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Dynamics of inertialess sedimentation of a rigid
U-shaped disk
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When particles sediment in a viscous fluid, the character of their trajectories depends sen-

sitively on the particles’ shape. Here we study the sedimentation of U-shaped rigid disks in a

regime where inertia can be neglected. We show that, unlike the case of planar disks which

settle in a fixed orientation relative to the direction of gravity, U-shaped disks tend to perform

a periodic sequence of pitching and rolling motions which cause their centre of mass to

sediment along complex trajectories that range from quasi-periodic spirals to helices. Thus,

we demonstrate that particles of achiral shape can sediment along chiral paths whose

handedness is determined by their initial orientation rather than their geometry. Our analysis

provides a framework in which to interpret the motion of sedimenting particles of arbitrary

shape.
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The zig-zag trajectory of a sheet of paper settling to the
ground under its own weight1,2 is a familiar example of
sedimentation, where the unsteady motion and complex

trajectories of the sheet are dictated by inertial dynamics. By
contrast, when inertia is negligible, gravity forces balance viscous
drag and trajectories tend to be simpler: spheres descend verti-
cally with constant velocity according to Stokes’ law, while rods,
disks or ellipsoids follow oblique paths set by their initial
orientation3.

The handling and processing of microscale materials, which is
routinely performed in a liquid environment4, involves a rich
variety of processes in the Stokes limit of vanishing inertia.
Examples of sedimentation on the microscale include the segre-
gation of graphene by centrifugation5, the preparation of gra-
phene ink6, blood testing methods7, microalgae harvesting8, and
the separation of microplastics from natural sediment9,10.

Particle shape is a key factor in microhydrodynamics in the
Stokes limit3. For non-colloidal spheres, complex sedimentation
behaviour requires long-range hydrodynamic interactions that
arise in suspensions11. However, two identical but non-spherical
particles such as rods, disks or hemispheres, can sediment along
tumbling trajectories; on these, the two particles undergo in-
phase periodic reorientations, accompanied by concomitant
modulations in their sedimentation speed and separation
distance12.

Complex single-particle motion can arise in simple shear flow,
where non-axisymmetric particles exhibit rotational motion
characterised by a combination of chaotic and quasi-periodic
orbits13. In contrast, to the best of our knowledge, screw motion
is the most complex single-particle sedimentation behaviour
reported in the literature, where the centre of mass of the particle
follows a helical path while rotating at a constant angular velocity
about the axis of sedimentation14,15. These chiral particle paths
are associated with chiral particle shapes, as shown theoretically
in models of propellers16, helices17, and more generally particles
with irregular shapes18. A direct comparison between experi-
ments and a bead-spring model based on the
Rotne–Prager–Yamakawa theory indicates that a symmetrically
bent fibre, an achiral shape, sediments along a vertical path,
whereas an asymmetrically bent fibre, a chiral shape, exhibits the
complex reorientations associated with screw motion19. In this
paper, we demonstrate that achiral particles can also sediment
along chiral trajectories, whose handedness is determined by their
initial orientation.

We select our rigid particle shape among the complex shapes
which can spontaneously emerge when manipulating flexible
fibres and membranes linked to applications from biology4 to
nanomaterials5. Experiments and bead-spring models20,21 have
shown that a sedimenting flexible fibre gradually bends into a
symmetric U-shape as it descends and reaches a steady sedi-
mentation state akin to that of the symmetrically bent rigid fibre
discussed above19. An initially crumpled elastic disk also relaxes
into a symmetric U-shape (see the “Methods” section). We select
this canonical achiral shape, which has two orthogonal planes of
mirror symmetry, as our rigid particle.

In this paper, we explore the sedimentation of this U-shaped
rigid disk in a regime where inertia can be neglected. We deter-
mine the mobility matrix of the disk from experimental data and
use it to simulate the disk’s long-term behaviour in an unbounded
fluid where the dynamics of any particle are fully characterised by
a phase space spanned by two orientational degrees of freedom.
We show that unlike U-shaped fibres, such U-shaped disks can
exhibit a range of different spiralling motions including helical
screw motion, despite their achirality. In so doing we provide a
framework in which to interpret physically the motion of sedi-
menting particles of arbitrary shape.

Results and discussion
Experimental approach. We studied the sedimentation of our
U-shaped disk in a Perspex tank of internal dimensions
90 × 40 × 40 cm3, filled to a height of 75 cm with silicone oil
(Allcock & Sons, density ρf= 972.7 ± 0.5 kg m−3, dynamic visc-
osity μ= 1.02 ± 0.01 Pa s, refractive index nf= 1.403 at the
laboratory temperature of 22 ± 1 °C) (see Fig. 1a). The U-shaped
disks were manufactured by accurately cutting on a lathe a thin
polyamide nylon sheet (Goodfellow, thickness b= 236.7 ± 0.3 μm,
density ρs= 1130 kg m−3, refractive index ns= 1.53) sandwiched
between two metal sheets, into a disk of radius
R= 12.00 ± 0.05 mm. Each disk was then thermoformed into a
U-shape with a radius of curvature at its centre, Rc= 6.3 mm
(Fig. 1c), by placing it between the two faces of a milled alumi-
nium mould which was in turn heated to 200 °C. We also per-
formed a few experiments with a smaller, more strongly curved
disk (R= 5.00 ± 0.05 mm, Rc= 1.05 mm).

Prior to each experiment, the tank was stirred vigorously using
a two-blade propeller, taking care to avoid the entrainment of
bubbles. This was necessary to homogenise small density
variations, which arose because of residual temperature gradients
and air entrainment. At the start of each experiment, we used a
metre-long spatula to pick up the disk from the bottom of the
tank and to position it centrally and ~10 cm below the surface.
This location was chosen to minimise the effect of tank
boundaries and upper free surface on the sedimentation. A
20 cm long rod was then inserted to manually adjust the disk’s
initial orientation. Image recording with a top view camera
(Fig. 1a) was initiated 20 s after removing the rod, which was
sufficient for all fluid motion caused by the rod to subside.

The tank was illuminated with a full HD projector (Optoma
HD143X) mounted sideways, which cast 20 stationary 290 μm-
thick planes of light (41 in the experiments featuring the smaller
disk) (see Fig. 1a). The sedimenting disk was illuminated by at
most one plane at any time because the minimum spacing
between the planes (29.5 mm in the centre of tank) was larger
than the diameter of the disk. The disk traversed each plane of
light without significant reorientation; therefore light scattered at
the points of intersection with the plane and captured by a top-
view camera at 15 frames per second (see inset of Fig. 1a for a
typical raw image) could be used to reconstruct the shape and
orientation of the disk. We used an auto-encoder to reconstruct
the shape of the disk22 (see the “Methods” section). The
reconstructed shape with R= 12.0 mm is shown in Fig. 1b (3D
view) and Fig. 1c (edge-on projection). Reconstruction using the
auto-encoder yields root-mean-square time fluctuations of 2% of
the average curvature and 4% of the surface area A of the disk.
The orientation of the disk in terms of the angles shown in Fig. 1b
was reconstructed accurately to within ±1∘. Challenges in the
reconstruction of the smaller disk due to reduced image
resolution meant that it was only used in a few experiments.

Experimental observations of the sedimenting U-shaped disk.
Figure 2 shows representative trajectories of the disk’s centre of
mass as it sediments through the tank, both as lines in three-
dimensional space and their projection into the horizontal x−y
plane. The maximum velocity (U≃ 1.22 mm s−1 for the disk
with radius R= 12 mm) was measured when the disk sedimented
in an edge-on orientation, i.e. when the body-fitted roll axis
x̂1 (see Fig. 1b) was aligned with the direction of gravity. This
corresponds to a maximum Reynolds number of
Re= ρfUR/μ ≤ 0.014≪ 1, implying that inertia does not play an
important role in this problem. Figure 2 shows that the disk does
not sediment along straight trajectories. Unlike a flat disk which,
at small Reynolds numbers, maintains constant orientation and
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Fig. 1 Experimental setup and particle geometry. a Schematic of the experimental set-up (to scale) showing the sedimenting U-shaped disk. b Typical disk
reconstructed from experimental visualisation. ðx̂; ŷ; ẑÞ are the unit vectors in the laboratory frame of reference (see (a)), while ðx̂1; x̂2; x̂3Þ are the unit
vectors of the disk’s body-fitted axes. We track two directed inclination angles: α ¼ arccosðx̂3:ẑÞ � signðx̂1:ẑÞ and β ¼ � arcsinðx̂2:ẑÞ. c Edge-on view in the
x2−x3 plane of the U-shaped disk (orange) showing a circle fitted to its central region (blue). We track the position of the centre of mass (CoM) in the
laboratory frame, which is located off the surface of the disk.

Fig. 2 Experimental observations of the sedimentation of a U-shaped disk. a Four example trajectories of a disk’s centre of mass and their horizontal
projections in terms of scaled lab-frame coordinates (x/R, y/R, z/R). The disk has radius R= 12.0 mm, radius of curvature at its centre Rc= 6.3 mm and
travels 30R in the z-direction. The bounding box is for visual aid and does not represent the boundary of the tank. For clarity, small differences in initial
positions were removed by translating the trajectories to a common origin. b Trajectory from the experiment using the small disk with R= 5mm and
Rc= 1.05 mm, which covers 90R in the z-direction.
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hence a straight sedimentation trajectory3, our U-shaped disk
reorientates continually with concomitant changes to its path, as
illustrated by insets showing the disk’s orientation at selected
points along trajectories.

In Fig. 2a we compare the trajectories from our experiments, all
performed with the disk of radius R= 12.0 mm. We released the
disk from a range of initial orientations and recorded its
trajectory over a vertical distance of 30 disk radii in the central
region of the tank. The projection of the trajectories into the x−y
plane shows that the lateral displacement of the disk varies
considerably with its initial orientation. Furthermore, the disk
undergoes very different reorientation sequences as it sediments
along the various trajectories. To illustrate this we consider
trajectory A for which the orientation of the disk starts from an
inclined upside-down U orientation (see the green disks shown
on the left of the figure). The disk rotates about its x̂1 (roll) axis
until it approaches an upright U orientation while the roll axis
itself maintains a strong and approximately constant inclination
against the vertical. In contrast, along trajectory C the disk’s x̂1
(roll) axis is weakly inclined against the vertical and the disk
reorientates via modest rotations about its pitch (x̂2) and roll (x̂1)
axes, as shown by the purple disks next to the figure. We
performed a total of 28 experiments with this disk but were
unable to infer a pattern of reorientation dynamics from these
observations alone.

Figure 2b shows the same data for the smaller disk (R= 5 mm)
which we were able to observe over a vertical travelling distance
of 90 disk radii. Starting from an upright-U orientation the disk
primarily reorientates by pitching about its x̂2 axis until it reaches
an edge-on orientation in which the roll axis x̂1 is approximately
vertical. This is followed by rolling (about x̂1) which ultimately
returns the disk to its original orientation relative to the direction
of gravity. This suggests that the observed reorientation sequence
would repeat if the experiment could accommodate an even
larger vertical sedimentation distance. The switch from dominant
pitching to rolling is accompanied by a near reversal in the
direction of motion in the x−y plane. We also note that the disk’s
continued change in orientation due to the rolling and pitching
motion induces a net rotation about the z-axis in the lab frame of
reference: while traversing the trajectory shown in Fig. 2b, the
body-fitted x̂1-axis rotates by 235° about ẑ .

Experimental trajectories in the body-fitted coordinate system.
To characterise the disk’s orientation relative to the direction of
gravity we introduce the angles α and β shown in Fig. 1b. The
angle α measures the inclination of the normal to the disk, x̂3,
against ẑ, the vertical direction in the lab-frame; the angle β
provides a measure of the inclination of the disk’s pitch-axis, x̂2
against ẑ. Thus α= β= 0 corresponds to the disk in its upright-U
orientation. Insets in Fig. 3a show schematics of pure pitching,
which occurs for β= 0 as α is increased from 0 to 180°, and pure
rolling, which is associated with angles β= α for α ≤ 90° and
β= 180°−α for α > 90°. These lines of pure pitching and pure
rolling bound a triangular region which contains all the possible
orientations of the disk. Positive and negative values of α (or β)
result in the same orientation relative to the direction of gravity,
but with the direction of pitching (or rolling) reversed; for our
disk which has two planes of symmetry these orientations are
equivalent. Thus, we plot all results for α ≥ 0 and β ≥ 0 by
reflecting all other data about α= 0 and β= 0.

The coloured arrows in Fig. 3a show the evolution of
(α(t), β(t)) in the 28 experiments performed with the disk with
R= 12.0 mm, starting from initial orientations identified by the
circular symbols. Each experiment only produces a relatively
short trajectory in the α−β plane but collectively they appear to

form loops, suggesting that the sedimenting disk does indeed
undergo a periodic reorientation as conjectured based on the
trajectory of the smaller disk (R= 5 mm) shown in Fig. 2b. We
also show three trajectories of this disk in Fig. 3b, which each
indicate that a closed loop is associated with the sequence of
pitching and rolling shown in Fig. 2b. The loops are concentric
and appear to enclose a centre at (αc, βc) for which the disk’s
orientation remains constant relative to the direction of gravity.
For the larger disk, which has a radius of curvature Rc/R= 0.52,
the centre is located at approximately (89°, 9°) (Fig. 3a), while
trajectories of the more tightly curved small disk with Rc/R= 0.21
centre on approximately (80°, 18°) (Fig. 3b). For a perfectly
symmetrically bent disk, we expect αc= 90° for reasons of
symmetry, and the experimental deviation indicates imperfec-
tions in the disk. Furthermore, measurements on a flatter disk
(Rc/R= 1.19, also with R= 12 mm) gave βc≃ 6. 1°, which
suggests that βc increases with increasing curvature of the sheet.

Trajectory C in Fig. 2a was initiated close to this centre, with
initial angles (α0, β0)= (84°, 8.4°), and thus, the disk only
experienced a small reorientation via the combination of pitching
and rolling. In contrast, for trajectory A which started from initial
angles of (135.8°, 8.1°) we have a rolling-dominated reorientation,
corresponding to an anti-clockwise motion through the upper
part of the (α, β) diagram to (41.1°, 2.0°) by the end of the
experiment.

Mobility matrix of the U-shaped disk. The experiments there-
fore strongly suggest that the sedimenting U-shaped disk
undergoes a periodic motion, even though our observations are
naturally limited by the finite vertical extent of the tank. However,
the size of the disk was much smaller than the size of the con-
tainer, and the disk was generally far from the container walls and
the free surface in all the small-Reynolds number sedimentation
experiments shown in Figs. 2 and 3. This suggests that it is
possible to gain insight into the disk’s long-term behaviour by
considering its sedimentation in an unbounded fluid at zero
Reynolds number. In this case, the disk’s motion is fully deter-
mined by a 6 × 6 mobility matrix, M, whose constant entries
depend only on the shape of the disk. This matrix relates the
components of the velocity Uð1Þ ¼ U ð1Þ

1 x̂1 þ U ð1Þ
2 x̂2 þ U ð1Þ

3 x̂3
of the disk’s centre of mass and of the disk’s rate of rotation,
ωð1Þ ¼ ωð1Þ

1 x̂1 þ ωð1Þ
2 x̂2 þ ωð1Þ

3 x̂3, both expressed relative to the
body-fitted axes, to the body force, F ¼ �πR2bðρs � ρf Þg ẑ, acting
on the disk, where g is the gravitational acceleration. Given the
disk’s two planes of symmetry, only a subset of the entries in M
are nonzero23, giving

1
μ

M11 0 0 0 M51 0

0 M22 0 M42 0 0

0 0 M33 0 0 0

0 M42 0 M44 0 0

M51 0 0 0 M55 0

0 0 0 0 0 M66

0
BBBBBBBB@

1
CCCCCCCCA

F1

F2

F3

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA

¼

U ð1Þ
1

U ð1Þ
2

U ð1Þ
3

ωð1Þ
1

ωð1Þ
2

ωð1Þ
3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

; ð1Þ

where we have written the body force as F ¼ F1x̂1 þ F2x̂2 þ F3x̂3
and exploited that there is no external torque acting on the disk.
Note that, given this decomposition into the disk’s body-fitted
axes, the components Fi vary as the disk reorientates relative to
the laboratory frame.

We improved this basic model by approximately incorporating
the leading-order interactions of the disk with the boundaries of
the fluid domain. For this purpose, we recall that if a particle
sediments in a semi-infinite fluid domain that is bounded by a
single, infinite planar surface, located at a large distance, l, from
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the particle, the sedimentation velocity and rate of rotation
predicted by Eq. (1) are changed by corrections
δUb(l)= δUb0(l)+O(l−2) and δωb=O(l−2)24, where

δUb0ðlÞ ¼ � 1
6πμl

kðF þ ðF:n̂Þn̂Þ: ð2Þ

Here n̂ is the unit normal to the boundary, and the correction
coefficient k ¼ 9

16 for solid walls and 3
8 for free surfaces25. We

restrict ourselves to the O(l−1) corrections which only affect the
sedimentation velocity. Thus we model the disk’s motion using
ω= ω(∞) and U=U(∞)+ δUc. We approximated δUc by simply
summing the contributions from the container walls and the free
surface, i.e. δUcðl1; :::; l6Þ ¼ ∑6

i¼1 δUb0ðli; n̂i; kiÞ, where the li are
the instantaneous distances of the disk from the respective
boundaries which have unit normal vectors n̂i and correction
coefficients ki.

Given the disk’s current orientation and the position of its
centre of mass, rCoM, Eq. (1) determines its instantaneous rate-of-
rotation ω= ω(∞) which reorientates the body-fitted axes
according to

dx̂1
dt

¼ ω3x̂2 � ω2x̂3;
dx̂2
dt

¼ ω1x̂3 � ω3x̂1;
dx̂3
dt

¼ ω2x̂1 � ω1x̂2:

ð3Þ
Similarly, the centre of mass moves with the velocity U, so

drCoM
dt

¼ U1x̂1 þ U2x̂2 þ U3x̂3: ð4Þ

We employed this model to determine the nonzero coefficients
of the mobility matrix M by minimising the root-mean-square
distance between the experimentally observed trajectories,
r½exp�CoMðtÞ, and the predictions for rCoM(t) from our model. The
latter was obtained by integrating the ODEs (3) and (4) with
Mathematica’s NDSolve function, using initial conditions from
the first data point in each experiment; the parameter fitting
was done using the Barzilai–Borwein algorithm26. This
yielded M11= (96.5 ± 1.3) × 10−3/R, M22= (90.5 ± 1.5) × 10−3/
R, M33= (74.7 ± 1.0) × 10−3/R, M42= (21.8 ± 1.6) × 10−3/R2,

M51= (0.50 ± 0.04) × 10−3/R2, where R= 12.0 mm is the radius
of the disk and the uncertainties obtained from the root-mean-
square fit quantify the level of random error. The effect of
boundary corrections on the mobility matrix was modest with
individual matrix components differing by between 3% and 14%
from those of the matrix fitted without correction. We note that
the mobilities M11 and M22 are within 3% of the edge-on
mobility of the flat disk3, while the broadside mobility M33 is
20% larger. Since this difference brings the broadside-to-edge-on
ratio of mobilities closer to unity, our disk has a narrower range
of possible sedimentation velocities than a corresponding
flat disk.

Long-term sedimentation trajectories. Having accounted for the
tank boundaries and the free surface when determining the fitted
mobility matrix, we can now use this matrix to simulate the
sedimentation of our disk in an unbounded fluid by integrating
the six ODEs (3) and (4). We note that for any particle sedi-
menting in an unbounded fluid, only two of the six unknowns are
genuine degrees of freedom. This is because, in an unbounded
fluid, a change in the initial position simply shifts the entire
trajectory by a rigid body translation; similarly, a rotation about
the direction of gravity subjects the particle’s trajectory and its
orientation to a corresponding rigid body rotation. As a result,
only the two degrees of freedom which describe the inclination of
the disk are required to describe its dynamics. The angles α and β
(or any other, equivalent, parametrisation of the disk’s inclina-
tion) therefore define a two-dimensional phase space which
describes the dynamics of the disk sedimenting in an
unbounded fluid.

This allows us to reinterpret Fig. 3 in the language of dynamical
systems. The points (α, β)= (0°, 0°) and (180°, 0°) (corresponding
to the upright-U and upside-down-U orientations, respectively),
play the role of saddles which are connected by heteroclinic orbits
along which the disk moves by pure pitching and rolling motions.
We illustrate the trajectories of the disk’s centre of mass along
these orbits in the laboratory frame in Fig. 4a–d. For this, we align
the disk’s body-fitted axes ðx̂1; x̂2; x̂3Þ with the lab axes (x, y, z) in

Fig. 3 Phase-plane representation of the dynamics of the U-shaped disk in the body-fitted frame of reference. a Phase plane trajectories of the larger
and less curved disk (R= 12 mm and Rc/R= 0.52) with 3D insets to illustrate its orientation at various points. The arrows show the experimental data
points (one colour per experiment, initial points encircled), which collectively form concentric orbits around a centre. The error bars indicate measurement
uncertainties in the orientation of the disk. The grey lines are the predicted orbits obtained from fitting a mobility matrix. The red and pink boundaries are
the heteroclinic orbits associated with the pure rotations shown in the inset and illustrated by schematics. b Phase plane trajectories of the smaller and
more curved disk (R= 5mm and Rc/R= 0.21) from Fig. 2b, showing concentric orbits around the centre at βc≈ 18°, which is twice the value for the less
curved disk shown in (a).
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the reference upright-U orientation. If we release the disk from a
horizontal orientation with (α0, β0)= (0°, 0°) or (180°, 0°), it
sediments purely vertically without any reorientation (Fig. 4a). If
the disk is released from a near horizontal orientation (Fig. 4b,
α0= 0.01°, β0= 0°), reorientation by pure pitching is accompa-
nied by a translation in the x−z plane (i.e. normal to the pitching
axis). The horizontal velocity decays as the disk approaches its
upside-down-U orientation, and the total horizontal displace-
ment remains finite. In Fig. 4b the disk drifts up to a maximum of
44.5R as it approaches α= 90° before returning to its original
position in the x−y plane as α→ 180°. Similarly, in Fig. 4c, a
release from (α0= 179.9°, β0= 0°) causes a reorientation by pure
rolling; this is accompanied by a translation in the z−y plane
(normal to the rolling axis). The horizontal velocity decays as the
disk approaches its upright-U orientation and it drifts laterally
only by 0.74R before returning to its original xy-position. In
Fig. 4d, we illustrate how the disk can alternate between pitching
and rolling-dominated reorientations by releasing it from an
initial orientation where it is rotated slightly about both the x and
y axes (α0= 0.014°, β0= 0.010°). Initial pitching about the y-axis
rotates the disk from its upright-U to an upside-down-U
orientation; this is accompanied by a translation in the x-
direction (as in Fig. 4b). The motion then becomes dominated by
rolling about the x-axis, which returns the disk back to its
upright-U orientation while translating in the y-direction (as in
Fig. 4c), resulting in a cross-like projection of the trajectory into
the x−y plane. Once the disk has returned close to its original
orientation, the pitching/rolling cycle repeats. Note that the
trajectory shows that the reorientation by rolling occurs much
more quickly than that by pitching: the disk sediments over
several thousand disk radii while pitching by ≈ 180°; the
corresponding reorientation by rolling is complete within about
20 disk radii.

The trajectories shown in the α−β phase plane in Fig. 3 are
closed orbits, and therefore, all trajectories are uniquely
determined by their initial conditions and equally likely to be
observed experimentally if the initial conditions are random in α
and β. However, because pitching occurs on a much longer
timescale than rolling, the disk’s β angle rapidly decays towards

zero far from the dynamic centre. The disk then undergoes a long
period of near-pure pitching, during which very small differences
in the β angle lead to very different orientations later in the
trajectory. The sensitivity in this region of phase-space means that
the outermost trajectories will not be experimentally observable in
full. This is shown in Fig. 3b where the disk can be seen to be
perturbed during the period of near-pure pitching due to
unavoidable experimental fluctuations.

The grey lines in Fig. 3, which were obtained by numerically
integrating the ODEs from a variety of initial conditions, provide
a good representation of the experimental orbits. They represent
closed orbits about a centre located at (αc, βc)= (90°, 8.6°), which
is in excellent agreement with experimental observations. If the
disk is released from an orientation in which (α0, β0)= (αc, βc), its
orientation against the vertical axis remains constant. It
sediments with a finite horizontal velocity but rotates about the
z-axis at a constant rate, such that it rotates by 258.6° per period.
The trajectory is therefore a helix (a spiral with constant pitch), as
illustrated in Fig. 4e, which shows a left-handed helix with a
radius of 0.255R. The spiral is left-handed when the product
α0β0 > 0 and right-handed when α0β0 < 0.

Figure 5 shows the period of the orbits in the α−β plane,
including values for the trajectories A and C shown in Fig. 2a and
discussed in the context of Fig. 3. The period was obtained by
starting the time-integration at α(t= 0)= α0= 90° for various
values of β(t= 0)= β0∈ [0°, 90°] and recording how long it takes
for α(t) and β(t) to return to their original values. The period
tends to infinity as we approach the pure pitching (β0→ 0°) and
pure rolling (β0→ 90°) cases, consistent with the time required to
traverse between two saddles in any phase space. We note that
one complete loop through this heteroclinic pitching/rolling orbit
would rotate the disk by 180° about the ẑ axis. This is because a
180° pure pitching motion followed by 180° of pure rolling
returns the disk to its original orientation—but with its right and
left sides exchanged. The symmetry of our disk renders this
configuration indistinguishable from the reference state, though
all material lines have rotated by 180° in the lab frame. We also
observed experimentally that the period decreased with increasing
curvature of the U-shaped disk. We found that for the flatter disk,

Fig. 4 Long-term trajectories of the U-shaped disk in the laboratory frame of reference. a Vertical descent (α0, β0)= (0°, 0°). b Trajectory along the
pure-pitching heteroclinic orbit ((α0, β0)= (0.01°, 0°)). c Trajectory along the pure-rolling heteroclinic orbit ((α0, β0)= (179.9°, 0.01°)). d Near-horizontal
initial orientation (α0, β0)= (0.014°, 0.010°), with 0 < β0 < α0. e Helical sedimentation at the centre ((α0, β0)= (αc, βc)). Helical trajectories are spirals with
a constant pitch. The trajectories, which cover vertical sedimentation distances of up to 8000 disk radii, are numerical predictions obtained using the
experimentally determined mobility matrix. Projected trajectories are shown in the bottom x−y plane. The disks illustrate the orientation but are not drawn
to scale.
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the coupling terms governing the rate of reorientation are smaller
and the period is longer, consistent with the limit of zero
curvature, where the coupling terms tend to zero and the period
tends to infinity (so that a flat disk sediments steadily). Hence, it
was the cumulative effects of increased curvature and reduced
disk size that enabled us to observe approximately one period of
reorientation in Figs. 2b and 3b.

Finally, we use the model to extend the trajectories observed
experimentally and show a representative selection in Fig. 6. The
blue points indicate trajectories of the disk’s centre of mass
obtained in the experiments; they are closely matched by the
computed trajectories (solid lines). We have seen that the velocity
of the disk’s centre of mass and its rotation about the z-axis are
enslaved to the orientational angles α and β which vary
periodically. The net rotation about the z-axis during one period

of the orbit in the α−β plane is generally not a rational fraction of
360°. Therefore, the disk’s motion tends to be quasi-periodic. The
trajectory in Fig. 6a is close to a uniform spiral, while the
trajectories in Fig. 6b–d are initiated at orientations increasingly
distant from the centre (αc, βc). Their projection into the x−y
plane results in increasingly distorted spirograph-like patterns,
shown at the bottom of the plots. By Fig. 6d, the sequence of
pitching and rolling motions occurs along approximately straight
lines in the x−y plane as for the cross trajectory shown in Fig. 4d.

Conclusion
To summarise, we have used a combination of experiments and
theoretical modelling to show that even in the absence of inertia,
sedimentation of a non-planar particle can involve complex
reorientation dynamics. For our U-shaped disk, periodic reor-
ientation about the direction of gravity leads to chiral trajectories
ranging from helix to quasi-periodic spirals. In these, the disk
reorientates through sequences of pitching and rolling with a
period which is incommensurate with that of rotation about the
axis of gravity resulting in quasi-periodic motion. These modes of
sedimentation preclude any net sideways drift so that a dilute
suspension of such disks would not display any net horizontal
dispersion. However, the reorientation period is typically long so
that we need the particle to descend by more than 1000 radii to
complete a full cycle. In spite of our particle’s two planes of
symmetry (which make it identical to its mirror image and
therefore non-chiral), it sediments along chiral trajectories. The
handedness of these trajectories is set by the initial orientation
alone and is determined by whether the initial angles (α, β) have
the same or opposite signs. We use our particle to illustrate that
any particle sedimenting in an unbounded fluid at zero Reynolds
number has at most two degrees of (orientational) freedom.
Hence, its most complex dynamics are limited to periodic beha-
viour and it cannot exhibit chaos. Our analysis provides the
necessary framework in which to interpret physically the motion
of sedimenting particles of arbitrary shape.

Fig. 6 Sedimentation of a U-shaped disk from experimental initial conditions in the laboratory frame of reference. The blue circles indicate the
experimental trajectories and the solid lines are numerical predictions, which cover vertical sedimentation distances of up to 3000 disk radii and which are
obtained using the experimentally determined mobility matrix. Projected trajectories are shown in the bottom x−y plane. a (α0, β0)= (89.2°,−8.7°),
b (α0, β0)= (93.4°,−9.3°), c (α0, β0)= (94.1°,−21.5°), d (α0, β0)= (135.9°, 8.0°) (trajectory A in Fig. 2a).

Fig. 5 Predicted dimensionless period of the orbits in the α−β plane, as a
function of the initial value β0 for a fixed initial value α0= 90°. The
period T is non-dimensionalised by the time it takes a rigid flat disk to
descend vertically by one radius3. The points labelled A, C correspond to
the trajectories shown in Fig. 2a.
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Methods
Reconstruction of the particle shape. The top-view movie of
light scattered at the points of intersection with the planes of light
from the full HD projector (Optoma HD143X) was used to
reconstruct the particle shape. Most of the area of the translucent
disk was visible to the camera regardless of orientation and
shadows were weak enough not to affect the visualisation. By
accounting for the refractions in the system and tracking which
plane the disk crossed, we obtained a set of spatio-temporal data
(x, y, z, t) for further analysis. We reconstructed the disk’s surface
by fitting a parametric 2D surface evolving in time (i.e., a three-
dimensional manifold embedded in a four-dimensional space)
using an auto-encoder27 which trained two neural networks: the
encoder reduces the four-dimensional data to a three-
dimensional latent space, and the decoder learns the para-
metrisation from the latent space back to the direct space. The
disk’s shape was reconstructed only once; in subsequent experi-
ments, experimental scans of the disk through each light
sheet were fitted to the reconstructed disk shape using a least-

square method optimised for the three translational and three
rotational degrees of freedom; see Miara et al.22 for details of this
method.

Estimate of the elastic deformation of the disk. We provide an
upper bound estimate for the elastic deformation of our disk due
to viscous loading. The total drag experienced by a disk of radius
R and thickness b balances the body force ∣F∣= πR2bΔρg. The
upper bound for the bending moment is M < ∣F∣R. Considering
the change in curvature in the x2−x3 plane, from Kirchoff–Love
plate theory, in the case of pure bending, the deflection w is
described by

∂2w
∂x22

¼ M
D

; ð5Þ

where D ¼ Eb3

12ð1�ν2Þ is the flexural rigidity of the disk. In the case of
our Polyamide Nylon 6 disk (R= 0.012 m, Elastic modulus
E= 2.8 ± 0.2 GPa, Poisson ratio ν= 0.39, thickness
b= 236.7 ± 0.3 μm), the flexural rigidity is
D= (3.65 ± 0.13) × 10−3 Nm. When sedimenting in silicone oil
Δρ= 157.3 kg m−3, the bending moment M < 1.98 × 10−6 Nm.
Thus, the viscous forces change the curvature of the disk by no
more than 0.0005 m−1 which is five orders of magnitude smaller
than the curvature of the U-shaped disk (1/Rc= 159 m−1).
Hence, the disk may be considered rigid.

Sedimentation of an elastic sheet can also be described by the
elasto-gravitational number B, i.e., the ratio of elastic forces to
gravity forces given by,

B ¼ D
jFjR ¼ Eb2

12πð1� ν2ÞR3gΔρ
¼ 1840 ± 70:

For the flexible sheet shown in Fig. 7, B= 0.0134.

Data availability
The data that support the findings of this study are available from the following Github
folder: https://github.com/TymoteuszMiara/Dynamics-of-inertialess-sedimentation-of-a-
rigid-U-shaped-disk.
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