
ARTICLE

Selectable diffusion direction with topologically
protected edge modes
Keita Funayama 1✉, Jun Hirotani2, Atsushi Miura1 & Hiroya Tanaka1

Topological insulators provide great potential to control diffusion phenomena as well as

waves. In addition to the thermal localization and robust decay as reported, the topological

edge states with higher degree of freedom offers a route to control directional diffusion. Here,

we show that the direction of thermal diffusion can be selected by the contributions of the

topologically protected edge modes in a honeycomb-shaped structure. Considering the

thermal diffusion between the nearest neighboring sites of the honeycomb-shaped unit cells,

the cells allow unidirectional heat balance from a macroscopic perspective when we set the

structure to the temperature corresponding to the edge mode type. Moreover, this diffusion

system is found to be immune to defects owing to the robustness of topological states. Our

work points to exciting avenues for controlling diffusion phenomena.
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There is now significant interest in exploiting topological
properties in a wide variety of physical wave systems such
as electromagnetic1–6, acoustic7–9, and mechanical

systems10–16. One of the characteristic topological phenomena is
the emergence of robust edge modes. The methodology based on
the Su–Schrieffer–Heeger (SSH) model is the most common
method for the emergence of edge modes17,18. This has allowed
wave control with topological insulators in one-dimensional (1D)
classical systems19–22. In addition, the quantum spin Hall effect
(QSHE) has attracted significant attention owing to its higher
degree of freedom than that of the SSH model. The QSHE-based
topological states can control wave systems in higher dimensions,
thereby enabling localization23–25 and one-way wave
propagation26–29.

Recent theoretical and experimental studies have demonstrated
that topological edge modes can be applied to diffusion systems.
Pioneering studies showed that heat distribution localizes in 1D
structures with robust thermal decay based on the SSH
model30–33. The higher-order topological corner modes expanded
the potential of thermal diffusion control in two-dimensional
(2D) diffusion systems34. By considering topological diffusion
phenomena in 2D structures, other topological models, such as
the Kagome lattice, were applied to the diffusion systems35. These
investigations revealed the localization of high- or low-
temperature spots with topological locking decay rates in 2D
diffusion systems. However, these systems controlled only the
localization and decay temperature rate and did not realize the
more-desired high-dimensional heat-management schemes, such
as heat transport and thermal polarization. To achieve
topological-based heat transport, recent studies have proposed
Hermitian systems based on combined thermal distribution and
fluid convection, i.e., the skin effect36–38. These systems have
achieved unidirectional heat transport through the edges of the
structures. However, higher-dimensional structures (more than
2D) require flow paths that tend to be complicated and are dif-
ficult to ensure broad scalability for applications ranging from
massive thermal systems to microscale devices. In addition, the
topological states with a higher degree of freedom, such as the
QSHE, which has immense potential to control diffusion phe-
nomena with a simple diffusivity design, have not been investi-
gated sufficiently in diffusion systems.

In this paper, we demonstrate that QSHE-inspired topologi-
cally protected edge modes appear in a thermal diffusion system
consisting of honeycomb-shaped unit cells. We consider that the
heat transfer in our structure at the topological edge modes
appears around the boundary between the topological and
ordinary states. From numerical and analytical studies, we show
that the temperature corresponding to the edge modes macro-
scopically provides directional heat balance in the unit cells by
considering the thermal diffusion between the neighboring sites.
As the result of the temporal evolution of the diffusion for such a
temperature distribution, the edge modes induce thermal polar-
ization in the 2D structure. Consequently, the macroscopic dif-
fusion direction can be selected based on the type of excited edge
mode. We also verified a well-known unique characteristic of
topological edge modes, which is that they are immune to defects.
Our results indicate that the use of topological edge modes has
the potential to control thermal polarization in any direction.
Generally, our work should motivate systematic studies to apply
topological properties to all diffusion phenomena.

Results
Design of a topological diffusion system. Our structure consists
of periodically aligned honeycomb-shaped unit cells, as illustrated
in Fig. 1a. The unit cell has six circle sites. The nearest-

neighboring sites and unit cells are connected by fine beams with
the effective diffusivities D1 and D2. As a result, the equation of
thermal diffusion in a unit cell is expressed by the 6 × 6 effective
diffusivity matrix to ensure the parallel periodicity of the struc-
ture:
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Here, eigenfunctions, T1,…, and T6, denote the temperature at
each site as numbered in Fig. 1a, k is the wavenumber vector, and
a1(2) is the unit vector as shown in Fig. 1a. Note that the wave-
number vector k expresses the arbitrary position in the first
Brillouin zones of the momentum space. The eigenfunction of the
Hamiltonian in the momentum space denotes the temperature at
the stationary state corresponding to the initial state in the
Euclidean space (i.e., t= 0).

We design the topological and ordinary unit cells by adjusting
the ratio r=D1/D2 of the two effective diffusivities. The
topological phase transition can be controlled via r2,16.
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Fig. 1 Unit design for topological and ordinary states. a Schematic of the
honeycomb-shaped unit cell. Each of the nearest neighboring sites (black)
is connected by the beams with the effective diffusivity D1 (blue). The
neighboring unit cells are connected by the beams with the effective
diffusivity D2 (red). D1 and D2 are effective diffusivities obtained by
normalizing thermal diffusivities (λc−1ρ−1) with L−2. λ, c, and ρ are thermal
conductivity, thermal capacity, and density, respectively. L= 15 mm and
w= 2 mm are the length and width of the beams. d= 20mm is the
diameter of the disc-shaped site. a1 and a2 are unit vectors. b–d Spectra of
the eigenvalues for the infinite periodic honeycomb lattice with (b) r > 1
(D1= 0.765, D2= 0.518, (c) r= 1 (D1= D2= 0.68), and (d) r < 1 (D1= 0.6,
D2= 0.85). r is the ratio of D1 and D2. Each of the doubly degenerated
modes in (b) and (d) are labeled as i–iv and i'–iv'. e, f Site temperature
corresponding to the eigenfunctions in the unit cell at modes (e) i–iv and (f)
i'–iv'.
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Diagonalizing the effective diffusivity matrix in Eq. (1), we obtain
the spectrum of the eigenvalues ϵ. Figure 1b–d shows the spectra
for an infinite periodic honeycomb lattice with r > 1, r= 1, and
r < 1. When all the diffusivities in the unit cell have the same
value (i.e., r= 1), we observe the Dirac cone at the Γ point
(Fig. 1c), thus suggesting the existence of a topological surface
state. For r > 1 and r < 1, the spectra have a bandgap and two
doubly degenerated modes (Fig. 1b and d).

To identify the state of the structure with r > 1 and r < 1, we
confirm the eigenfunctions of each doubly degenerated mode
specified as i–iv in Fig. 1b and i’–iv’ in Fig. 1d. The eigenfunctions
in these modes correspond to the site temperature in the unit cell.
Figure 1e shows the temperature distributions of modes i–iv for
r > 1. We observe the dipole px and py modes at modes i and ii,
and quadrupole dxy and dx2�y2 modes at modes iii and iv,
respectively. Thus, the lowly and highly polarized modes appear
below and above the band gap, respectively. This result indicates
that the structure with r > 1 is the ordinary state. In contrast, in
Fig. 1f, for r < 1, modes i’ and ii’ (iii’ and iv’) show the quadrupole
(dipole) modes. Such an inversion of the order between the dipole
and quadrupole modes signifies that the structure with r < 1 is the
nontrivial topological state.

To demonstrate the topologically protected edge modes in the
thermal diffusion system, we consider a supercell with a boundary
between the topological and ordinary states, as shown in Fig. 2a.
Figure 2b shows the spectra of the supercell. The red and blue
lines show the topological edge modes with different polarizations
in the unit cells. The gray lines indicate the bulk modes. We focus
on the two band-gap-crossing edge modes at kx= 0, which are
indicated by the magenta and cyan arrows in Fig. 2b and are
specified as modes A and B, respectively.

Figure 2c, d depict the temperature distributions in modes A
and B in the supercell. Both temperature distributions are
localized around the boundary between topological and ordinary
states. The temperatures in modes A and B correspond to the
eigenfunction amplitudes obtained by solving the eigenvalue
equation, which consists of thermal diffusion equations for all 120
sites in the supercell. Such edge modes have great potential for
controlling diffusion phenomena. Indeed, in wave systems,
topologically protected edge modes have intriguing character-
istics, such as field localization and unidirectional wave
propagation2,8,11,12,16,24.

Based on the eigenfunction amplitudes on each site, we analyze
heat transfer in modes A and B. Figure 2e, f visualize the diffusion
direction and quantity of heat transferred between the sites in the
two ordinary and topological unit cells (specified as O2, O1, T1,
and T2). The green arrows denote the flow direction, and their
widths are the transferred heat quantity between the nearest
neighboring sites.

Considering and summing up the local thermal diffusions
between each site, we find that the unit cell for modes A and B
exhibits a unique directional heat balance. We calculate the heat
balances by summing up the heat quantities along the x- and y-
axes [right panels in Fig. 2e, f]. In Fig. 2e, the heat balance
indicates the thermal flow along the x-axis through the unit cell;
there is no heat balance along the y-axis. Thus, mode A
apparently rectifies the thermal flow only along the direction
parallel to the boundary, i.e., the x-axis. On the other hand, as
illustrated in Fig. 2f, mode B provides thermal flow only along the
y-axis. Therefore, our structure has the potential to select the
direction of macroscopic thermal diffusion based on the local
thermal diffusions of the different edge modes.

Edge states and temporal evolution of diffusion. To verify our
theoretical prediction for selecting the diffusion direction, we

compute the time evolution of the temperature in modes A and B
using COMSOLMultiphysics. Figure 3a shows the model used in the
calculation. Each of the half structures in Fig. 3a consists of topo-
logical (T) or ordinary (O) states. Details of the simulation settings
are described in the “Methods” section. For the numerical investi-
gation, we convert the eigenfunction to temperature Ts;v ¼ T0 þ
αTA Bð Þ

s;v in Kelvin. Here, T0= 293.15 K is the reference temperature,

α= 100 is the amplification coefficient, TA Bð Þ
s;v is the eigenfunction of

mode A (B) at location v= [mx,my, n] of the nth site (n∈ {1,⋯ , 6})
in the mxth and myth cells (mx∈ {1,⋯ , 13} and my∈ {1,⋯ , 6}),
and s∈ {O, T} is the ordinary and topological sites. To excite the edge
modes to the system, we set the temperature distributions of modes
A or B to each site of the unit cells of my= 1 and my= 2, which are
enclosed by the broken black line in Fig. 3a. The other sites are set to
T0 because the eigenfunction amplitudes are negligibly small in the
unit cells of my ≥ 3, owing to the strong localization of the field
around the boundary at the edge modes. We indeed observe that the
temperature at the site my= 3 (Ts;mx ;3;n

) is 30% or less of that at the
site my= 1 (Ts;mx ;1;n

), for all mx and n values.
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Fig. 2 Spectrum of supercell and temperature distributions for
topological edge modes. a Schematic of the supercell with a boundary
between the topological and ordinary unit cells. The supercell consists of 10
units of topological and ordinary states. b Band diagram of the supercell.
The blue and red lines denote the topological edge modes. Modes A and B
are indicated by magenta and cyan arrows, respectively. The inset shows
the enlarged view of the green square. c, d Temperature distributions in the
supercell at modes (c) A and (d) B. e, f Heat transfer between the sites for
the unit cells O2, O1, T1, and T2 at modes (e) A and (f) B. Green arrows
denote the flow direction, and their widths imply the transferred heat
quantity between the nearest neighboring sites. Right bottom panels in
e and f show the heat balance in each unit cell.
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Figure 3b, c show the numerical time evolution of the
temperature distributions for modes A and B in the region
enclosed by the solid black square in Fig. 3a. When exciting mode
A, we observe high and low temperatures at t= 40 s at left and
right edges [regions Xleft and Xright in Fig. 3a] (see Fig. 3b). In the
topological diffusion system, mode B enables the polarization of
the heat distribution along the direction perpendicular to the
boundary, unlike the topological wave systems. When exciting
mode B, we indeed observe high and low temperatures at above
and below edges [regions Yabove and Ybelow in Fig. 3a] (see
Fig. 3c). Thus, modes A and B realize macroscopic thermal
diffusion only along the x- and y-axis, respectively, as predicted in
Fig. 2e, f.

When the symmetry between temperature distributions of the
in-phase and antiphase modes coincides with the symmetry of the
structure, the eigenequation based on Eq. (1) contains antiphase
modes in the eigenvalue solution. Note that the antiphase modes
have a counter-rotating temperature distribution in a unit cell to
that of in-phase modes. Using the antiphase mode, we can further
select the diffusion direction. We now consider the 180°-rotated
temperature distribution of mode A about the y-axis as the
antiphase mode and refer to it as mode A0. Specifically,
temperature distributions of both modes A and A0 are
axisymmetric about the y-axis. As the supercell also has an
axisymmetric structure about the y-axis, the temperature
distribution of mode A0 can appear as another edge mode.

Figure 4a shows the eigenfunctions in cells O1, O2, T1, and T2 of
the supercell in mode A (light blue) and A0 (dark blue). Mode A0

has an eigenvalue at kx= 0.02, as shown by the blue line in
Fig. 2b. The eigenfunction of mode A0 exhibits an inverted mode
A distribution at site O2 (also at sites T1, O2, and T2). Thus,
mode A and A0 are in opposite phases and this mode property is
matched to the symmetry of the structure.

In addition to mode A, we have 180°-rotated mode B around
the y-axis as an antiphase mode; we refer to this as mode B0. The
temperature distribution in the unit cells for mode B0 fully
coincides with that for mode B. This axisymmetric property can
be readily determined from the distribution in Fig. 2d. As a result,
the thermal diffusion resulting from mode B0 is equivalent to that
of mode B.

Importantly, the inverted initial field about the y-axis affects
the thermal polarization. The inset in Fig. 4a shows a snapshot of
the temperature distribution at t= 40 s when mode A0 is excited.
High- and low-temperatures are observed in regions Xright and
Xleft, respectively. This proves that mode A0 inverts the diffusion
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direction of mode A. However, mode B0 does not invert the
diffusion direction because of the perfect coincidence of the
temperature distribution with B. Thus, we can change the
diffusion direction by selecting the initial temperature of the sites
based on the three different modes (A, A0, and B) in our structure.

Furthermore, our structure enables us to control the diffusion
direction owing to the incoherence of the edge modes.
Specifically, the mutually incoherent modes A (A0) and B can
be linearly combined. Using the ratio rT of modes A (A0) and B,
we can excite our structure in the combined mode as

TAB
s;v ¼ rTT

A
s;v þ ð1� rTÞTB

s;v; ð4Þ

TA0B
s;v ¼ rTT

A0
s;v þ ð1� rTÞTB

s;v; ð5Þ
where TA0

s;v is the eigenfunction of mode A0 and 0 ≤ rT ≤ 1.
Figure 4b shows the temperature dependence of rT in regions
Xleft, Xright, Yabove, and Ybelow in Fig. 3a at t= 40 s. Depending on
the type of the combined mode, the temperature in the four
regions linearly increases and decreases with an increase in rT. In
particular, when rT= 0.5, we obtain a symmetric temperature
distribution about the y-axis (see the insets of Fig. 4b). The results
here indicate the potential for designing arbitral temperature
distribution and thermal polarization.

Robustness of the edge modes. The edge modes gradually col-
lapse with time after these are applied to the structure. As the
unidirectional heat balance of the unit cells continues as long as
the edge modes are maintained, the temporal robustness of the
edge modes is crucial for designing topological diffusion systems.
Focusing on mode A, we evaluate the temperature variation with
time for the topological unit cell. Figure 5a shows the relative
temperature RnðtÞ ¼ ~TT;nðtÞ=~TT;4ðtÞ, considering the unbiased

temperature ~TT;nðtÞ ¼ ðTT;7;1;nðtÞ � T0Þ=α of the unit cell near
the boundary, (mx,my)= (7, 1) in Fig. 3a. For t < 20 s, Rn(t) on
each site has a constant value, that is, each temperature uniformly
decays at the topologically protected decay rate. For t ≥ 20 s, mode
A collapses because the temperatures of the unit cell almost
converge to T0 (see inset of Fig. 5a); thus mode A cannot be
maintained. The temporal mode robustness contributes to the
duration of the macroscopic directional thermal diffusion. Fig-
ure 5b shows the temperatures in regions Xleft (circles) and Xright

(crosses) as a function of time. For t < 20 s, in region Xleft (Xright),
the temperature increases (decreases) with time due to the ther-
mal localization provided by mode A. For t ≥ 20 s, the tempera-
ture in Xleft (Xright) decays (saturates) because the edge mode
plays a minor role in the structure.

Finally, we evaluate a unique characteristic of the topologically
protected edge modes, which is their immunity to defects. To
introduce the defects into our structure, we remove the beams
from sites 2 and 4 (see Fig. 5c), for two unit cells (s,mx,my)=
(T, 6, 1) and (T, 8, 1). The time dependence of the temperature in
regions Xleft and Xright is plotted with red symbols in Fig. 5b. We
observe small variations in the temperatures with and without
defects. Hence, the edge states are robust against disorders due to
topological protection as well as other topological systems.

We compare the thermal decay between the two separate unit
cells at mode A and a bulk mode. Mode A exhibits a topological
edge mode, whereas the bulk mode exhibits conventional
diffusion phenomena. We perform simulations for the model
with the defect, which is illustrated in Figs. 3a and 5c. The decay
rates, γs,v, are then calculated based on the temperature gradient,
i.e., γs;v ¼ � d

dt log½ðTs;vðtÞ � T0Þ=ðTs;vð0Þ � T0Þ�. Figure 5d shows
the temperature decay. The blue (red) cross and circle symbols
show the temperatures TT,v of v= [5, 1, 4] and v= [9, 1, 4] for
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mode A (bulk mode), respectively. The bulk mode is denoted by a
green circle in the inset of Fig. 5d. For mode A, the decay rates are
γT,[5, 1, 4]= 0.0858 and γT,[9, 1, 4]= 0.0891 with an observed
difference of only 3.8%. For the bulk mode, the decay rates are
γT,[5, 1, 4]= 0.0995 and γT,[9, 1, 4]= 0.1182 with a difference of
18.8%, which is 4.9 times larger than the value for mode A. Thus,
we conclude that the edge modes (instead of the bulk mode) can
maintain uniform and robust thermal diffusion due to topological
protection despite the existence of defects.

Discussion
We have shown that topologically protected edge modes appear
in the diffusion system consisting of the honeycomb-shaped
structure, which we have chosen motivated by the QSHE. While
previous topological edge modes in diffusion systems could only
design the decay rate30–32, the edge states in our structure realize
that the diffusion direction is selected based on the type of edge
modes. In addition, it is found that the edge modes are immune
to defects. The robust modes stably lead to thermal polarization
resulting from the unidirectional heat balance of unit cells in
realistic diffusion systems. The topological diffusion systems
provide a fruitful avenue for temperature control and thermal
management. In addition, the selectivity of diffusion direction
provided in this paper has a great potential to control other
diffusion phenomena.

Note that in the diffusion system consisting of the infinite
periodic honeycomb structure, the effective Hamiltonian has a
similar configuration to that used in the wave system. Given the
similarity of the governing equations between wave and diffu-
sion systems, we should observe the topological edge modes in
the diffusion system. To obtain a clear understanding of the
analogy between the wave and diffusion systems, we analyze the
Fourier components, which are commonly used to study
topological materials. It is interesting to note that as the dif-
fusivities are real numbers, the Hamiltonian in our system is
expressed as an Anti-Hermitian matrix, which is a distinctly
different point from the wave system. This anti-Hermitian
matrix provides the imaginary eigenvalues, thereby denoting the
edge modes with a topologically protected decay rate. Thus, the
edge modes in our structure are characterized in terms of
nonstationary temperature decay. To clarify the temporal
response of our system, we studied the temperature decay based
on numerical simulations.

The diffusion phenomena restrict the topological protection
within a finite time. We should design the possible topologically
protected duration by tuning the decay rate. When the decay
rate is low, the edge modes are maintained for a long time
due to the slow response time of the system. By contrast, high
decay rates lead to fast thermal diffusion processes, resulting in
the fast destruction of the edge mode. Therefore, we should
consider a trade-off between the topologically protected dura-
tion and the response time to meet the application
requirements.

We require an adequate number of supercells in the x-axis to
maintain the edge modes. The unit cells in contact with the edges
of the sample device [e.g., mx= 4 and 10 when my= 1 and s= T
in the structure of Fig. 3a] cannot maintain the one-directional
heat balance. This is because the periodicity of the cell is elimi-
nated; therefore, it is not possible to obtain the inflow and outflow
heat that the edge mode guarantees. Hence, we require at least
one supercell structure flanked by two edge supercells. In other
words, the system should have three supercells to maintain uni-
form directional diffusion.

Again, our approach taken here exploits the topological edge
modes in the honeycomb structure for the selectable direction of

the macroscopic thermal diffusion that results in thermal polar-
ization. This can potentially be extended to other diffusion phe-
nomena, e.g., ion transport. An interesting point is that ionic
transport is described by internal and external factors unlike
thermal diffusion. Specifically, ionic diffusivity is affected by
external factors (e.g., ambient temperature) as well as internal
material properties such as number of the mobile ions, charge,
and activation energy. The ambient temperature can be adjusted
by applying external signals. Hence, it will be possible to actively
control the topological and ordinary states via the ambient tem-
perature in ion transport systems. Design for topological systems
depending on both internal and external factors is a crucial future
work.

In the QSHE edge modes are helical and exhibit spin-
momentum locking responses. For example, the spin-
momentum locking response has been observed in topological
electromagnetic wave systems. The angular momentum of the
wave function of the electric field constitutes the pseudospin26. In
thermal diffusion systems, temperature distributions in unit cells
correspond to the electric fields of dipole and quadrupole orbitals.
However, the physical quantity in diffusion systems corre-
sponding to the magnetic field has not been identified. As the
relationship between the wave and diffusion system has not yet
been established, this is one of the future works.

Methods
Here, we show the parameters in the numerical simulations. The
time evolution of the temperature is calculated by the MEMS
module in COMSOL Multiphysics. We consider the finite
structure consisting of 13 × 12 unit cells to obtain the edge states
between the ordinary and topological unit cells, see Fig. 3a. Each
unit cell has six disc-shaped sites with a thickness of 10 mm and a
diameter of 20 mm. The cells have intra- and intercell connec-
tions using the beam of length L= 15 mm and width w= 2 mm
and an effective thermal diffusivity D1 (D2) (see Fig. 1a). The
effective thermal diffusivities are described as

D1 2ð Þ ¼
λ1 2ð Þ
cρL2

; ð6Þ

where λ1 (λ2) is the thermal conductivity of the intra- and
interbeam in the unit cell, and c and ρ are the heat capacity and
mass density of a constitutional material, respectively. We assume
that the structure consists of Aluminum, i.e., c= 900 J kg−1 K−1

and ρ= 2700 kg m−3. We adjust λ1 2ð Þ to obtain the desired value
of D1 2ð Þ in the simulations. Specifically, we set λ1= 328.05
(418.2638)Wm−1 K−1 and λ2= 464.7375
(283.2165)Wm−1 K−1 to be D1= 0.6 (0.765) and D2= 0.85
(0.518) in the topological (ordinary) state, respectively. The
thermal conductivity of all sites is 238Wm−1 K−1. Note that by
changing the beam length L instead of λ1(2), we will be able to
tune D1 2ð Þ in future experimental demonstrations. For example,
we would connect the sites with straight or meandering beams.
We can indeed design the values of D1 and D2 of the topological
(ordinary) state without changes in the intrinsic thermal con-
ductivity of aluminum (λ= 238 Wm−1 K−1) when we set the
intrabeam to L= 12.776 (11.315) mm and the interbeam to
L= 10.734 (13.751) mm in the topological (ordinary) state,
respectively.

We set the initial temperatures to each site of the unit cells to
be the temperature distribution of the edge modes. The individual
initial temperatures on each site are calculated from the eigen-
functions obtained from Eq. (1)-based eigen equation. We apply
adiabatic boundaries on the entire surface of the structure to
eliminate thermal radiation and convection. In the numerical
model, we design the thermal diffusivities of the beams by directly
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adjusting the value of thermal conductivity in the original
material parameters. The temperature is calculated in the time
duration from 0 to 100 s with the step of 2 s.

Data availability
The data that support the findings of this study can be provided from the corresponding
author upon reasonable request.
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