represented by the leaf nodes,
are depicted as stubborn individuals. For an opinion to spread con-
tagiously, all stubborn researchers must have a high level of information
receptivity. On the other hand, in Fig. 6c, the central node is considered
the “source” node, representing a scenario where a team leader is a
stubborn person, and the other researchers are open to accepting dif-
ferent opinions (acceptant people). In this case, only takes a small level of
acceptance from the stubborn leader for a viewpoint to spread. This is
demonstrated by comparing Fig. 6a, c, with the parameters β2 = 2 and
p = 0.3 held constant. It is evident that when the leaf nodes are stubborn,
the viewpoints are not contagious, whereas when the center node is
stubborn, the viewpoints become contagious. Thus, it can be inferred
that in both scenarios, the stubbornness of the center node has a lesser
impact on the overall size of the contagion compared to the stubbornness

of all leaf nodes. Furthermore, a comparison of Fig. 6a, b, as well
as Fig. 6c, d, reveals that in both scenarios, with all parameters held
constant, the infection density ρ increases as the number of petals r
increases.

Contagion in realistic directed hypergraph networks
To study the contagion process in directed hypergraphs, we analyzed three
different sets of social network structures. We processed the data collected
from the three sets of networks. First, the pairwise coupling relationship of
the networks was extended to higher-order interactions. Second, a specific
classification on the assignment of directedness was made into two broad
categories: node directedness and edge directedness (see data addition with
directedness of the “Methods” section). The numerical simulation results
were obtained by the IBMF theory algorithm.

The network structures depicted in Fig. 7 have not been extracted
yet. Here, we only depict the low-order network structure of pairwise
interactions, without incorporating the higher-order network structure.
Please refer to the data description and processing of the “Methods”
section for details on how to integrate higher-order network structures.
Nevertheless, we can still observe certain distinctions among the three
networks. Both the Vote and Infect-dublin networks exhibit significant
clustering effects, whereas the Netscience network lacks such clustering
effects. The observation of the clustering effect causes a notable

Fig. 6 | The correlation between infection density ρ, parameter p, β2, and r. Panels
a and b represent hyperstar networks where the center node serves as the “point”
node. Panels c and d represent hyperstar networks where the center node serves as

the “source” node. The number of petals r in panels a and c is set to 20, and in panels
b and d is set to 40. These panels depict the stable solutions derived through
numerical computation using Taylor expansion from Eqs. (16) and (17).
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difference between the IBMF theoretical results and the actual MC
results in terms of theoretical simulation. In addition, we observe that the
simulation is not very near the threshold value effective. This might be
caused due to the fact that IBMF theory ignores the correlation between
nodes. Nonetheless, for contagion scale simulations with relatively large
parameters of β1, the theory remains relatively accurate.

In the following analysis, we focus on comparing the effects of dif-
ferent choices of directedness on the contagion threshold and the phase
transition interval. We examine this comparison using the data from
Figs. 8, 9 and 10. First, vertically, we find that minimizing the phase
transition interval is possible by increasing the probability of the nodes
with a small hyperdegree becoming a “point”. Conversely, maximizing the
phase transition interval can be achieved by increasing the probability of
thenodeswith large hyperdegreebecoming a “point”. In realistic viewpoint
propagation, if we aim for accuracy, it is necessary tomake nodeswith high
hyperdegree (nodes with high influence) slightly more stubborn. Simply
reducing their receptiveness to information will ensure accuracy in the
contagion scale. Secondly, observing the simulation horizontally across
various real networks, we note that there is an increase in the phase
transition interval with higher directedness intensity p. Therefore, to
ensure accuracy in the contagion process, it is recommended to decrease
the directedness intensity p.

Conclusion
In summary, this paper expands on the original hypergraph contagion
model and introduces the directed hypergraph contagionmodel. Firstly, the
uniform directed hypergraph contagion model is studied, and the critical
situation of phase transition is analyzed using the image method. It is
concluded that the size of the discontinuous phase transition interval gra-
dually increases as the value of directedness is enhanced. Secondly, direct-
edness is classified into two specific types: node properties and hyperedge
properties. They are discussed on twodifferent types of networks. It is found
that directedness belonging to different property cases has a certain degree
of influence on both the contagion process and the criticality of phase
transition. Finally, we compare three different real network data sets and
find that directedness p can affect the phase change interval. The phase
transition interval increases when the probability of nodes with a large
hyperdegree becoming a “point” is greater. Conversely, the phase transition
interval becomes smaller when the probability of becoming a “point” is
higher for nodes with a smaller hyperdegree. The above theoretical and real
network simulations lead to the conclusion that there are two approaches if
we want the viewpoint contagion process to bemore accurate. The first one
is to make all the nodes stubborn in the network. However, this situation
may not be very satisfying. The second approach is to make the nodes with

higher-order influence in the networkmore stubborn. This approachmakes
the contagion process of the network more accurate.

Methods
Data description and processing
We considered three different datasets representing various human inter-
action scenarios: Infect-dublin39,Vote40, andNetscience41. The Infect-dublin
dataset represents the human physical contact network, Vote contains
voting data from Wikipedia since its inception until January 2008, and
Netscience represents co-author relations among scientists. These datasets
are considered simple networks without higher-order structures. To
introduce higher-order effects, we extract all triangle interactions and
represent them as a correlation matrix. Moreover, we focus on the effect of
higher-order vectoriality, so we remove nodes that are not involved in
higher-order interactions. The connectivity properties of these datasets are
summarized in Table 1. <k1 > denotes the average degree of pairwise con-
nectivity, <k2 > represents the average hyperdegree of second-order con-
nectivity, kmax

2 indicates the maximum second-order hyperdegree. kmin
2

denotes the minimum second-order hyperdegree, and knumber
2 signifies the

total number of second-order hyperedges in the directed hypergraph. We
tabulate the generality distributions for the three datasets in Supplementary
Fig. 2 of Supplementary Note 2.

Data addition with directedness
Our research specifically focuses on directedness. The article categorizes
directedness into twomain types: nodedirectedness and edgedirectedness.
In analyzing the actual network, we adhere to the setup detailed in the
article.

Directedness of nodes. How different nodes are a key aspect we are
observing to examine. Directedness probabilities of node directedness can
lead to various outcomes in the contagion process. Specifically, there are
three subcategories:
1. Equal Probability: The probability of each node being a “point” or a

“source” is set to be 0.5. In this case, all nodes have an equal chance of
having either role within each hyperedge.

2. High Probability of “Point”: Nodes have a higher probability of
becoming a “point” with a high hyperdegree. We model this using an
exponential distribution:

f ðxÞ ¼ e�x; ð18Þ

where x represents the hyperdegree of the node. The lower the value of x, the
higher the probability. This is achieved by ordering the sequence of
hyperdegrees in the higher-order network in descending order. The

Fig. 7 | Three realistic network structures. The Infect-dublin network in panel
a demonstrates a noticeable clustering effect. Similarly, the Vote network in panel
b exhibits clustering, highlighting the significance of network structure in under-
standing contagion dynamics. Conversely, the Netscience network in panel c does
not show a significant clustering effect. These networks represent unexplored
structures in terms of higher-order variations. The specific methods used in this

study are described in the data description and processing of the “Methods” section.
However, the visual analysis of these network structures reveals that Infect-dublin
and Vote networks exhibit noticeable clustering effects, whereas Netscience does
not. This distinction becomes more significant when considering higher-order
contagion effects in subsequent analyses.
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probability of a selection with the max hyperdegree becoming a “point” is
set to e−0.01. Subsequently, the interval between the sequences of
hyperdegrees arranged in descending order is set to 0.02. For instance, the
probability of a node with a hyperdegree of 1 becoming a “point” is set
to e−∞ ≈ 0.
3. Low Probability of “Point”: Nodes have a lower probability of

becoming a “point” with a high hyperdegree. Using a similar expo-
nential distribution as above, we obtain the desired probability values.

The specific procedure is akin to the one described above, requiring
only the arrangement of the hyperdegree’s degree sequence in
ascending order. Subsequently, the probability of a node with a
hyperdegree of 1 becoming a “point” is set to e−0.01. All following
operations remain consistent with this approach.

It is important tonote that ifwe specify directedness as anodeproperty,
not require all hyperedges need to have the same type, such as one “point”

Fig. 8 | A comparison between Monte Carlo (MC) results and individual-based
mean-filed (IBMF) theoretical results within the Infect-dublin network.
a–c Demonstrate scenarios of equal probabilities of node directedness from data
additionwith directedness of the “Methods” section, with directedness parameters at
p = 0.4, p = 0.7, and p = 1, respectively. d–f Depict the low probability of “point”,
while g–i represent the high probability of “point”, both settings derived from the

same section. j–l Focus on the directedness of edges. The parameter p is consistently
maintained across vertical counterparts, meaning a, d, g, j corresponds to p = 0.4;
b, e, h, k to p = 0.7; and c, f, i, l to p = 1. The red circles and blue squares indicate
Monte Carlo simulations with initial infection ratios of 0.11 and 0.01, respectively,
complemented by solid red and solid blue lines showing theoretical IBMF values for
these ratios.
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and two “sources” or two “points” and one “source”. Although the rule
graph is guaranteed in the main text, a general hypergraph may not always
be fully realized.Thismayalsopresent a limitationof thenodeproperty.The
edge property can further contribute to exploring this aspect.

Directedness of edges. The edge property is that each node in a
hyperedge will exhibit its property, and nodes in different hyperedges may
exhibit different properties.We investigate theprobability that anynode in a
hyperedge becomes a “point” is 0.5.

Monte Carlo simulation process
The primary challenge in higher-order Monte Carlo simulations involves
simplifying the tensor matrix associated with higher-order networks. We

suggest a simplemethod for this reductionbefore simulation.Thefirst step
is to remove duplicate hyperedges in each dimension. In an undirected
hypergraph, a hyperedge is represented by six tensor elements,
whereas in a directed hypergraph, it’s represented by two. However, in the
contagion process, only one contagion is possible per hyperedge at any
given moment. Therefore, the effect of duplicate hyperedges in the tensor
must be addressed. Next, we reorganize the three-dimensional tensor
matrix. For example, anN ∗N ∗N tensormatrix is restructured intoN∗N2

dimensions, where each N*N matrix dimension in the i-dimension
represents the hyperedge connected to the ith node.We then convert each
N∗Nmatrix dimension into a 1∗N2 matrix to aid further simulation steps.
As a result, we get an N∗N2 matrix, with the ith row indicating all

Fig. 9 | A comparison betweenMonte Carlo (MC) results and individual-basedmean-filed (IBMF) theoretical results within theVote network. a–lCorrespond directly
to their counterparts in Fig. 8. The only difference lies in the network structure.
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hyperedges linked to the ith node. The Monte Carlo simulation is
then performed using the methods detailed in Eqs. (12), (13), and (14).
The key difference in a higher-order network is that node i can only be
infected if the other two nodes in its hyperedges are also infected and

susceptible. The detailed Monte Carlo code is available in Supplemen-
tary Note 6.

Data availability

TheSocioPatternsdata setsweredownloaded fromhttps://networkrepository.
com/socfb.

Code availability

Someof the codes in themanuscript have been placed in the Supplementary
Information. The rest of the numerical simulation code is available upon
request from the corresponding author.

Fig. 10 | A comparison betweenMonte Carlo (MC) results and individual-basedmean-filed (IBMF) theoretical results within the Netscience network. a–lCorrespond
directly to their counterparts in Fig. 8. The only difference lies in the network structure.

Table 1 | Statistics of real-world directed hypergraph

Data set context 〈k1〉 〈k2〉 kmax
2 kmin

2 knumber
2

Infect-Dublin Social network 13.3503 108.0914 556 2 14196

Vote Voting data 7.9590 25.8504 502 1 4205

Netscience Collaboration network 4.9972 13.7521 136 1 1609

〈k1〉, 〈k2〉: average degrees of pairwise and second-order connectivity;
kmax
2 , kmin

2 : maximum and minimum second-order hyperdegrees;
knumber
2 : total number of second-order hyperedges.
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