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The single-photon quantum computing paradigm currently relies on the multi-port interference in
linear optical devices, which is intrinsically based on probabilistic measurements outcome, and thus
non-deterministic. Devising a fully deterministic, universal, and practically achievable quantum
computing platform based on single-photon encoding and integrated photonic circuits is still an open
challenge. Here we propose to exploit the interplay of distributed self-Kerr nonlinearity and localized
hopping in quantum photonic interferometers to implement deterministic entangling quantum gates
with dual rail photonic qubits. It is shown that a universal set of single- and two-qubit gates can be
designed by a suitable concatenation of few optical interferometric elements, reaching optimal
fidelities arbitrarily close to 100% that are theoretically demonstrated through a bound constrained
optimization algorithm. The actual realization would require the concatenation of a few tens of
elementary operations, as well as on-chip optical nonlinearities that are compatible with some of the
existing quantum photonic platforms, as it is finally discussed.

Universal quantum computation (QC) can be realized by combining
arbitrary single-qubit rotations with two-qubit entangling gates, such as the
controlled-NOT (CNOT) quantumgate. So far, there has been a lot of effort
to build useful theoretical models for practical universal photonic quantum
computers harnessing non-classical interference and only employing linear
optical elements1–4, but this only allows to obtain a non-deterministic ver-
sion of the desired entangling gate5–8, i.e., this quantum gate can be imple-
mented with arbitrarily high fidelity but only with probabilistic outcome.
Even though a deterministic CNOT could be implemented, in principle, by
exploiting strongly nonlinear optical elements at the level of single
photons9–12, there are still considerable difficulties in realizing sufficiently
large photon–photon interactions allowing to achieve the so-called photon
blockade regime13–17. Even if promising proof-of-concept demonstrations
have been shown in solid-state cavity QED18–23, and interesting quantum
photonic devices might be realized based on these outcomes24–26, the actual
possibility of exploiting single-photon nonlinearities for developing uni-
versal quantum computation has been debated in the past27–29. Alternative
proposals to implement deterministic two-qubit quantum gates have been
recently put forward in various nonlinear photonic platforms30–34, but no
significant experimental proof-of-principle demonstration has been shown
so far. Hence, the question naturally arises if deterministic QC in photonic
platforms can still be considered a viable route, e.g., by exploiting basic

interferometric elements, as in linear optics quantum computation, com-
bined with Kerr-type nonlinearities.

Here we go beyond the previous proposal to implement two-qubit
gates in quantum nonlinear photonic interferometers using single-rail
encoding34. In fact, unavoidable photon bunching has been shown to
severely hinder the application of single-rail encoding for optical quantum
computing35. So, here we introduce a QC paradigm based on generalized
quantum photonic interferometers, which are shown to allow for an effi-
cient implementation of single and two-qubit gates based on dual-rail qubit
encoding. The platform requirements can be reduced to a standard planar
technology inwhichpropagating single photons interactwith a givendegree
of self-Kerr nonlinearity when simultaneously present in the same wave-
guide channel and freely propagate otherwise. By non-trivially combining a
few elementary layers, namely free propagation and next-neighbors hop-
ping regions, we show by numerical optimization that deterministic two-
qubit gatefidelities arbitrarily close to 100% can be achieved, in theory36. It is
worth acknowledging that conceptual analogies between our proposed
architecture andwhat has beendefined in the literature as aquantumoptical
neural network37,38 exist, but we hereby focus on a model of interacting
photons over the whole circuit instead of considering localized single-site
nonlinearities. In fact, it is hereby shown that the optimization algorithms
achieve themost successful implementation of two-qubit gates for values of
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the photon-photon nonlinearity that are small as compared to hopping
between different waveguides, which is explicitly shown for the paradig-
matic cases of CNOT and Mølmer–Sørensen (M–S)39,40 entangling gates.
Notice thatwe assumeadistributed two-photonnonlinearity over thewhole
circuit, at differencewithmost of the previousworks.We also notice that we
go beyond the existing literature on quantum logic gates optimized for one-
dimensional quantum walks30, since we hereby consider actual imple-
mentations in imperfect photonic integrated circuits by also assessing the
role of different dissipation mechanisms. In particular, we include an ana-
lysis of the effects of population decay, decoherence, and fabrication toler-
ance of the expected gate fidelity, for which we report additional extensive
results in Supplementary Note 5. In perspective, the two-qubit operations
optimized here can be combinedwith arbitrary single-qubit rotations on the
Bloch sphere (in particular, x- and z- rotations) to implement a universal set
of quantum gates and, thus, a full QC architecture. Finally, we discuss the
practical feasibility of the proposed scheme in state-of-art technological
platforms. Our results may ultimately open the route to the realization of
deterministic quantum photonic computing.

Results and discussion
A general formalism to analyze quantum photonic interferometers in the
presence of photon–photonnonlinearities has beenpreviously introduced34.
There, the formalism was meant to theoretically describe integrated plat-
forms in which exciton–polaritons are the propagating elementary excita-
tions, owing to their superior Kerr-type nonlinearities as compared to
standard optoelectronics materials. However, the formalism can be gen-
erally transferred to any material platform possessing an intrinsic third-
order nonlinearity, whichmay be suitably enhanced by transverse dielectric
confinement and pulse shaping, which is hereby described by a Kerr-type
nonlinear Hamiltonian in second quantization. Hence, in the present work,
we prefer to keep the theoretical discussion as general as possible and speak
about interacting photons; wewill specifically refer to the potentially targeted
platforms in the “Discussion” section.

The Hamiltonian model
The general case of n one-dimensional channels (with n corresponding
input/output ports) in which quantized photon states propagate at fixed
wave vector k, interfere through space-dependent evanescent coupling, and
nonlinearly interact when simultaneously present within the same channel
can be described by the following Hamiltonian (ℏ = 1, see Supplementary
Note 1 for a detailed derivation of this model):

H ¼
Xn
i¼1

ωia
y
i ai þ Uia

y2
i a2i

� �
þ 1

2

Xn

i; j ¼ 1

j≠i

JijðxÞ ayi aj þ ayj ai
� �

;
ð1Þ

withH � H½fωig; fUig; fJijðxÞg�. In Eq. (1), the parametersωi≡ωi(k) and
Ui≡Ui(k) denote the energy–momentum dispersion and the Kerr-type
nonlinearity in the ith channel, respectively. From Eq. (1) also notice that
only self-Kerr nonlinearity is assumed in our model while fully neglecting
cross-Kerr contributions and that such nonlinearity activates throughout
the circuit whenever two-photon states are simultaneously present within a
single propagating channel (i.e., a distributed nonlinearity), as opposed to
models in which such Kerr-terms occur in localized regions defined, e.g.,
from single-mode resonators. The space-dependent parameters {Jij(x)}
denote the hopping terms between the next neighboring channels, where x
identifies the propagation direction in each one-dimensional (1D)
waveguide. In particular, photons in the ith channel are annihilated
(created) by bosonic operators ai≡ ai,k (a

y
i � ayi;k), respectively.

In general, the n propagation channels might differ in terms of
energy–momentum dispersion as well as photon–photon nonlinearities.
For our purposes, wewill assume the channels to be identical hereafter. This
allows us to consider a unique dispersion relation, ω =ω(k), and the same
nonlinearity in any propagation channel, U =Ui. In addition, we will be

implicitly assuming that single-photon states are injected into the circuit as
narrow-band, spatially localized wave packets for which phase distortion is
essentially negligible and theKerr nonlinearity does not depend on thewave
vector.Amorequantitative justificationof such assumptions is given later in
the “Discussion” section. Also, generalizations of this scheme are always
possible, of course, which is left for future works.

n-channel circuits and qubits encoding
When many wave vector components are involved, the characterization of
the action of a generic quantumcircuit on a given initialmany-photon state,
ψI, requires to evolve both in time and space such initial configuration to
obtain the final state, ψF, which contains the QC result. In the present case,
where only monochromatic single-photon states are considered, the
description gets simplified. As discussed in Supplementary Note 1 and
following ref. 34, one obtains that the action of the generic circuit is encoded
into a global unitary operator U tot such that

ψF ¼ UM UM�1 � � �U1ψI � U totψI ; ð2Þ

with Um � expð�iH½ω; U ; fJ ðmÞ
ij g�tmÞ denoting the unitary propagator in

themth spatial region of the circuit, i.e., for x∈ [xm, xm+1], where the inter-
channel hoppings can be treated as piecewise constant functions, i.e.,
JijðxÞ ¼ J ðmÞ

ij . In particular, the parameter tm, with tm = (xm+1−xm)/vg,
corresponds to the time spent by photons traveling at group-velocity vg
within themth sub-region of the circuit.

As a final comment, let us stress that we hereby assume dual-rail
encoding to implement singlephotonic qubits, at a differencewith ref. 34. By
doing so, a 2N-channel circuit fed with N single-photon states can be
exploited to represent anN-qubits quantum state. As sketched in Fig. 1a, the
two logical qubit states in a 2-channel device are defined by the two single-
photon Fock states propagating in two adjacent channels, ∣1; 0i and ∣0; 1i,
respectively. The former describes a single propagating photon in the upper
channel, while the latter describes a single photon propagating in the lower
channel. Throughout the paper, we will employ the notation ∣0i2 ¼ ∣1; 0i
and ∣1i2 ¼ ∣0; 1i, in which the subscript denotes the number of channels.
Whenever there is no possible confusion, wemay drop the subscript.Many-
qubits states are straightforwardly obtained by taking the tensor products of
the states above in a 2N-channel device.

Single-qubit gates
Elementary rotations of single qubits can be tailored by suitably combining,
e.g., rotations around the x- and z-axes. As shown in SupplementaryNote 2,
for n = 2 and in the single photon subspace, by means of the dual rail
encoding, one can directly map the dynamics of two coupled channels into
the action of the RX(θ) rotation gate as

RXðθÞ ¼ e�iθ2σX ¼ cos
θ

2

� �
1� i sin

θ

2

� �
σX ; ð3Þ

multiplied by a global phase factor e−iωt, where σX represents the Pauli
X-matrix. In particular, as reported in Fig. 1b, the rotation angle, θ = 2Jt,
depends on the system geometry as well as on the group velocity of the
propagating photons. As it will be addressed in the “Discussion” section, it is
reasonable to assume that the simple component depicted in Fig. 1b
implements an RX(θ) gate with a tunable rotation angle.

The universal gate set for single-qubit operations can be straightfor-
wardly implemented by adding theRZ gate obtained, e.g., from the addition
of a simple phase shifter in one of the two coupled channels3,41.

Two-qubit gates
It is nowadays widely accepted that deterministic two-qubit gates cannot be
devised by means of only linear optical components1,2. Hence, it is reason-
able to argue whether the usage of nonlinear components in photonic
networks, such as those considered in the present work, could eventually
help achieving this goal. Here we report a theoretical analysis that is an
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attempt to positively answer this question. In fact, we are going to show that
the suitable combination of nonlinear and linear components represents a
key ingredient for the development of a universal QC paradigm based on
photonic platforms. Nevertheless, to the best of our knowledge, there is no
intuitiveway todetermine aprior,which is theoptimal arrangementof these
elements to deterministically perform a given quantum gate. Therefore, we
tackle such a problem by exploiting an inverse design strategy based on a
multi-parameter optimization algorithm. In particular, we applied this
approach to a class of 4-channel circuits constituted by the concatenation of
a finite number of blocks, where each block is defined by combining

multiple 2-channels hopping regions with free propagation regions of fixed
length, as sketched in Fig. 1c (see the “Methods” section and Supplementary
Note 2 for further details on the definition of the single unitaries).

Ournumerical results show that this approach can successfully provide
an approximate but highly faithful representation of at least two different
entangling gates, namely the controlled-NOT (CNOT) and the
Mølmer–Sørensen (M–S). Their matrix representation on the computa-
tional basis, S ¼ f∣00i; ∣01i; ∣10i; ∣11ig, is explicitly reported in the
“Methods” section for completeness in Eqs. (4) and (5), respectively. In
particular, we show that in both cases, it is possible to improve the precision
of the representation, which is explicitly quantified by means of the average
gate fidelity �F, Eq. (13), by simply increasing the number of elementary
blocks included in the variational ansatz. This is in agreement with general
results in the context of quantum optimal control landscape theory. Indeed,
it is guaranteed that searching for a solution in high enough dimensional
spaces should yield optimal configurations36 (see Supplementary Note 4,
Section “Methods” for details). The optimization procedure is implemented
as follows:wefirst parametrize a set of possible hoppingparameters between
the different channels, given in a matrix representation of the unitary evo-
lution operator, i.e., the generalized time propagator in Eq. (2) (with fixed
propagation time). Then we analyse the performances when increasing the
number of sequentially concatenated blocks of the type represented in
Fig. 1c by letting the algorithmic optimizer minimize the cost function.
Details on the choice of the cost function are reported in the “Methods”
section, see in particular Eq. (12).

Optimization of the CNOT gate
In order to quantify the performances of the optimization scheme, we
consider the values of the cost function and the average gate fidelity reached
by the multi-parameter optimizer once at convergence, see Eqs. (12) and
(13) in the “Methods” section. Numerical results for such quantities in the
case of the CNOTgate are shown in Fig. 2a, b, respectively. There, we report
results for an increasingnumber of elementary blocks anddifferent values of
the photon nonlinearity, ranging from zero or very weak to ultra-strong as
compared to Jmax.

In order to keep the analysis on a general level,we assume the tunneling
rate in each hopping region (the HR units in Fig. 1c) as an independent
optimization variable such that 0≤ J ≤ Jmax, with Jmax ¼ 1 in dimensionless
units. The propagation time in each sector is also fixed at t = 1 as a
dimensionless parameter, but it may be included in the optimization
parameters as well, in principle. In terms of realistic parameter values, a
discussion of the actual dimensions and physical implementations will be
given in the following section.As it canbenoticed atfirst glance fromFig. 2a,
the cost function cannot be minimized for negligible values of the non-
linearity, always displaying values that are significantly larger than zero
independently of the number of blocks. This behavior is compatiblewith the
well-established knowledge that two-qubit entangling gates cannot be rea-
lized only by means of linear (or approximately linear) components1,2. On
the other hand, we notice that slower numerical convergence towards the
highest fidelities is observed for U≫ Jmax case, which may be attributed to
the onset of the photonblockade betweenneighboring channels34.However,

Fig. 1 | Photonic QC elements. a Qubit logical state obtained with a dual-rail
encoding of a pair of photonic channels, in which single-photon Fock states can be
injected into each waveguide and measured at the output through single-photon
detectors. b The hopping process of a single photon between two channels can be
viewed as anRX gate (see paragraph Single-qubit gates). c Single block of a two-qubit
information processing unit:Multiple repetitions of such an elementary block can be
concatenated to obtain the desired two-qubit gate. Hopping regions (HR) (green
boxes) depend on twoparameters (Jm, tm), while free propagation (FP) (blue regions)
depends only on a single parameter (tm) for a given value of the photon–photon
nonlinearity,U. The FP layers within the U inter, Udown, and Uup regions are assumed
to have fixed propagation time set by the corresponding HR terms, which is
implicitly represented by a simple line in the sketch.

Fig. 2 | CNOT optimization. Comparison of a the
best cost function (see Eq. (12)) and b average gate
fidelity (see Eq. (13)) for different values of the Kerr
nonlinearity U (in hopping parameter Jmax units)
after the optimization of the block structure. The
free propagation and interaction times were both
fixed to t = 1 in dimensionless units.
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weak nonlinearities relative to the hopping (in particular, ranging between
U/Jmax = 0.05 and 0.5, in normalized units) give rise to reasonably fast
convergence of the optimizer towards minimal cost function values. These
numerical results suggest that the entanglement betweenqubit states in such
platforms emerges as the result of the competition betweenhopping (i.e., the
J parameters) and the entity of the nonlinear shifts affecting two-photon
states propagatingwithin the same channel (i.e.,U). Indeed, even if the latter
are never fed into the device as input states, and they do not belong to the
computational basis, their excitation does occur during the time evolution
within the circuit andultimately affects the computation outcome. Thus, the
final output of the four-channel system is the nontrivial result of the extra
phase-shifts accumulated in the presence of such nonlinearities.

In fact, this is further evidenced by plotting the corresponding average
gate fidelity as a function of the number of blocks in Fig. 2b. For non-
linearities in the range 0:05 <U=Jmax<0:5 this figure ofmerit reaches values
close to 100% for a number of elementary blocks in the order of 10. In
addition, it emerges that the average gate fidelity does not depend mono-
tonically on the photon nonlinearity for a given number of blocks and that
the condition U>Jmax does not help in reaching a high fidelity for a rea-
sonably small number of blocks. From these numerical results, the optimal
nonlinearity seems U ¼ 0:5Jmax, which allow obtaining an almost ideal
CNOT gate with a reasonably compact circuit: 7 elementary blocks are
already sufficient to reach an average gate fidelity very close to 100%.

As an illustration of the actual performances to be expected, the real
and imaginary parts of the optimized quantum gate matrix are explicitly
shown for the best possible CNOT gate obtained with our numerical
optimization procedure (see upper panels in Fig. 3 for a close-up). The real
part seems to perfectlymatch the CNOTmatrix, while the imaginary part is
almost irrelevant, thus faithfully reproducing Eq. (4). In Fig. 3 we also show
the full transfer matrix when taking into account all the possible config-
urations within the two-photon subspace, which spans, of course, also
outside of the logic space of interest (e.g., when two photons simultaneously

propagate within the same waveguide channel at the input or output port,
respectively). This strongly supports the conclusion that such a gate is
deterministic since no logic state is basicallymapped outside the logic space,
i.e., with negligibly small amplitude. It should be noted that inside the
entangling gate, the quantum state can (and must) populate states lying
outside the logic space in order to have the two photons nonlinearly
interacting with each other; on the other hand, the output must always be
restricted to the logic space for the operation to be defined as deterministic.
The optimal parameters found for this structure are fully reported in a
dedicated table in SupplementaryNote 8 for a straightforward reproduction
of our results for the interested reader.

Optimization of the M–S gate
While the optimization of the CNOT gate by concatenating a limited
number of elementary operations in a nonlinear quantum photonic circuit
is a relevant result per se, here we also show that a similarly efficient algo-
rithmic optimization is possible for other entangling operations on the two-
qubits space. Namely, we hereby focus on the ideal quantum gate defined in
Eq. (5), the so-called Mølmer–Sørensen gate. The related numerical results
are summarized in Fig. 4, where the behavior of the optimized average gate
fidelity is shown as a function of the number of blocks for different values of
the nonlinearity (Fig. 4a). The best approximate matrix is also shown in
Fig. 4b. Similarly to what observed for the CNOTgate, it appears as a sort of
general trend that convergence towards the ideal operation is reached quite
fast for values of the nonlinear parameter in the range 0:05Jmax<U<0:5Jmax.
This is not the case for negligible or too large nonlinearity values, although
the photon blockade (i.e., for U=Jmax ¼ 10) seems to have less of a detri-
mental effect here. Fig. 4b also shows the optimal M-S gate obtained for
U=Jmax ¼ 0:5, restricted to, the computational basis subspace, which evi-
dently implements an almost ideal deterministic RXX operation. A plot of
such an optimized M–S gate in the whole two-photon excitation space is
explicitly reported in Supplementary Note 7, in analogy to Fig. 3 for the

Fig. 3 | Best CNOT matrix. a Real and b imaginary parts (rounded at the third
decimal digit) of the approximate CNOTmatrix on the basis of all the possible two-
photon input/output states obtained by using a 12-block structurewithU ¼ 0:5Jmax.
The theoretical average fidelity for this gate is �FðθoptÞ≈ 99:96%. Vertical and

horizontal black lines divide the logic space from the one based on states that are not
on the computational basis. The projection of logic states of the computational space
is negligible, as clearly seen from the plot. The zoom highlights the gate matrix in the
two-qubit logic space.
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CNOT. Also, in this case, a table reporting the optimal parameters for this
structure is given in Supplementary Note 8 for completeness.

Realization and material platforms
It is now relevant to discuss the scalability and the possible physical
implementations. Related to that, we will discuss the following any possible
source of noise, loss, decoherence and fabrication tolerance, which we
hereby address at the level of qualitative discussion while reporting all the
relevant quantitative results in Supplementary Notes 5 and 6.

Several quantumphotonic platforms have been put forward in the past
few years, mostly based on conventional nonlinear materials in passive
semiconductors, such as Si, SiN, glass, etc.41. While the scheme we have
presented in this work is general and can also be applied outside the pho-
tonic realm, in principle, here we focus on discussing its realization in
nonlinear photonic circuits. First, we notice that any realistic source of
single-photon wave packets should be considered over a finite bandwidth.
This implies that a proper theoretical treatment should consider a full
quantum mechanical description of the multimode fields and their non-
linear interaction to best capture the effects of cross- and self-phase mod-
ulation on the propagating wavepackets27–29. The theoretical approaches
developed, e.g., in refs. 32,42 might be applied, which would require a
significant extension going beyond the present work. In particular,
numerical limitations in the algorithmic optimization procedure might
arise, which is then left for future developments.

Concerning these sources, single-photon Fock states can be pro-
duced at high repetition rates, high purity levels, and low bandwidth
from single quantum emitters43, as well as detected at the output of the
device through highly efficient single-photon detectors44. In addition,
the injection of single-photon Fock states generated from quantum
emitters into photonic integrated circuits does not constitute a tech-
nological bottleneck nowadays45. In fact, most single-photon sources
based on pulsed single emitters, such as single QDs46 or molecules47, are
quite narrow bands, and they can be coupled to an approximately linear
waveguide mode dispersion. The latter can, in turn, be fully engineered
by inverse design techniques48, with either real or imaginary parts of
their eigenmodes possessing the desired properties, such as linearity,
reduced bandwidth (e.g., flat band modes), low losses (e.g., bound states
in the continuum)48. In addition, we also assume that the single-photon
wave packets are spatially localized, typically on the optical wavelength
scale, to enhance the two-photon nonlinear interaction. This may be
practically achieved in this way: A single photon source emits a narrow-
band wave packet (i.e., about 0.1 meV in a cavity, with temporal spread
in the order of few tens of ps), which in turn excites a linear guidedmode
with low-group velocity, thus corresponding to a spread in reciprocal
space that is on the order of something 0.5 μm−1; ultimately, we get a
single-photon state with few tens of ps temporal duration propagating as
a few microns spatial wave packet. As an additional pre-requisite, the

Kerr-nonlinearity should be assumed constant over this bandwidth (and
hence wave vector span).

Then, we notice that in view of devising a full QC platform, the opti-
mized circuits implementing two-qubit operations must be complemented
with isolated two-channel circuits in which single-qubit rotations are per-
formed. In this respect, the hopping rate J can be tuned by suitably choosing
the spatial separation between two adjacent channels. On the other hand,
the parameter vg can be tuned and externally controlled by properly shifting
the working point along the photon dispersion. This task can be practically
achieved, for instance, by local temperature tuning, which results in local
refractive index changes. This would ensure, for instance, the flexibility to
perform RX rotations with externally controlled rotation angles. In prin-
ciple, the application of the optimization procedure described in this work
might lead to the targeted design of a quantum photonic integrated circuit
fulfilling the requirements to achievedeterministic quantumgate operations
for each specific platform under consideration. As an alternative long-term
view for scalability, it might also be worth envisioning the optimized two-
qubit gate as a stand-alone element of an external computational archi-
tecture, which is only deputed to perform the operation for which it is
designed, e.g., the CNOT or the RXX gate, any time it is needed in the
quantum computing algorithm.

In terms of possible material platforms, besides the well-established
silicon-on-insulator technology, where remarkable advances in quantum
photonic experiments have been recently shown49, a viable example might
be the SiN platform, for which the high nonlinearity, low-loss, and mature
fabrication of complex circuits50 might turn out to be an optimal combi-
nation to realize a proof of principle demonstration, at least. More recently,
exciton-polaritons in semiconductor nanostructures have been proposed as
an interesting platform to realize quantum photonic applications33,34,51,
relying on the first experimental evidence for the quantum nature of the
propagating polariton field excited from a single-photon Fock state52,53 (a
key requirement of our theoretical scheme). First, let us notice that by
assuming, e.g., typical excitation energies in the ℏω ~ 1 eV range, hopping
parameters can be assumed such that _Jmax ∼ 1 meV, as an order of mag-
nitude value derived from recent experiments54. Then, we notice that the
polariton–polariton scattering rate is of the Kerr-type, as it is well
established14,20,21. This allows us to realize the model Hamiltonian in Eq. (1)
with valuesof nonlinearity that are compatiblewith theones required for the
optimal operations identified in the previous section. In fact, the single-
photon nonlinearity depends on the actual field confinement14,15. For 1D
propagating polariton wave-packets with the spatial extension of the order
of their wavelength (i.e., 1–2 μm, corresponding to a wave vector spread of,
say, 0.5–1 μm−1 over a bandwidth of few hundred μeV, after the proper
design of the polariton waveguide mode dispersion) this may range from
10 μeV (realistic, see, e.g., ref. 20) up to 50 or even 100 μeVdepending on the
material platform (optimistic, although recent works have reported
enhanced nonlinearities of dipolar polaritons55–57). These values would then

Fig. 4 | Mølmer–Sørensen gate optimization. a Best average gate fidelity values
comparison after the optimization of the block structure non-decreasing. Free
propagation and interaction times were fixed to 1 ps. b Plot showing the optimal

M–Smatrix (rounded at the third decimal digit) forU=Jmax ¼ 0:5 and 20 blocks, for
which we calculate �FðθoptÞ≈ 99:96%.
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correspond toU=Jmax ¼ 0:01� 0:1, i.e., in the rangewherewe have shown
that two-qubit gates could actually be realized with large fidelity (see
Figs. 2 and 4). In addition, Jmax can also be reduced in realistic samples
(depending on the distance between neighboringwaveguides), thusmaking
the optimal parameter (U=Jmax ¼ 0:5) within reach. This would also allow
us to reduce the number of blocks required to achieve an optimal fidelity
close to 100%,which is particularly relevant when losses have to be included
in the discussion, as it will be addressed in the next section.

Losses, decoherence and fabrication imperfections
We have introduced a scheme based on the implementation of a unitary
Hamiltonian evolution, but the realization of this paradigm in state-of-the-
art photonic devices has to inevitably cope with the effects of losses and
decoherence. Moreover, tolerance of the simulated figures of merit, such as
gate fidelities, to fabrication imperfections or static fluctuations of structure
parameters has to be assessed. Here we provide a short discussion sum-
marizing the main conclusions about these effects. The role of losses and
decoherence has been characterized by means of numerical simulations
within an open quantum system approach. In particular, we stress that we
paid attention to the deviations induced by non-unitary effects on the
optimized circuits characterized in the “Results” section. A priori, such a
procedure is conceptually different from performing a parameter optimi-
zation of the quantum circuit in the presence of incoherent effects. There-
fore, it is reasonable to believe that further performance improvements in
terms of average gate fidelity could be achieved by accounting for such
incoherent effects during the optimization procedure. The details are
reported in Supplementary Note 5.

First, we address the issue of population losses. As already analyzed34,
propagation losses in such interferometers may affect the actual signal
intensity detected at the output of the device, but correlations between single
photons properly normalized to the detected intensity are not affected. In
fact, provided the whole interferometer length remains within the propa-
gation lifetime, the structure of the quantum gate operation is preserved
within the computational basis, albeit with reduced efficiency due to the
reduced probability of detecting coincident photons at the output (signal
loss). To check this conjecture numerically, we have solved the quantum
master equation for our model, including population losses in a Lindblad
term (see Supplementary Note 5). The outcome is straightforward: the
average gatefidelity has an exactly exponential decaywith a lifetimegivenby
the inverse of the two-photon population decay rate, i.e., τ = 1/(2γ). For-
mally, such an exponential decay implies that in the presence of losses, the
circuit doesnot implement adeterministic gate.On theotherhand,we stress
that such exponential damping is expected to play a crucial role in the
performance of any real-world quantum circuit58, where the computational
basis is represented by a collection of states with a given fixed number of
fundamental excitations (in our case the two photons propagating within
the given channels). In such a case, any input state belonging to the com-
putational subsetwill drift out of such subspace, leading to a less-than-unity
average gate fidelity at the output. In this respect, as shown and discussed in
Supplementary Note 5, our circuit displays some interesting features.
Indeed, even if spurious contributions necessarily appear in the output state,
the gate structure in the two photons sector is (almost) preserved, i.e., the
lossy circuit reproduces—up to the exponential scaling factor mentioned
above—the quantum gate targeted during the optimization procedure.

Other sources of noise, such as thermal noise or pure dephasing, can
also be quantified through dissipative terms in the master equation (see
Supplementary Note 5). First, photon number fluctuations can be con-
sidered absolutely negligible, given that low working temperatures in the
Kelvin range produce negligible thermal photons in the visible/near-infra-
red range, and assumingpure Fock-state injection guarantees nopresence of
higher photon number states (as it would be the case, e.g., in an attenuated
laser source). On the other hand, the effects of number-dependent
dephasing might have an impact on the relative coherence between the
qubit basis states. In order to properly quantify these effects, we have con-
sidered a number-dependent Lindblad term with a pure dephasing rate

γdeph. Our numerical results (reported in Supplementary Note 5) suggest
that a pure dephasing rate γdeph < 10

−2γ0 (with γ0 determined as the inverse
of the total propagation time within the whole interferometer) has no
practical effects on the qubits decoherence, independently from the popu-
lation decay rate γ, thus preserving the structure of the two-qubit entangling
operation within the computational basis sector. On the other hand, dual
rail encoding naturally allows the minimization of the effects of the loss of
relative coherence between the two logical states of a single qubit, which are
defined from single photons propagating in different channels. The results
are interesting per se, and they might serve as a guideline for experi-
mentalists working on specific material platforms once a proper char-
acterization of dephasing rates is performed.

Finally, we have also considered the effects of static fluctuations of the
model parameters on the overall gate performances, as it might occur when
fabrication imperfections or structural disorders come into play after the
circuit realization. Also, in this case, by considering realistic parameter
fluctuations in state-of-the-art semiconductor technology, it is concluded
that the optimal gate fidelities predicted in this work can be safely preserved
against the main sources of static disorder (see Supplementary Note 6).

To conclude this section, we try to be specifically more quantitative on
the estimation of model parameters for prospective polariton integrated
circuits. First, let us notice that intrinsic exciton polaritons lifetime in
inorganic semiconductor nanostructures has beenmeasured in the order of
100 ps59. Moreover, exploiting the concept of bound-state in the continuum
in a patterned waveguide geometry to suppress out-of-plane radiation los-
ses, lifetimes in the order of 300 ps have been measured in polariton con-
densates (see, e.g., additionalmaterial of ref. 60). Recently, such propagation
lifetimes have been confirmed in a polariton waveguide geometry57. In
addition, different material platforms and designs have been explored for
waveguide polaritons61–64. Based on these results, it is very likely that com-
bining suitably engineered photonic lattices with single-quantum well
samples, propagating single-polariton states with ultra-long propagation
lengths might be realized65. Hence, the single polariton decay can be esti-
mated in the ℏγ ~ 1−10 μeV energy range. For the results shown, e.g., in
Figs. 2 and 4, a sequence of 12 blocks with an average duration of about 8 ps
per block (i.e., assuming a 1 ps average propagation time in each of the eight
sectors schematically represented in Fig. 1c) amounts to an estimated total
propagation time of 96 ps when considering U=Jmax ¼ 0:05. This would
allow to achieve a two-qubit entangling gate with fidelity in excess of 99.5%
with a total propagation time well within the polariton lifetime of, e.g.,
300 ps when restricting to the computational basis subspace, although with
reduced efficiency due to the exponential decay of population (see, e.g., Fig.
S-2 in Supplementary Note 5).

Comparisons with existing literature
We found conceptual connections with a few works in the recent
literature30,37,38, as alreadymentioned in the Introduction. On the one hand,
the analogy with quantum optical neural networks37,38 may be further
explored in our case to find a possibly reduced depth of the circuits to
implement a targeted two-qubit gate. In particular, layers of linear inter-
ferometers combined with localized nonlinearities are considered in ref. 37,
which allows us to optimize aCNOTgate in dual rail encoding in a noiseless
quantum optical neural network with a 10−4 error, which is basically
comparable to our result. In a follow-up work38, lossy quantum optical
networks are considered and their functionalities are optimized in the
context of Bell-state analysis. In the latter work, only population losses are
taken into account, which brings a reduced efficiency of the Bell-state
analyzer (similar to our discussion above), but everything goes as expected
within the computational basis. Losses are taken into account already at the
training stage, which we might consider for future developments of the
present work. While the work in ref. 38 does not consider optimization of
CNOT or M–S gates, we can infer similar performances of the offline-
optimized neural networks (i.e. a perfect network is trained, then losses are
added to the solution) when compared to our quantum interferometers,
albeit with different circuit depth due to the different model for
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nonlinearities. In fact, localized Kerr scatterers are considered between
purely linear interferometric layers, imparting up to π phase shift on the
two-photon states, andoperation efficiency drops significantly to about 30%
when a π/4 shift is assumed. In our proposed implementation, the dis-
tributed nonlinearity model is far from imparting such a large phase shift,
which is the reasonwhywe obtain comparable performances at the expense
of an increased number of layers (blocks).

Finally, a CNOT gate is optimized in ref. 30 in continuously coupled
waveguides implementing correlated 1-D quantum walks. The theoretical
model thereby considered shares many similarities with ours, with com-
petition between nonlinearity and hopping occurring over the whole pro-
pagation, inwhichno losses are considered.A similarly optimalU/Jmax = 0.5
is found for the best CNOTperformance, with fidelities comparable to ours
in the lossless case. However, there does not seem to be a fidelity drop for
U/Jmax≫ 1, as our results suggest, rather, it asymptotically increases to100%
on increasing U/Jmax.

Conclusions
Wehave proposed a quantum computingmodel based on the realization of
a set of universal qubit gates in nonlinear photonic interferometers, where a
dual-rail type of qubit encoding is assumed. We have shown that the
interplay of hopping between nearest-neighbor waveguides and single-
photon nonlinearities within the same propagating channel allows to build
robust deterministic entangling gates between two such photonic qubits
with high fidelity, whose quest has been one of themajor issues in this field.
The optimal realization of this operation on-chip is achieved by a suitable
concatenation of something between 10 and 20 elementary blocks, each
containing all the possible combinations of propagationunitariesdefinedon
a 4-port device, without the need for additional ancillarywaveguides.On the
quantitative side, we have shown that optimal CNOT and M–S quantum
gates can be designed with 99.96% theoretical fidelities. It is worth noting,
for comparison, that currently available QC devices have state-of-the-art
CNOT fidelities in the order of 99.77% with superconducting circuit
architectures66, and M–S fidelities of 99.4% with trapped ion few qubits
devices (Latest data from the IonQAriaQPUspecifications, see, e.g., https://
ionq.com/quantum-systems/compare (accessed 16 January 2024)). Finally,
while the relevance of the results reported in this work is mainly theoretical,
theoptimal operations achievedhave been tested against themain sourcesof
population loss, thermal noise and pure dephasing, also showing good
resilience to static parameters fluctuations derived from, e.g., fabrication
imperfections in actual devices. In conclusion, we believe these resultsmight
foster further research toward the realization of quantum devices to be used
as buildingblocks of a canonicalmodel of quantumcomputation employing
single propagating photons as information carriers.

Methods
Two qubit gates
In this work, we have targeted two-qubit operations defined as controlled-
NOT (CNOT) and Mølmer–Sørensen (M–S)39,40, which are paradigmatic
entangling quantum gates. In particular, the CNOT is described by the
following ideal operation in matrix representation on the two-qubit basis67

CNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
6664

3
7775: ð4Þ

Its action is such that the state of the second (target)qubit isflippedwhen the
first (control) qubit is in its logical state ∣1i.

The M–S gate40 is an alternative entangling operation consisting of an
RXXgatewith afixedangle ofπ/2.Differently fromtheCNOT, theM–S gate

has a non-trivial imaginary part:

RXXðπ=2Þ ¼ 1ffiffiffi
2

p

1 0 0 �i

0 1 �i 0

0 �i 1 0

�i 0 0 1

2
6664

3
7775; ð5Þ

where RXXð2θÞ ¼ exp �iθσX � σX
� �

.
In the present implementation, these two gates are realized by

exploring the time propagation of a pair of single-photon states into a 4-port
quantum photonic interferometer. The general Hamiltonian describing
such a system is Eq. (1) with n = 4, which accounts for two main phe-
nomena, i.e., two-photon nonlinear phase shifts and hopping of photons
between adjacent channels, respectively. Hence, all possible time-evolution
unitary operators can be written as a tensor product of a single-channel
operator, UFP, accounting for nonlinear propagation, and a two-channel
onedescribinghopping events,UHR.Thematrix formof these twooperators
is reported in Supplementary Note 2, where the explicit dependence on the
parameters of theHamiltonianmodel, as well as on the propagation time in
each sector, can be appreciated.

In light of these considerations, these twomatrices canbeused todefine
the set of elementary 4-channel operations, that is {U free,Uparal,U inter,Udown,
Uup}, needed for the parametrization of the fundamental block depicted in
Fig. 1c. In particular, their explicit expressions read

U free ¼ UFP � UFP � UFP � UFP ð6Þ

Uparal ¼ UHR � UHR ð7Þ

U inter ¼ UFP � UHR � UFP ð8Þ

Udown ¼ UFP � UFP � UHR ð9Þ

Uup ¼ UHR � UFP � UFP ð10Þ

where⊗ denotes the tensor product. For our purposes, it is worth noticing
that the two UHR operators in Eq. (7) are defined, in general, with different
values of Jij. This degree of freedom is exploited in the optimization pro-
cedure.Once the unitary operatorUb describing the single block depicted in
Fig. 1c is parametrized, the total time-propagatorU tot for a structurewithM
blocks is obtained by considering the ordered product of such block
operators, that is

U totðfθsgÞ ¼ �M
b¼1

Ub ¼ UM UM�1 � � �U2 U1; ð11Þ

where {θs} denotes the set of physical parameters used for representing the
M-block system.

Cost function, minimization scheme, and gate fidelity
In this section, we briefly describe the main ingredients used in the opti-
mization scheme, namely the cost function, the numerical optimizer, and
the average gatefidelity used to assess the gate performances described in the
previous sections.

The cost function considered in the present work is defined as

CðfθsgÞ ¼k ~U totðfθsgÞ � T k2F ð12Þ

in which ∥ ⋅ ∥F denotes the Frobenius norm, ~U totðfθsgÞ ¼ e�iΔϕU totðfθsgÞ
andT denote the total unitary operator describing the 4-channel system (up
to a global phase) and the targeted ideal operation (either the CNOT or the
M–S in Eqs. (4) and (5), respectively, are both restricted to the
computational basis space. The Δϕ is a real parameter used to compensate
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for a possible global phase difference between U totðfθsgÞ and the target
operation T . In practice, such a global phase can always be tuned bymeans
of single-qubit phase-shift operations performedon each channel at the end
of the circuit.

The optimization procedure aims at finding the best approximation of
the target operator T by iteratively looking for the set of parameters, {θs},
that minimizes the cost function C({θs}). Specifically, this task is performed
by means of numerical routines. In particular, we make use of the Scipy68

implementation of L-BFGS-B69,70 optimizer (whose execution has been
accelerated with JAX71,72), which is a limited-memory algorithm for solving
large nonlinear optimization problems subject to simple bounds on the
variables.

Once at convergence, the routine returns the optimal set of physical
parameters fθopts g thatminimizesC({θs}) for a givenvalueof thenonlinearity
and number of blocks. The actual performances of the optimization pro-
cedure are subsequently quantified by computing the average gate fidelity,
�Fðfθopts gÞ, also known as ensemble average fidelity67. In practice, this is
equivalent to computing the average fidelity between the targeted quantum
state and the one obtained after optimization over a certain ensemble. The
explicit expression for this figure of merit reads

�Fðfθopts gÞ ¼ 1
jSj

X
i2S

jhij~Uy
totðfθopts gÞT jiij2 ð13Þ

in which we employ the computational basis S as the ensemble over which
the average is calculated, and ∣S∣ represents the number of states in the
computational basis S, i.e. ∣S∣ = 4 in the two-qubit case under consideration.

Similarly to what was reported above, thematrix T in Eq. (13) denotes
one of the two target operators, as defined, e.g., in Eqs. (4) and (5). Con-
sequently, the particular values fθopts g depend explicitly on the chosenT . An
explicit derivation of Eq. (13) is reported in Supplementary Note 3.

For each numerical result reported in the manuscript (corresponding
to a given value of nonlinearityU and to a given number of blocks), we have
sampled different initial sets of hopping parameters {Jij} recorded as one-
dimensional vectors depending on the number of blocks. When trying to
optimize a circuit with few blocks (i.e., ≤15), we have considered 2000
different initializations, while for a larger number of blocks (i.e., ≥16), we
have considered only 200 initial random configurations. A different opti-
mization procedure is executed for each initialization. Among the resulting
optimization outputs, we have selected the best final configuration in terms
of the achieved accuracy, i.e. the one leading to theminimal value of the cost
function.We refer to SupplementaryNote 4 for additional plots concerning
the ensemble mean of the average gate fidelity calculated over different
initializations for an increasing number of blocks. The initial set of hopping
parameters is sampled from a Gaussian distribution centered in 0:5Jmax
with standard deviation 0:1Jmax.

As a final comment, we notice that it might sound appealing to try
using the average gatefidelity as a cost function.However, since this quantity
is only sensitive to the squaredmodulus of the overlap amplitudes, it cannot
be actually used to optimize ~U totðfθsgÞ. Indeed, if on the one hand, it is easy
to show that

Cðfθopts gÞ ¼ 0 ) �Fðfθopts gÞ ¼ 1; ð14Þ

on the other hand, the converse statement does not hold true, in general. In
other words, there exist sets of parameter values that maximize the fidelity
without simultaneously minimizing C({θs}).

Data availability
All the data and simulations that support the findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The Python codes developed for this study are available from the corre-
sponding author upon reasonable request.
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