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Anomalous non-Hermitian skin effect: topological
inequivalence of skin modes versus point gap
Gang-Feng Guo1, Xi-Xi Bao2, Han-Jie Zhu3, Xiao-Ming Zhao4, Lin Zhuang5✉, Lei Tan1,6✉ & Wu-Ming Liu 3✉

It has long been believed that skin modes are equivalent to the nontrivial point gap. However,

we find that this concomitance can be broken, in that skin modes can be absent or present

when the point gap is nontrivial or trivial, respectively, named anomalous non-Hermitian skin

effect. This anomalous phenomenon arises whenever unidirectional hopping amplitudes

emerge among subsystems, where sub-chains have decoupling-like behaviors and contribute

only to the energy levels without particle occupation. The occurrence of anomalous non-

Hermitian skin effect is accompanied by changes in open boundary eigenvalues, whose

structure exhibits multifold exceptional points and can not be recovered by continuum bands.

Moreover, an experimental setup is proposed to simulate this effect. Our results reveal the

topologically inequivalence of skin modes and point gap. This effect not only provides a

deeper understanding of non-Bloch theory and critical phenomena, but may inspire appli-

cations, such as in sensor field.
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Recent theoretical and experimental studies on non-
Hermitian systems have revealed many interesting phe-
nomena without Hermitian counterparts, and thus greatly

expanded our cognition of physics laws1–18. A quintessential
feature of non-Hermitian systems is skin modes19–26, which are
the accumulation of the majority of eigenstates at system
boundaries. The non-Hermitian skin effect causes nullities of
conventional bulk-boundary correspondence19. Specifically, the
eigenvalues under different boundary conditions have a crucial
distinction. Non-Bloch band theory was subsequently proposed,
from which generalized Brillouin zone and continuum bands can
be obtained to redefine the topological invariant and reproduce
the open boundary band structures19,20. The exotic accumulation
phenomenon of the eigenstates has important applications for
topological sensors27,28, the integrated optical chip29, and topo-
logical lasing30,31. Presently, it is widely believed that the non-
Hermitian skin effect is tantamount to the topologically nontrivial
point gap21,32–37 and vice versa, which can be explained as fol-
lows. The Hamiltonian under open boundary conditions is always
topologically trivial for the point gap. Thus, if the Hamiltonian
under periodic boundary conditions is nontrivial, the non-
Hermitian skin effect is present inevitably [Fig. 1].

However, we reveal that open boundary eigenstates can exhibit
anomalous non-Hermitian skin effect, where skin modes can be
ever absent even though the point gap is nontrivial, whereas skin
modes are present for trivial point gap. This phenomenon occurs
only when unidirectional hopping leading to decoupling-like
behaviors is considered, where some subsystems contribute only
to energy levels under periodic boundaries, and have no eigen-
state distribution under open boundary conditions. That is to say,
the curve in momentum space formed by the Bloch Hamiltonian
will have a loop around a reference point and all sub-chains of the
system affect the point gap. Yet under open boundary conditions,
there is no wave function distribution on some sub-chains. With
the emergence of the inequivalence of skin modes and point gap,

there is a sudden change in open boundary eigenvalues. Specifi-
cally, there are multifold exceptional points, whose degree of
degeneracy is proportional to the system size, among the open
boundary eigenvalues that are appreciably different from the
continuum bands. The physical properties of the eigenvalues may
have relevance in the field of sensors. Finally, an experimental
setup with electric circuits is proposed to realize our system.

Results
We consider a non-Hermitian three-band system (Fig. 2a), whose
Hamiltonian reads as

H ¼ ∑
N

n¼1
taC

y
A;nþ1CA;n þ tcC

y
C;nCC;nþ1

h

þ tbðCy
B;nCB;nþ1 þ Cy

B;nþ1CB;nÞ þ γ1C
y
A;nCB;n

þ γ2C
y
B;nCA;n þ γ3C

y
B;nCC;n þ γ4C

y
C;nCB;n

þ VaC
y
A;nCA;n þ VbC

y
B;nCB;n þ VcC

y
C;nCC;n

i
;

ð1Þ

where Cy
A;n (CA,n), Cy

B;n (CB,n) and Cy
C;n (CC,n) represent the

creation (annihilation) operators for sublattice A, B and C in the
n-th unit cell. For sub-chain A, only right hopping ta is con-
sidered. Conversely, only left tunneling tc is considered for sub-
chain C. Meanwhile, sub-chain B is Hermitian with the hopping
amplitude being tb. γ1 and γ2 stand for non-Hermitian hopping
between A and B sub-chain, while γ3 and γ4 are non-Hermitian
hopping between B and C sub-chain. Va, Vb and Vc stand for the
on-site potentials for sub-chains A, B and C, respectively. With-
out loss of generality, we take all parameters as real numbers.

We start with normal case for comparison. The non-
Hermitian skin effect can be generally confirmed by nontrivial
point gap, or equivalently, by non-zero spectral winding W ¼
1
2πi

R 2π
0 dk∂k ln det½HðkÞ � Eb�21,33–36, where Eb is an arbitrary

reference point. As an example, we can choose Eb ¼ 1
2 i and

W= 1 will be received [see Supplementary Note II for more

Fig. 1 Relationship between point gap and the non-Hermitian skin effect. It is taken for granted that the topologically nontrivial (trivial) point gap is
equivalent to the presence (absence) of skin modes. However, we question whether this is a universal conclusion. In our work, we exhibit a consequence of
the anomalous non-Hermitian skin effect: the open boundary eigenstates being localized for the topologically trivial point gap while extended for the
nontrivial point gap.
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details]. The system thus holds non-Hermitian skin modes, as
shown in Fig. 2b. Specifically, all sub-chains have distributions of
open boundary eigenstates.

Anomalous absence of skin modes for nontrivial point gap. We
now explore the localization properties of open boundary
eigenstates under unidirectional hopping amplitudes (γ1= γ4=
0). In this case, three eigenvalue branches in momentum space
are Ek1=Va+ tae−ik, Ek2= Vc+ tceik and Ek3 ¼ Vb þ 2tb cosðkÞ.
The complex energy spectra Ek1 (Ek2) will rotate clockwise
(counterclockwise) on the complex plane, and Ek3 simply forms a
line as k varies from 0 to 2π. Therefore, as long as Va ≠Vc or
ta ≠ tc, there must exist a reference point Eb (Here we can choose
Eb ¼ 1

2 i) surrounded only once and the area of the curve must be
nonzero36, as shown in Fig. 3a. Hence, it seems that our system
exhibits the non-Hermitian skin effect.

However, in addition to adopting an indirect perspective of the
point gap in momentum space, i.e., from the Bloch Hamiltonian
to analyze the skin modes, we can directly examine the
distributions of eigenstates under open boundary conditions
and find that the conclusion mentioned above is not suitable. To
characterize the localization properties of all wave functions
quantitatively, the inverse participation ratio (IPR) is introduced
as IPRs ¼ ð∑

i¼1
jΨs

i j4Þ=ð∑
i¼1

jΨs
i j2Þ

2
for the s-th eigenstate Ψsj i38,39.

For large system size, IPRs is finite for the localized eigenstate,
whereas it approaches zero for extended eigenstate. As shown in
Fig. 3b, IPRs≡ 0.0075, which indicates that all eigenstates should
be extended, not localized on open chain. One eigenvalue in
Fig. 3b can be selected to exhibit the distribution of the
eigenstates. As shown in Fig. 3c, the open boundary eigenstates
are indeed extended only on the B sub-chain, which conforms to
the non-Hermitian skin effect disappearance numerically. We
further plot the distribution of all open boundary eigenstates
corresponding to eigenvalues in Fig. 3d. There is no large number
of eigenstates localized at system boundary, i.e., the non-
Hermitian skin effect is absent whereas the point gap is
nontrivial. Physically, sub-chain A (C) has only unidirectional
hopping to sub-chain B, but the reverse does not happen when
γ1= 0 (γ4= 0), and B sub-chain is Hermitian, which can be
solved analytically (Supplementary Note II). Hence, there is no
probability distribution on sub-chain A (C), and Bloch waves
survive in B sub-chain (Fig. 3e).

Anomalous presence of skin mode for trivial point gap. The
non-Hermitian skin effect is present at unidirectional hopping
amplitudes for γ1= γ3= 0. To confirm that the spectral winding
number is zero, corresponding to trivial point gap, conditions of the
Hamiltonian (1) are further restricted as Va=Vc and ta= tc, i.e.,
generalized Brillouin zone of non-Hermitian three-band Hamiltonian
(1) is a unit circle (Supplementary Note I). In addition to quantitative
calculations of spectral windings, topological properties of the point
gap can be gained intuitively. Namely, if the area of the curve sur-
rounded by (Re[det[H(k)]], Im[det[H(k)]]) is zero, non-Hermitian
skin modes will vanish and vice versa21,33–36. For our system, three
eigenvalue branches in momentum space satisfy
∣Ek1∣= ∣Va+ tae−ik∣= ∣Ek2∣= ∣Vc+ tceik∣ and Ek3 ¼ Vb þ 2tb cosðkÞ,
i.e., Ek1 and Ek2 will trace two circles with same radius but in opposite
direction of rotation when k changes from 0 to 2π [Fig. 3f]. Therefore,
for any reference point Eb, the spectral winding is equal to zero exactly,
and it seems that there is no non-Hermitian skin effect.

However, we can also examine the localization properties of
open boundary eigenstates from IPRs. As shown in Fig. 3g,
min(IPRs)= 0.9406 as the energy changes under numerical
simulation, which means that all eigenstates are localized, rather
than extended, even if spectral winding number is constantly
zero. Here, the information on the exceptional points [discussed
next] and the corresponding eigenstates has been excluded. We
can arbitrarily present the distribution of an open boundary
eigenstate in Fig. 3h. It is obviously localized at the left C sub-
chain of the system. Furthermore, Fig. 3i presents the distribution
of all open boundary eigenstates associated with eigenvalues,
where eigenstates have been normalized. Globally, all open
boundary eigenstates are pinned at the left system boundaries, i.e.,
the non-Hermitian skin effect is present. Physically, one can
analytically find that there only exists unidirectional hopping
from sub-chain A to a subsystem comprising sub-chains B and C
when γ1= 0 [Supplementary Note II], and this subsystem is still
non-Hermitian essentially. Hence, there is no probability
distribution on sub-chain A, while the non-Hermitian skin effect
also can be exhibited in the subsystem (Fig. 3j).

Changes of open boundary eigenvalues. We now analyze the
properties of energy spectrum when anomalous non-Hermitian
skin effect occurs. According to Hamiltonian (1), the character-
istic polynomial of our system is

f ðβ; EÞ ¼ a2β
2 þ a1β

1 þ a0β
0 þ a�1β

�1 þ a�2β
�2 ¼ 0: ð2Þ

Fig. 2 Brief of the non-Bloch band theory. a Non-Hermitian three-band system with the number of unit cells N. ta (Va), tb (Vb) and tc (Vc) are the hopping
amplitudes (on-site potentials) for sub-chain A, B and C, respectively. γi (i= 1, 2, 3, 4) stands for couplings between sub-chains. b Normal case that the
topologically nontrivial point gap stands for the occurrence of skin modes. The green curve encircling the reference point Eb ¼ 1

2 i in left sub-figure is
eigenvalues under periodic boundary conditions, and therefore non-Hermitian skin effect is displayed in the right sub-figure. The parameters are N= 200,
ta= 1, tb ¼ 4

5, tc= 2, γ1= γ2= 1, γ3 ¼ 1
10, γ4 ¼ 1

2, Va= 2 and Vb= Vc= 1.
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The coefficients from a2 to a−2 can be seen in Supplementary
Note I. The characteristic polynomial f(β, E) is a quartic equation.
The solutions can be numbered as β1

�� ��≤ β2
�� ��≤ β3

�� ��≤ β4
�� �� for a

given E and β2
�� �� ¼ β3

�� �� is required to determine generalized
Brillouin zone and derivative continuum bands. As shown in
Fig. 4a, generalized Brillouin zone is displayed, and correspond-
ingly, the open boundary energy spectrum is well recovered by
continuum bands with γ1 ¼ 1

500 and γ4 ¼ 1
400 (Fig. 4b).

However, the situation is remarkably different when γ1= γ4=
0, corresponding to presence anomalous non-Hermitian skin
effect. Generalized Brillouin zone shown in Fig. 4c is slightly
different from the one in Fig. 4a, and there is very little change for
continuum bands [comparing red curve in Fig. 4b with the one in
Fig. 4d], while open boundary eigenvalues differ and lie on the
real axis. Hence, open boundary energies and continuum bands
will not be compatible with each other.

Further, it is taken for granted that if every open boundary
eigenvalue is brought into the characteristic polynomial f(β, E),
and the second and third largest ∣β∣ are selected, the data should
belong to generalized Brillouin zone obtained from non-Bloch
band theory19–21,26,40. However, unlike the case in the established
scenarios, this rule is nullified in singular phenomenon.
Detailedly, we can choose an open eigenvalue in Fig. 4d, such as
EOBC= 4, and bring it into the characteristic polynomial f(β, E).
After calculation, one can receive jβ1j; jβ2j; jβ3j; jβ4j

� �
E¼4 ¼

0:6667; 1:000; 1:000; 4:000f g, i.e., ∣β2∣= ∣β3∣. This equality is exactly
the condition of obtaining generalized Brillouin zone and
corresponding continuum bands. Therefore, EOBC= 4 can be
reproduced by continuum bands based on non-Bloch band
theory40. Yet, another open boundary eigenvalue EOBC ¼ 6

5 can
be considered as well. Similarly, jβ1j; jβ2j; jβ3j; jβ4j

� �
E¼6

5
¼

1:000; 1:000; 1:600; 10:00f g; i.e., ∣β2∣ ≠ ∣β3∣ but ∣β1∣= ∣β2∣.

Fig. 3 Anomalous non-Hermitian skin effect. a Nontrivial point gap obtained from (Re[det[H(k)]], Im[det[H(k)]]) as k varies from 0 to 2π for the
reference point Eb ¼ 1

2 i. Namely, the effects of all energy bands are taken into account in calculation of spectral winding. b Open boundary eigenvalues
colored by their inverse participation ratio for the s-th eigenstate Ψsj i (IPRs), remaining constant approaching zero. c Distribution of the open boundary
eigenstate corresponding to the blue asterisk EOBC= 0.0001 in b, where occupation is non-zero only on sub-chain B, while both sub-chain A and sub-chain
C have no occupation. d Normalized eigenstates with the change of eigenvalues. All eigenstates are extended, rather than localized, on the open chain.
e Non-Hermitian three-band system will be simplified as a Hermitian one-band model when γ1= γ4= 0. f Momentum space spectra, where Ek1 and Ek2 will
display two circles with the same radius but opposite rotation directions when k changes from 0 to 2π. Thus, the point gap is topologically trivial for any
reference point. In other words, all energy levels in momentum space contribute to the point gap. g Open boundary eigenvalues. Different colors are
different values of IPRs, which is finite for the corresponding eigenstate. h Distribution of the open boundary eigenstate, which is localized, rather than
extended. i Eigenstates as a function of all open boundary eigenvalues E. All eigenstates have been normalized and are localized at the boundaries of the
system. The A sub-chain only contributes the energy level while without wavefunction distribution. j Open boundary non-Hermitian three-band system will
become the non-Hermitian two-band system from both eigenstates and eigenvalues perspectives when γ1= γ3= 0. The parameters for a–e are γ1= γ4= 0,
ta= 1, tb ¼ 1

2, tc= 2, γ2= 2, γ3= 1, Va= 2 and Vb= Vc= 1. f–j γ1= γ3= 0, ta= tc= 8, tb ¼ 1
2, γ2= 2, γ4= 1, Va ¼ Vc ¼ 3

5 and Vb= 1.
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Evidently, this equality contradicts the condition of obtaining
generalized Brillouin zone, i.e., this open boundary eigenvalue must
not belong to continuum bands determined by ∣β2∣= ∣β3∣. Figure 4d
visually confirms these results.

The singular energy spectrum can also be examined from a
more general perspective. In Ref. 26, authors proposed a concept
of the auxiliary generalized Brillouin zone, which is obtained by
solving the characteristic equation f(β, E)= 0 when E takes
every value of the complex number field with ∣βm∣= ∣βn∣
({m, n}= {1, 2, 3, 4}). However, as shown in Fig. 4e, even though
the auxiliary generalized Brillouin zone possesses all equality
information of f(β, E)= 0, it remains impossible to recover
generalized Brillouin zone obtained from open boundary
eigenvalues. This further confirms the emergence of singular
energy spectrum.

Meanwhile, we analytically exhibit that the determinant of open
boundary Hamiltonian has the form det HOBC � EOBC;N ´N

� � ¼
2�N ðVa � EOBCÞN ðVc � EOBCÞNyðVb; tb; EOBCÞ with unidirectional

hopping being satisfied (Supplementary Note II), with N being total
number of the system size. Hence, EOBC=Va and EOBC=Vc must
be solutions of det HOBC � EOBC;N ´N

� � ¼ 0, and be N-fold
exceptional points41,42. In Fig. 4f, we exhibit the number of the
open boundary eigenvalues of EOBC=Va and EOBC=Vc with
different system sizes. Explicitly, the number of degeneracy points
is proportional to the system size.

Additionally, sensors have penetrated aspects of daily life. The
core part of a sensor is transformation circuit, which amplifies
weak signals43–45. Interestingly, it has been displayed that minute
perturbations of parameters will affect the eigenvalues. Moreover,
Refs. 46–51 also show that higher-order exceptional points have
advantages for sensor applications, and it is significant to seek
higher-order exceptional points in various systems. Coinciden-
tally, we also have shown that the emergence of the singular
phenomenon is accompanied by the multifold exceptional point.
Hence, our non-Hermitian systems may have potential applica-
tions in the sensor field.

Fig. 4 Changes in open boundary eigenvalues. a Generalized Brillouin zone (red curve) and Brillouin zone (green curve). b Energy spectra under open
boundary conditions (blue curve) and continuum bands (red curve). c Generalized Brillouin zone (red curve) and Brillouin zone (green curve). d Energy
spectra under open boundary conditions (blue curve) and continuum bands (red curve). After bringing two open boundary eigenvalues into f(β, E), one
energy value obtains ∣β2∣= ∣β3∣ (EOBC= 4) while the other corresponds to ∣β1∣= ∣β2∣ (EOBC ¼ 6

5). e Auxiliary generalized Brillouin zone (red curve) containing
all information of ∣βm∣= ∣βn∣ ({m, n}= {1, 2, 3, 4}) with f(β, E)= 0, and generalized Brillouin zone obtained from the open boundary eigenvalues (blue
curve). f Number of certain open boundary eigenvalues versus the system size. a and b γ1 ¼ 1

500 and γ4 ¼ 1
400. c-f γ1= γ4= 0. Other parameters: ta= 2,

tb= 1, tc ¼ 1
2, γ2= 1, γ3 ¼ 1

10, Va= 1Vb= 3 and Vc= 2.
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Proposed experimental implementation. There exist several
physical incarnations that can be used to explore non-Hermitian
systems52–68, including cold atoms52–55, electrical circuits56–63,
photonic and acoustic systems64–68. Among them, electric circuits
have been widely used because the circuit structure can be flexibly
designed to facilitate integration and mass production. Here, we
propose an experimental scheme to realize our system through
electric circuits (Supplementary Note III). The essential part of
the electric system is the negative converter with current inver-
sion (INIC), the impedance of which is changed from negative to
positive with the orientation of the current being reversed, or vice
versa, as shown in Fig. 5. Our system can be achieved by choosing
appropriate impedances for these electric devices. Explicitly, the
parameters of the devices are YA1= Va, YAj= Va+ ta(1 < j ≤ N),
Y 0
Aj ¼ �γ1, YAB ¼ � γ1þγ2

2 , Y 0
AB ¼ γ1�γ2

2 , YAA ¼ Y 0
AA ¼ � ta

2 ,

YB1= YBN=Vb, YBj= Vb+ tb(1 < j <N), YBC ¼ � γ3þγ4
2 ,

Y 0
BC ¼ γ3�γ4

2 , YBB=− tb, YCj=Vc(1 ≤ j <N), YCN= Vc− tc,
Y 0
Cj ¼ �ðγ4 þ tcÞ, YCC ¼ � tc

2 and Y 0
CC ¼ tc

2.

Conclusion
We unravel that open boundary eigenstates exhibit an anomalous
non-Hermitian skin effect in which they are extended for the
topologically nontrivial point gap but localized for trivial point
gap, provided that there are one-directional coupling amplitudes
among the sub-chains. Additionally, with the presence of

anomalous non-Hermitian skin effect, open boundary eigenva-
lues will have wide distinction compared with continuum bands.
Notably, there exist multifold exceptional points in an open
chain, and the degree of degeneracy grows as the system size
increases. The physical properties of the eigenvalues may have
applications in sensors field. Our results presented here demon-
strate the unique irrelevance of the non-Hermitian skin effect and
point gap, which could advance non-Bloch theory and our
understanding of critical phenomenon in non-Hermitian field.
Meanwhile, the conclusions can be generalized to various non-
Hermitian systems (such as the four-band system in Supple-
mentary Note IV).

Methods
The spectral winding number defined as
W ¼ 1

2πi

R 2π
0 dk∂k ln det½HðkÞ � Eb�21,33–36 can be calculated

quantitatively from the residue theorem via eik→ z and
dk ! 1

iz dz.
Such as, one can see that five first-order poles are distributed

on the complex plane for a given Eb1 ¼ 1
6 i in Fig. 6a, where four

of them are contributed to spectral winding and W= 1 can be
obtained, i.e., the point gap is topologically nontrivial. However,
three poles are surrounded by the unit circle in Fig. 6b for dif-
ferent parameters and the point gap is trivial. Precisely, the
spectral winding W≡ 0 for any reference point as long as ta= tc,
Va= Vc and γ1γ2= γ3γ4 (Supplementary Note II).

Fig. 5 Proposed electric circuit configurations for realizing the Hamiltonian. The Hamiltonian is given in Eq. (1). The electric elements contain the
negative converter with current inversion (INIC), capacitor and wires. YAA, YBB and YCC are capacitance of the capacitor. Y

0
AA and Y0

CC are capacitance of the
INIC for a capacitor. A sub-chain, B sub-chain and C sub-chain are respectively connected by those electric devices. YAB and Y0

AB being respectively the
capacitance of the capacitor and INIC for a capacitor connect A sub-chain and B sub-chain, while YBC and Y0

BC connect B sub-chain and C sub-chain. On-site
potential is obtained by grounding each node with suitable circuit devices.

Fig. 6 Distribution of poles under anomalous non-Hermitian skin effect. a z1, z2, z3 and z4 being encircled by the unit circle, which induces the nonzero
spectral winding, or the nontrivial point gap. Parameters are Eb1 ¼ 1

6 i, γ1= γ4= 0, ta= 1, tb ¼ 1
2, tc= 2, γ2= 2, γ3= 1, Va= 2 and Vb= Vc= 1. b z1, z3 and z5

being encircled by the unit circle, while z2 and z4 being excluded for reference point Eb2 ¼ 1
6 i. Thus, the system corresponds to the trivial point gap.

Parameters are γ1= γ3= 0, ta= tc= 8, tb ¼ 1
2, γ2= 2, γ4= 1, Va ¼ Vc ¼ 3

5 and Vb= 1.
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Code availability
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