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Nonreciprocal and chiral single-photon scattering
for giant atoms
Yao-Tong Chen1, Lei Du 1,2, Lingzhen Guo 3,4, Zhihai Wang1, Yan Zhang 1,5✉, Yong Li 2,6✉ &

Jin-Hui Wu 1✉

Quantum optics with giant atoms has provided a new paradigm to study photon scatterings.

In this work, we investigate the nontrivial single-photon scattering properties of giant atoms

being an effective platform to realize nonreciprocal and chiral quantum optics. For two-level

giant atoms, we identify the condition for nonreciprocal transmission: the external atomic

dissipation is further required other than the breaking of time-reversal symmetry by local

coupling phases. Especially, in the non-Markovian regime, unconventional revival peaks

periodically appear in the reflection spectrum. To explore more interesting scattering beha-

viors, we extend the two-level giant-atom system to Δ-type and∇ -type three-level giant

atoms coupled to double waveguides with different physical mechanisms to realize non-

reciprocal and chiral scatterings. Our proposed giant-atom structures have potential appli-

cations of high-efficiency targeted routers that can transport single photons to any desired

port deterministically and circulators that can transport single photons between four ports in

a cyclic way.
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Waveguide quantum electrodynamics (QED) studies the
interactions between atoms and one-dimensional
waveguide modes, providing an excellent platform

for constructing long-range interactions and engineering large-
scale quantum networks1–5. In experiments, typical candidates of
implementing waveguide QED systems include quantum dots
coupled to photonic crystal waveguides6,7, superconducting
qubits coupled to transmission lines8–11, ultracold atoms coupled
to optical fibers12,13, etc. To date, waveguide QED has inspired a
number of exotic phenomena, such as atom-like mirrors14,15,
dynamical Casimir effects16, single-photon routing17–19, and
bound states in the continuum20.

In general, the atom can be viewed as a point when coupled
with the waveguide due to its negligible size compared to the
wavelength of waveguide modes. Nevertheless, in a recent
experiment, a superconducting transmon qubit was designed to
interact with surface acoustic waves via multiple coupling points
whose separation distances can be much larger than the wave-
length of the waves21. Instead, a generalized theory called “giant
atom” has been developed to describe such situations22. Since the
first theoretical study in 201423, the giant-atom scheme has been
broadly investigated with superconducting qubits24–28, coupled
waveguide arrays29, and cold atoms30. With such nonlocal cou-
pling schemes, a series of tempting quantum phenomena have
been demonstrated, including frequency-dependent relaxation
rate and Lamb shift23,27,31, non-exponential atomic decay24,25,
decoherence-free interatomic interaction27,32,33, exotic bound
states26,34, modified topological effects35, and quantum Zeno and
quantum anti-Zeno effects36. Giant atoms have emerged as a new
paradigm in quantum optics and require more comprehensive
understanding in physics.

On the other hand, controlling the flow of photons, especially
realizing asymmetric photonic propagations in waveguide QED
systems, is crucial for constructing nonreciprocal optical
devices37–42. To this end, one could break the time-reversal sym-
metry of the system such that the interactions between the atoms
and the waveguide modes are direction-dependent18,43,43–47. Such a
paradigm, also known as chiral quantum optics43, can be achieved
via several methods, such as the spin-momentum locking effect48–50,
inserting circulators in superconducting circuits51–53, applying
topological waveguides54,55, synthesizing artificial gauge fields56,
adding spin-orbit coupling to Bose-Einstein quasicondensates57, and

using Rydberg atoms or trapped ions58. Based on the chiral inter-
action, targeted photonic routers19, single-photon circulators59,60,
cascaded quantum networks61–63, and enhanced entanglement64,65

have been proposed. Recently, the concept of giant atom has been
introduced to chiral quantum optics, making some advanced
functionalities possible, such as chiral bound states34, dark states
without coherent drives33, and non-Markovianity induced
nonreciprocity66. These seminal works inspire us to explore more
intriguing effects in chiral giant-atom setups, especially with multi-
level structure66–68.

In this paper, we investigate how external atomic dissipa-
tions outside the waveguide and local coupling phases affect
the single-photon scattering properties of a two-level giant
atom with two atom-waveguide coupling points. By taking into
account the phase difference between two coupling points, we
find that the giant atom behaves like a chiral small atom in the
Markovian regime but exhibits peculiar giant-atom effects in
the non-Markovian regime. We physically demonstrate that
the breaking of time-reversal symmetry by local coupling
phases is not sufficient for realizing nonreciprocal photon
scatterings. In fact, in the absence of the external atomic dis-
sipation, the scatterings are always reciprocal even if the atomic
spontaneous emission becomes chiral68,69. In order to realize
asymmetric scattering for a giant atom without external dis-
sipation, we propose a ∇-type giant atom coupled to two
waveguides. In such way, we realize the nonreciprocal and
chiral scatterings with single ∇-type atom. Targeted routing
and circulation schemes can also be realized via such scatter-
ings with proper phases. Finally, we consider a Δ-type giant
atom and compare its properties with that of ∇-type one. We
reveal that, the nonreciprocial scatterings stem from the
quantum interference effect in the closed-loop atom-level
structure for the Δ-type giant atom, but from the nontrivial
coupling phase difference for the ∇-type giant atom.

Results and discussion
Two-level giant atom coupled to a single waveguide. As sche-
matically shown in Fig. 1a, we consider a two-level giant atom
coupled to a waveguide at two separated points x= 0 and x= d.
The atom-waveguide coupling coefficients are geiθ1 and geiθ2 ,
respectively, with local coupling phases θ1 and θ2 for inducing
some intriguing interference effects to the scattering properties as
will be discussed below. With superconducting quantum devices,
the local coupling phases can be introduced with Josephson-
junction loops threaded by external fluxes69.

Under the rotating wave approximation, the real-space
Hamiltonian of the model can be written as (ћ= 1 hereafter)

H ¼Hw þ Ha þHI ;

Hw ¼
Z þ1

�1
dx ayLðxÞ ω0 þ ivg

∂

∂x

� �
aLðxÞ

�

þ ayRðxÞ ω0 � ivg
∂

∂x

� �
aRðxÞ

�
;

Ha ¼ ωe � i
γe
2

� �
ej i eh j;

HI ¼
Z þ1

�1
dx δðxÞgeiθ1�ayRðxÞ þ ayLðxÞ

	jgi eh j
n

þ δðx � dÞgeiθ2 ayRðxÞ þ ayLðxÞ
h i

jgi eh j þ H.c.
o
:

ð1Þ

Here Hw represents the free Hamiltonian of the waveguide modes
with vg being the group velocity of photons in the waveguide. aR,L
(ayR;L) are the bosonic annihilation (creation) operators of the
right-going and left-going photons in the waveguide, respectively;

Fig. 1 Schematic representation of the model and the photon paths. a A
two-level giant atom coupled to a waveguide at x= 0 and x= d,
respectively, with individual local coupling phases θ1,2. b Two paths of a
single photon propagating from port 1 to port 2 (left) or from port 2 to port
1 (right).
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ω0 is the frequency around which the dispersion relation of the
waveguide mode is linearized1,70. Ha is for the atom, where ωe

describes the transition frequency between the ground state jgi
and the excited state ej i; γe is the external atomic dissipation rate
due to the non-waveguide modes in the environment. HI

describes the interactions between the atom and the waveguide,
where the Dirac delta functions δ(x) and δ(x− d) indicate that
the atom-waveguide couplings occur at x= 0 and x= d,
respectively.

Considering that the total excitation number is conserved in
rotating wave approximation, the eigenstate of the system can be
expressed in the single-excitation subspace as

jΨi ¼
Z þ1

�1
dx
�
ΦRðxÞayRðxÞ þΦLðxÞayLðxÞ

	j0; gi
þ uej0; ei;

ð2Þ

where ΦR,L(x) are the density of probability amplitudes of
creating the right-going and left-going photons at position x,
respectively; ue is the excitation amplitude of the atom; j0; gi
denotes the vacuum state of the system. The probability
amplitudes can be determined by solving the eigenequation
H Ψj i ¼ E Ψj i, which leads to

EΦRðxÞ ¼ ω0 � ivg
∂

∂x

� �
ΦRðxÞ

þ g
�
eiθ1δðxÞ þ eiθ2δðx � dÞ	ue;

EΦLðxÞ ¼ ω0 þ ivg
∂

∂x

� �
ΦLðxÞ

þ g
�
eiθ1δðxÞ þ eiθ2δðx � dÞ	ue;

Eue ¼ ωe � i
γe
2

� �
ue þ ge�iθ1

�
ΦRð0Þ þΦLð0Þ

	
þ ge�iθ2

�
ΦRðdÞ þΦLðdÞ

	
:

ð3Þ

Assuming that a photon with the renormalized wave vector k
satisfying the linear dispersion relation E= ω0+ kvg is incident
from port 1 of the waveguide, the wave functions ΦR,L(x) can be

written as

ΦRðxÞ ¼ eikxfΘð�xÞ þ A½ΘðxÞ � Θðx � dÞ�
þ tΘðx � dÞg;

ΦLðxÞ ¼ e�ikxfrΘð�xÞ þ B½ΘðxÞ � Θðx � dÞ�g;
ð4Þ

where Θ(x) is the Heaviside step function. Here, t and r denote
the single-photon transmission and reflection amplitudes in the
regions of x > d and x < 0, respectively. We define A and B as the
probability amplitudes for the right-going and left-going photons
between the two coupling points (0 < x < d), respectively.

Substituting Eq. (4) into Eq. (3), we obtain

0 ¼� ivgðA� 1Þ þ geiθ1ue;

0 ¼� ivgðt � AÞeiϕ þ geiθ2ue;

0 ¼� ivgðr � BÞ þ geiθ1ue;

0 ¼� ivgBe
�iϕ þ geiθ2ue;

0 ¼ g
2
e�iθ1 ðAþ Bþ r þ 1Þ þ g

2
e�iθ2

´ ðAeiϕ þ Be�iϕ þ teiϕÞ � Δþ i
γe
2

� �
ue

ð5Þ

with Δ= E− ωe being the detuning between the incident photon
and the atomic transition. In the case of near resonant couplings
with E ~ ωe (i.e., ∣Δ/ωe∣ ≪ 1), the transmission and reflection
amplitudes can be obtained from solving Eq. (5) as

t ¼ Δþ i γe2 � 2Γeiθ sinϕ

Δþ i γe2 þ 2iΓð1þ eiϕ cos θÞ ; ð6aÞ

r ¼ ½2iΓð1þ eiϕ cos θÞ þ 2Γeiθ sin ϕ�½1þ eiðθþϕÞ�
½Δþ i γe2 þ 2iΓð1þ eiϕ cos θÞ�½1þ eiðθ�ϕÞ� ; ð6bÞ

where θ= θ2− θ1 is the phase difference between the two atom-
waveguide coupling channels and Γ= g2/vg is the rate of the
atomic emission into the waveguide. Compared with the setup of
a two-level small atom coupled locally to a waveguide, such giant
atom shows phase-dependent effective detuning and decay rate
given by Δ� 2Γ cos θ sin ϕ and γe=2þ 2Γð1þ cos θ cos ϕÞ,
respectively23. In fact, a left-incident (right-incident) photon
can propagate from x= 0 to x= d (from x= d to x= 0) via two
different paths: it can either keep on propagating along the
waveguide, or be absorbed at x= 0 (x= d) and re-emitted at
x= d (x= 0) by the atom, as shown in Fig. 1b. For the left-
incident photon, the two paths yield phase accumulations ϕ and
θ, respectively, which determine the phase-dependent interfer-
ence effect jointly.

For the right-incident photon, the propagation process is
equivalent to that of the left-incident one yet with exchanged
coupling phases, i.e., θ1↔ θ2. Therefore, the transmission and
reflection amplitudes for the right-incident photon are expressed
as

t0 ¼ Δþ i γe2 � 2Γe�iθ sin ϕ

Δþ i γe2 þ 2iΓð1þ eiϕ cos θÞ ; ð7aÞ

r0 ¼ ½2iΓð1þ eiϕ cos θÞ þ 2Γe�iθ sinϕ�½1þ e�iðθ�ϕÞ�
½Δþ i γe2 þ 2iΓð1þ eiϕ cos θÞ�½1þ e�iðθþϕÞ� ; ð7bÞ

which are also consistent with the results obtained by rewriting
the wave functions for the right-incident photon. In addition, it is
worth noting that the accumulated phase of a propagating photon
can be written as ϕ= (k0+ k)d= ϕ0+ (E− ω0)τ= ϕ0+ τΔ with
ϕ0= k0d and τ= d/vg by taking ω0= ωe for convenience. As
usual, we have discarded k0 in Hw of Eq. (1) and ΦL,R of Eq. (4)
without changing other equations, and will take ϕ0= α to replace

Fig. 2 Reciprocal and nonreciprocal transmission behaviors in a two-level
giant-atom system. Transmission rates T1→2 and T2→1 versus the detuning
Δ and the phase difference θ. a and b with the atomic dissipation rate
γe= 0; c and d with γe/Γ= 10, where Γ is the atomic emission rate into the
waveguide. Other parameters: accumulated phase ϕ0= π/2 and photon
propagation time τΓ= 0.01.
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ϕ0= α+ 2mπ with m being a positive integer and 0 ≤ α < 2π in
the following discussions. Hence, it is viable to work in the
Markovian regime with ∣τΔ∣ ~ τΓ≪ 1 ~ ϕ0 when d is not too large,
while in the non-Markovian regime with ∣τΔ∣ ~ τΓ ~ 1 ~ ϕ0 when
d is large enough. For a transmon qubit considered here, ωe and Γ
are of the order of GHz and 0.1MHz25,27,28, respectively, ensuring
thus the validity of rotating wave approximation mentioned
before Eqs. (1) and (2).

Reciprocal and nonreciprocal transmissions. We first focus on the
Markovian regime of τ≪ 1/(2Γ+ γe/2), where ϕ ≈ ϕ0 according
to the Taylor expansion because this substitution gives correct
Lamb shift and modified emission rate in the Markovian
limit24,29. In Fig. 2, we plot the transmission rates T1→2= ∣t∣2 and
T2!1 ¼ jt0j2 as functions of the detuning Δ and the phase dif-
ference θ with and without external atomic dissipations. Owing to
the interference between two photon paths mentioned above, the
scattering behavior changes periodically with θ. For γe= 0 as
shown in Fig. 2a, b, the single-photon scattering is reciprocal, i.e.,
T1→2≡ T2→1, although the time-reversal symmetry is broken due
to the nontrivial phase difference θ arising from the interference.

This counterintuitive phenomenon can be explained by
comparing Eqs. (6a) and (7a). On one hand, the transmission
amplitudes t and t0 share the same denominator that is an even
function of θ. On the other hand, the numerators of t and t0 in
Eqs. (6a) and (7a) can be rewritten as

Δ� 2Γ sinϕ cos θ þ i
γe
2

� 2Γ sinϕ sin θ
� �

;

Δ� 2Γ sinϕ cos θ þ i
γe
2

þ 2Γ sinϕ sin θ
� �

:
ð8Þ

Equation (8) clearly shows that nonreciprocal single-photon
transmissions ðjtj2≠jt0j2Þ can be achieved only if a finite external
atomic dissipation rate is taken into account (γe > 0). This can be
observed by the transmission spectra shown in Fig. 2c, d.

When γe= 0, Fig. 3a depicts the transmission rates T1→2 and
T2→1 versus the detuning Δ with various θ. For θ= π/2, we find
T1→2= T2→1≡ 1 over the whole range of the detuning, implying
that reflections are prevented for both directions. For θ= π,
however, the transmission spectrum exhibits the Lorentzian line
shape with phase-dependent Lamb shift and linewidth (decay
rate)23. In both cases (θ= π/2, π), the transmissions are
reciprocal, yet the atomic excitation probabilities are different
as will be discussed below. When γe ≠ 0, as shown in Fig. 3b and
(c), the scattering becomes nonreciprocal if θ= π/2; however,
with θ= π, the scatterings are still reciprocal even in the presence
of the external dissipation. We also can see from the three curves
corresponding to θ= ϕ0= π/2 a non-monotonic behavior of
transmission rate T1→2 (in particular, T1→2= 0 at Δ= 0 for γe/
Γ= 4) with the increase of external decay rate γe while T2→1

remains unity independent of Δ and γe. This can be understood
by resorting to Eqs. (6a) and (7a) restricted by θ= ϕ0= π/2, from
which it is easy to find that T2!1 ¼ jt0j2 � 1 while T1→2= ∣t∣2
exhibits a vanishing (nonzero) minimum for Δ= 0 (Δ ≠ 0) at the
optimal γe ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4Γ2

p
as determined by setting ∂T1→2/

∂γe= 0. Physically, this is an interference result of two
propagating paths. In Eq. (6a), the direct path denoted by
�2Γeiθ sin ϕ is along the waveguide from x= 0 to x= d; the
indirect path denoted by Δ+ iγe/2 is via an absorption at x= 0
and an emission at x= d. The two paths will contribute a
perfect destructive interference leading to t= 0 in the case of

Fig. 3 The influence of the coupling phase difference and accumulated phase on transmission rates and contrast ratios. Transmission rates T1→2 and
T2→1 versus the detuning Δ with accumulated phase ϕ0= π/2 and different atomic dissipation rates a γe/Γ= 0; b γe/Γ= 4; c γe/Γ= 20, where Γ is the
atomic emission rate into the waveguide. d Contrast ratios I and D versus the coupling phase difference θ with ϕ0= π/2 and Δ= 0. The yellow dot-dashed,
red dotted, and blue dashed lines are I with γe/Γ= 0, γe/Γ= 4, and γe/Γ= 20, respectively, and the black solid one represents D independent of γe.
e Contrast ratio D versus θ and ϕ0 with Δ= 0. Other parameters: photon propagation time τΓ= 0.01.
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sinϕ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2e þ 4Δ2

p
=4Γ and tanθ= γe/2Δ indicating that T1→2 can

also exhibit a vanishing minimum for Δ ≠ 0 if we haveffiffiffiffiffiffiffiffiffiffiffiffi
γ2e þ 4Δ2

p
≤ 4Γ. A similar analysis on Eq. (7a) shows that a perfect

destructive interference leading to t0 ¼ 0 will occur in the case of

sinϕ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2e þ 4Δ2

q
=4Γ and tanθ=− γe/2Δ due to a reversed

phase difference (θ→− θ) in the direct path. Hence, it is
impossible to simultaneously have T1→2= 0 and T2→1= 0 for a
nonzero external decay (γe ≠ 0).

The yellow dot-dashed, red dotted, and blue dashed lines in
Fig. 3d depict the contrast ratio

I ¼ T2!1 � T1!2

T2!1 þ T1!2
ð9Þ

versus the coupling phase difference θ with different atomic
dissipation rates. The observed phase-dependent nonreciprocal
transmission can be easily understood by resorting to Eqs. (6a)
and (7a). For instance, it is viable to have t= 0 (t0 ¼ 0) in
the case of Δ ¼ 2Γ sinϕ cos θ and γe ¼ 4Γ sinϕ sin θ
(γe ¼ �4Γ sin ϕ sin θ). Thus, perfectly nonreciprocal transmission
denoted by I= ± 1 can be attained by tuning the accumulated
phase ϕ and the coupling phase difference θ if we have ∣Δ∣≤2Γ and
γe≤4Γ. Note, in particular, that the conditions for attaining I= ± 1
will reduce to θ= π/2+ 2nπ and γe ¼ ± 4Γ sinϕ as well as
θ=− π/2+ 2nπ and γe ¼ �4Γ sinϕ for Δ= 0, with n being an
arbitrary integer.

Furthermore, the underlying physics of the reciprocal and
nonreciprocal scatterings can be understood via examining the
atomic excitation by the single photon. To this end, we define the
contrast ratio D of the atomic excitation probabilities for two
opposite propagating directions as

D ¼ jue2!1
j2 � jue1!2

j2
jue2!1

j2 þ jue1!2
j2 ð10Þ

with

ue1!2
¼ t � 1

�i g
vg
½eiθ1 þ eiðθ2þϕÞ� ;

ue2!1
¼ t0 � 1

�i g
vg
½eiθ2 þ eiðθ1þϕÞ� :

ð11Þ

According to Eqs. (6a) and (7a), parameters t− 1 and t0 � 1 have
the same denominator containing γe but different numerators
without γe. Furthermore, because the denominator that contains
γe is eliminated when calculating Eq. (10), the contrast ratio D is
independent of dissipation rate γe. Note that the contrast ratio D
can be used to capture the difference of the atomic excitation
probabilities for opposite directions even if the eigenstate Eq. (2)
is unnormalized. It is also not difficult to find from Eq. (6a) that
t= 1 and hence ue1!2

¼ 0 in the case of 1þ cosðϕ� θÞ ¼ 0 while
from Eq. (7a) that t0 ¼ 1 and hence ue2!1

¼ 0 in the case of
1þ cosðϕþ θÞ ¼ 0. Then, with ϕ∓ θ= (2n+ 1)π, we can attain
D= ± 1 as a measure of the optimal difference of atomic
excitation probabilities for oppositely propagating photons.

We plot in Fig. 3d the contrast ratio D (black solid line) as a
function of the phase difference θ with ϕ0= π/2. For θ= π/2,
D=− 1 means that the atom can only be excited by the left-
incident photon, and thus the atom-waveguide interaction
becomes ideally equivalent chiral69,71. In this case, the right-
incident photon is guided transparently because it does not
interact with the atom. While in the Markovian regime, the
reflections are lacking for both directions under the ideally
equivalent chiral coupling18,46, this is in fact not true in the non-
Markovian regime as will be discussed in the “Non-Markovian
regime” subsection. For θ= 3π/2, D= 1 corresponds to the
ideally equivalent chiral case where the atom can only be excited
by the right-incident photon. For other cases of D= 0 and
0 < ∣D∣ < 1, the equivalent atom-waveguide couplings are non-
chiral and nonideal chiral, respectively. In fact, the nonreciprocal
scatterings arise from the different dissipations into the environ-
ment, i.e., the energy loss into the environment is proportional to
the dissipation rate γe as well as the atomic population. In
addition, we demonstrate in Fig. 3e that the contrast ratio D is
also sensitive to the propagating phase. This provides an
alternative way to tune the equivalent chirality of the atom-
waveguide interaction and the reciprocal/nonreciprocal scattering
on demand. Note that the equivalent chiral coupling found here is
not in the standard form featuring different coupling
strengths19,43, but is a direct result of asymmetric interference
effects, between the left- and right-incident photons.

The results above can also be interpreted from the aspect of
Hermitian and non-Hermitian scattering centers72–74. In our
system with γe= 0 (γe ≠ 0), the giant atom can be regarded as a
Hermitian (non-Hermitian) scattering center of the Aharonov-
Bohm structure supporting two spatial interference paths. For the
Hermitian case, the scattering remains reciprocal; however, when
introducing an imaginary potential, e.g., the external atomic
dissipation, the combination of the non-Hermiticity and the
broken time-reversal symmetry gives rise to nonreciprocal
scatterings72,73. It is noted that, as discussed in the case in Fig. 3b,
c (θ= π), not all non-Hermitian scattering centers can demon-
strate nonreciprocal transmissions. The exceptions include, e.g.,
P-, T -, or PT -symmetric scattering centers72,74. In our model,
although the giant atom can exhibit chiral spontaneous emission
corresponding to the time-reversal symmetry breaking if θ ≠ nπ69,
the scatterings are still reciprocal unless the additional non-
Hermiticity (such as external dissipations) are introduced. Similar
equivalent asymmetric couplings are also observed in the setup of
emitters coupled to photonic lattice75.
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Fig. 4 Reflection behaviors in the Markovian and non-Markovian regime.
Reflection rate R versus the detuning Δ with the coupling phase difference
θ= π/2 and the accumulated phase ϕ0= π/2. The inset depicts R versus Δ
with θ= π/2 and ϕ0= π in the case of photon propagation time τΓ= 1 and
atomic dissipation rate γe/Γ= 0, where Γ is the atomic emission rate into
the waveguide.
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The nonreciprocal scatterings can also be observed as the
external decay rate is included for a two-level chiral giant atom
coupled to a waveguide with asymmetric coupling strengths
gL ≠ gR (see Supplementary Note 1). The problem lies in that it is
difficult or impossible to tune the degree of chirality η= gR/gL in
the full (non-periodic) range of {0,∞}, e.g., for a special photonic
crystal waveguide (PCW) with one side shifted half the lattice
constant relative to the other side44. In our model, however, it is
much easier and more flexible to engineer the nonreciprocal
scatterings in a standard PCW by tuning ϕ and θ in the full
(periodic) range of 2{n, (n+ 1)}π via the separation of two
coupling points and the magnetic fluxes threading different
Josephson junctions69,76,77, respectively.

Non-Markovian regime. With nontrivial local coupling phases, as
demonstrated above, the current giant-atom model (in the Mar-
kovian regime) is able to simulate a chiral atom-waveguide sys-
tem. However, one important characteristic of the giant atom is
the peculiar scattering behaviors arising in the non-Markovian
regime, where the propagating phase accumulation ϕ= ϕ0+ τΔ is
sensitive to the detuning Δ due to the large enough τ that is
comparable to or larger than the lifetime of the atom29. Such a
detuning-dependent phase will undoubtedly result in the non-
Markovian features in the transmission and reflection
spectra25,66. Here we just consider our system in the non-
Markovian regime and demonstrate the reflection with ϕ0= π/2
and θ= π/2. Note that the reflection is totally prevented in the
small-atom case with an ideal chiral coupling, which has been
demonstrated in ref. 18.

We plot in Fig. 4 the reflection rates R= ∣r∣2 for the left-
incident photon in the Markovian and non-Markovian regimes.

The yellow solid curve shows that the reflection in the Markovian
regime disappears completely. Such a reflectionless behavior
occurs in the case of D= ± 1, independent of the external atomic
dissipation. However, in the non-Markovian regime, due to the
Δ-dependent propagating phase ϕ, the reflection revives with
multiple peaks aligning periodically in the frequency domain. In
addition, the maximums of the reflection peaks decrease
gradually with the increasing of γe. The underlying physics is
that, in the phase accumulation ϕ, the non-Markovian contribu-
tion τΔ cannot be ignored relative to ϕ0; thus, τΔ and ϕ0
determine the scattering behaviors jointly. The reflection
disappears at some discrete Δ points satisfying τΔ= nπ.

Moreover, we can find from Eq. (6b) the condition

ðΔ� 2Γ sin ϕ cos θÞ2 þ γ2e=4þ 2γeΓð1þ cos θ cos ϕÞ
þ 4Γ2sin2ϕsin2θ ¼ 0;

ð12Þ

for achieving the perfect reflection (R= 1). It is easy to see that
this equation has no solutions for any choices of Δ/Γ, θ, and ϕ in
the case of γe ≠ 0. Hence, it is viable to achieve the perfect
reflection only by simultaneously requiring sin ϕ sin θ ¼ 0 and
Δ ¼ 2Γ sinϕ cos θ in the case of γe= 0, which have solutions (i)
ϕ= nπ and Δ= 0; (ii)θ= 2nπ and Δ ¼ 2Γ sinϕ; (iii)θ= (2n+ 1)
π and Δ ¼ �2Γ sinϕ. The underlying physics is that constructive
interference occurs between two reflection paths contributed by
coupling points x= 0 and x= d, respectively, which becomes
perfect (imperfect) in the case of γe= 0(γe ≠ 0) due to a vanishing
(nonzero) possibility for losing photons via the external decay. In
the inset of Fig. 4, we plot R against Δ/Γ for θ= π/2 and ϕ0= π as
an example and find that R= 1 at the resonance point (Δ= 0) as
predicted by solution (i).

Three-level giant atom coupled to double waveguides. In this
section, we consider two types of three-level giant atoms to
explore the possibility of realizing nonreciprocal scatterings, as
well as relevant single-photon router and circulator applications,
without the additional non-Hermiticity (i.e., external atomic
dissipation). As shown in Fig. 5a, we propose a ∇-type giant atom
coupled to two single-mode waveguides via different transitions
sharing the same ground state and driven by an external field on
the third transition between two excited states. Figure 5b shows
instead a Δ-type giant atom whose two ground states, interacting
with an external field, are further coupled to the same excited
state via different waveguide modes. The two proposals can be
implemented with a three-level transmon coupled to two PCWs
by considering that the energy bandgaps of different PCWs don’t
overlap each other. In this case, it is viable to assume that only
one transition driven by the external field exhibits a frequency
falling outside the bandgaps of both PCWs, while the frequencies
of other two transitions fall outside the bandgaps of different
PCWs as shown in Fig. 5c. It is then justified that no atomic
transitions will be coupled to both PCWs as long as the incident
photons are not resonant with the transition driven by an external
field. Experimentally, the upper and lower edges of a PCW’s
bandgap may be controlled by adding defects78, adjusting the
waveguide widths79, and varying widths of permalloy and cobalt
stripes in crystals80, while the transition frequencies of a trans-
mon can be tuned via the external flux of a magnetic coil11.

As shown in Fig. 5a, the atomic transition jgi $ je1i of
frequency ωe1

is coupled to waveguide Wa with complex coupling

coefficient g1e
iθ1;2 at two separated points x= 0 and x= da,

respectively; the transition jgi $ je2i of ωe2
is coupled toWb with

g2e
iθ3;4 at x= 0 and x= db, respectively. The excited states je1;2i

are coupled to an external coherent field of Rabi frequency Ω and
initial phase α. The atom is initialized in the ground state jgi. The

Fig. 5 Schematic configuration of the three-level giant atom coupled to
double waveguides. a ∇-type atom: the waveguide Wa (Wb) is coupled to
the transition gj i $ e1

�� �
( gj i $ e2

�� �
) at two separated points. The excited

states e1
�� �

and e2
�� �

are coupled to a coherent field Ωeiα. b Δ-type atom: Wa

(Wb) is coupled to g1
�� � $ ej i ( g2

�� � $ ej i) at two separated points. Two
ground states g1

�� �
and g2

�� �
are coupled to a coherent field εeiβ. c Band

structures of two PCWs used to implement our proposals.
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Hamiltonian of the∇-type giant atom coupled to two waveguides
can be written as

H0 ¼H0
w þ H0

a þH0
I ;

H0
w ¼

Z þ1

�1
dx ayLðxÞ ω0 þ ivg

∂

∂x

� �
aLðxÞ

�

þ ayRðxÞ ω0 � ivg
∂

∂x

� �
aRðxÞ

�

þ
Z þ1

�1
dx byLðxÞ ω0 þ ivg

∂

∂x

� �
bLðxÞ

�

þ byRðxÞ ω0 � ivg
∂

∂x

� �
bRðxÞ

�
;

H0
a ¼ ωe1

� i
γe1
2

� �
je1ihe1j þ ωe2

� i
γe2
2

� �
je2ihe2j

þ ðΩeiαje1ihe2j þ H.c.Þ;

H0
I ¼

Z þ1

�1
dxfδðxÞg1eiθ1

h
ayRðxÞ þ ayLðxÞ

i
jgihe1j

þ δðx � dÞg1eiθ2
h
ayRðxÞ þ ayLðxÞ

i
jgihe1j

þ δðxÞg2eiθ3
h
byRðxÞ þ byLðxÞ

i
jgihe2j

þ δðx � dÞg2eiθ4 ½byRðxÞ þ byLðxÞ�jgihe2j þ H.c.g;

ð13Þ

where aR,L/bR,L (ayR;L=b
y
R;L) annihilates (creates) right-going and

left-going photons in the waveguide Wa/Wb, respectively. In the
single-excitation subspace, the eigenstate of the system can be
expressed as

Ψj i ¼
Z þ1

�1
dx
h
ΦaRðxÞayRðxÞ þΦaLðxÞayLðxÞ

þ ΦbRðxÞbyRðxÞ þΦbLðxÞbyLðxÞ
i
j0; gi

þ ue1 j0; e1i þ ue2 j0; e2i;

ð14Þ

where ΦaR,aL(ΦbR,bL) are the probability amplitudes of creating
the right-going and left-going photons in Wa(Wb), respectively.

Assuming that a photon with renormalized wave vector ka is
emanated from port 1 of Wa, the probability amplitudes can be
written as

ΦaRðxÞ ¼ eikaxfΘð�xÞ þM½ΘðxÞ � Θðx � daÞ�
þ s1!2Θðx � daÞg;

ΦaLðxÞ ¼ e�ikaxfs1!1Θð�xÞ þ N½ΘðxÞ � Θðx � daÞ�g;
ΦbRðxÞ ¼ eikbxfQ½ΘðxÞ � Θðx � dbÞ� þ s1!4Θðx � dbÞg;
ΦbLðxÞ ¼ e�ikbxfs1!3Θð�xÞ þW½ΘðxÞ � Θðx � dbÞ�g;

ð15Þ

where the wave vectors ka ¼ ðE0 � ω0Þ=vg with the eigenenergy E0

in Wa and kb ¼ ka þ ðωe2
� ωe1

Þ=vg in Wb. When excited to state
je1i by the incident photon from port 1, the atom can either re-
emit a photon with the same frequency to Wa via decaying back
to state jgi directly, or radiate a photon with frequency ωe2

to Wb

via first transferring from state je1i to state je2i due to the external
driving and then decaying to state jgi67,81. If a photon with
renormalized wave vector kb is sent from port 4 of Wb, the
probability amplitudes can be written as

ΦaRðxÞ ¼ eikaxfs4!2Θðx � daÞ þM0½ΘðxÞ � Θðx � daÞ�g;
ΦaLðxÞ ¼ e�ikaxfN 0½ΘðxÞ � Θðx � daÞ� þ s4!1Θð�xÞg;
ΦbRðxÞ ¼ eikbxfQ0½ΘðxÞ � Θðx � dbÞ� þ s4!4Θðx � dbÞg;
ΦbLðxÞ ¼ e�ikbxfΘðx � dbÞ þW 0½ΘðxÞ � Θðx � dbÞ�

þ s4!3Θð�xÞg:

ð16Þ

By solving the stationary Schrödinger equation, one can obtain
the scattering amplitudes of ∇-type giant atom for this case.

Nonreciprocal scattering. For simplicity, we start by supposing
ϕb= θ3= θ4= 0, i.e., the transition jgi $ je2i is coupled toWb at
a single point. Then, the scattering probabilities can be calculated
from S1→2= ∣s1→2∣2 and S1→3(4)= ∣s1→3(4)∣2 with the scattering
amplitudes given by

s1!2 ¼
Δ0 þ i

γe1
2 � Ω2f � 2Γ1e

iθ sinϕa
Δ0 þ i

γe1
2 � Ω2f þ 2iΓ1ð1þ eiϕa cos θÞ

;

s1!3ð4Þ ¼
g2Ωe

�iαðs1!2 � 1Þ
g1ðΔ0 þ iγe2=2þ iΓ2Þ½eiθ1 þ eiðθ2�ϕaÞ�

ð17Þ

with the detuning Δ0 ¼ E0 � ωe1
and the atomic emission rates

Γ1;2 ¼ g21;2=vg . As discussed above, we make the substitution
ϕa= (ka+ k0)da≃ ϕa0 in the Markovian regime. Likewise, one
can also obtain S2→1= ∣s2→1∣2 and S2→3(4)= ∣s2→3(4)∣2 with

s2!1 ¼
Δ0 þ i

γe1
2 �Ω2f � 2Γ1e

�iθ sin ϕa
Δ0 þ i

γe1
2 � Ω2f þ 2iΓ1ð1þ eiϕa cos θÞ

;

s2!3ð4Þ ¼
g2Ωe

�iαðs2!1 � 1Þ
g1ðΔ0 þ iγe2=2þ iΓ2Þ½eiθ2 þ eiðθ1�ϕaÞ� ;

ð18Þ

which are achieved via exchanging θ1 and θ2 in Eq. (17). It is
found that s4→1= s2→3 and thus S4→1= ∣s4→1∣2= S2→3.

Compared with Eq. (6a) and Eq. (7a) of the two-level giant
atom, both s1→2 and s2→1 include an additional coupling term
Ω2f with

f ¼
1� i

γe2
2 þ Γ2

� �

Δ
02 þ γe2

2 þ Γ2

� �2 ; ð19Þ

which describes the photon transfer from Wa to Wb. It can be

Fig. 6 Nonreciprocal scattering behaviors in a three-level ∇-type giant-
atom system. Scattering probabilities a S1→2; b S2→1; c S1→4; d S4→1 versus
the detuning Δ0 and the coupling phase difference θ. Other parameters:
atomic dissipation rates γe1 ¼ γe2 ¼ 0, the ratio of two atomic emission
rates into different waveguides Γ2/Γ1= 1, Rabi frequency of the external
coherent field Ω= 5Γ1, and accumulated phase of the photon traveling in
waveguide Wa ϕa0= π/2.
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seen from Eqs. (17)–(19) that, in contrast to the two-level giant-
atom scheme, the transmission between ports 1 and 2 in Wa is
nonreciprocal even if the external dissipations are not considered.
In fact, for γe1 ¼ γe2 ¼ 0, the imaginary part of f describing the
decay of je2i ! jgi into Wb plays the role of an external
dissipation for the transition je1i ! jgi.

It is worth noting that the scattering probabilities of the ∇-type
system are independent of the phase α of the external coherent
field Ω in spite of the closed-loop atom-level structure. This is
because the ∇-type atom cannot provide the inner two-path
quantum interference. For instance, when excited to state je1i by
an incident photon from port 1, the atom may be pumped to state
je2i by the external field Ω and then return to state jgi after
emitting a photon into Wb, which is the only path for the photon
transferring from Wa to Wb. This is radically different from the
Δ-type structure as will be discussed in the “Comparison with the
Δ-type scheme” subsection. In fact, the photon cannot be routed
from Wa to Wb in the absence of the field Ω, implying that the
∇-type three-level giant atom reduces to a two-level one. This is
also consistent with the fact that S1→3(4)= S2→3(4)= 0 when
Ω= 0.

Figure 6 shows the single-photon scattering spectra as
functions of the detuning Δ0 and the phase difference θ. As
discussed above, it can be seen from Fig. 6a, b that the
nonreciprocal scattering can still be realized in Wa

(S1→2 ≠ S2→1) with Wb playing the role of the external thermal
reservoir in the two-level scheme as analyzed above. According to
the conclusion in the “Reciprocal and nonreciprocal transmis-
sions” subsection, for θ ≠ nπ and ϕa0= π/2+ 2nπ, the excitation
probabilities jue1 j2 for two opposite directions are unequal, i.e.,
the interaction between the atom and Wa is equivalent chiral.
Then, as shown in Fig. 6c, d, the nonreciprocal scattering between
ports 1 and 4 can be led to by the equivalent chiral coupling, since
the scattering probability S1→4 (S4→1) is related to the coupling
between the atomic transition je1i $ jgi and the right-going
(left-going) mode in Wa. When θ= π/2 (3π/2), S1→4 (S4→1)

approaches 0.5 and S4→1 (S1→4) falls to 0. This corresponds to the
ideally equivalent chiral case where the atom is only coupled to
the right-going (left-going) modes effectively in Wa. When θ= π,
the scatterings between ports 1 and 4 are reciprocal, similar to the
results of the equivalent nonchiral case in the “Reciprocal and
nonreciprocal transmissions” subsection.

Chiral scattering. Next, we turn to study another kind of asym-
metric scattering phenomenon proposed recently called “chiral
scattering”. Specifically, the transmission from port 1 to port 4
and that from port 2 to port 3 are different. Quantitatively, the
chiral scattering can be evaluated by the chirality defined as82

C ¼ S1!4 � S2!3

S1!4 þ S2!3
: ð20Þ

Figure 7a shows the chirality as a sinusoidal function of the phase
difference θ. In view of this, chiral scatterings can be observed as
long as θ ≠ nπ, where the chirality C ≠ 0 means S1→4 ≠ S2→3. This
can be further verified by the scattering spectra as shown in
Fig. 7b, c. Note that C= 1 (C=− 1) corresponding to θ= π/
2(θ= 3π/2), implies that only the scattering from port 2 (1) to
port 3 (4) is prevented, as shown in Fig. 7b [Fig. 7c].

The underlying physics of the chiral scattering can also be
attributed to the difference between the atomic excitation
probabilities for two incident directions as discussed above. The
excitation probabilities jue1 j2 by the photon incident from port 1
and port 2 can be unequal, and thus the atom is pumped from
je1i to je2i with unequal probabilities. This leads to different
probabilities of routing photons from Wa to Wb. Furthermore, as
shown in Fig. 7, the chiral scattering scheme here shows the in-
situ tunability that the scattering chirality can be controlled by
tuning the phase difference θ.
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Fig. 7 Chiral scattering behaviors in a three-level ∇-type giant-atom
system. a Chirality C versus the coupling phase difference θ with the
detuning Δ0 ¼ 0. Scattering probabilities S1→4 and S2→3 versus Δ0 for
b θ= π/2 and c θ= 3π/2. Other parameters: atomic dissipation rates
γe1 ¼ γe2 ¼ 0, the ratio of two atomic emission rates into different
waveguides Γ2/Γ1= 1, Rabi frequency of the external coherent field
Ω= 5Γ1, and accumulated phase of the photon traveling in waveguide Wa

ϕa0= π/2.
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Fig. 8 Targeted routing and circulating scheme with a three-level ∇-type
giant-atom system. Scattering probabilities versus the detuning Δ0 with
different Rabi frequencies of the external coherent field Ω and coupling
phase differences θ and θ0 a Ω= 0, θ= π/2; b Ω= 2Γ1, θ= π/2, θ0 ¼ π=2;
c and d Ω= 2Γ1, θ= π/2, θ0 ¼ 3π=2. Other parameters: atomic dissipation
rates γe1 ¼ γe2 ¼ 0, the ratio of two atomic emission rates into different
waveguides Γ2/Γ1= 1, and accumulated phases of the photon traveling in
waveguides Wa and Wb ϕa0= ϕb0= π/2.
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Targeted router and circulator. In this subsection, we would like
to demonstrate how to realize a single-photon targeted router and
circulator based on the asymmetric scatterings above. Specifically,
one can send a single photon deterministically from port 1 to one
of the other three ports on demand. Note that the router and
circulator can run with very high efficiency in such a non-loss
system. Here we assume the transition je2i $ jgi coupled to Wb

at two separated points, i.e., ϕb ≠ 0, as shown in Fig. 5a, and define
θ0 ¼ θ4 � θ3.

The mechanism of the targeted router can be understood from
Fig. 8a–c showing the scattering probabilities from port 1 to other
ports versus the detuning Δ0. When turning off the external field
(Ω≡ 0), as shown in Fig. 8a, the incident photon from port 1
cannot be routed to Wb; particularly for θ= π/2, the photon is
routed to port 2 totally. Next, we turn on the external field to
enable photon routing to the desired port in Wb with high
efficiency. When setting θ0 ¼ π=2, as shown in Fig. 8b, a photon
resonant with the transition jgi $ je1i can be routed from port 1
to port 4 totally. Likewise, when setting θ0 ¼ 3π=2 as shown in
Fig. 8c, the resonant photon can be routed to port 3 totally. In
addition, both the propagating phases ϕa0 and ϕb0 determine the
output port of photons in Wb, which is a unique feature of the
giant-atom model.

It is worth noting that one∇ -type small atom with chiral
asymmetric couplings (g1L ≠ g1R and g2L ≠ g2R) to two waveguides
has also been explored to realize a deterministic routing19, with
subscripts “1,2” referring to the first and second waveguides while
“L, R” to the left- and right-moving photons, respectively. In
principle, it is viable to observe any desired routing results by
tailoring two degrees of chirality η1= g1R/g1L and η2= g2R/g2L,
e.g., via the amplitude of a magnetic field applied upon a
quantum dot serving as the small atom44. The problem is that η1
and η2 exhibit similar changing trends and are located at a single
point, hence cannot be tuned independently. In our giant-atom
model, however, it is much easier to observe different routing
results by tailoring θ and θ0 individually, e.g., via the magnetic
fluxes threading Josephson junctions at different coupling points.
Such a selective tunability of coupling phase differences can also
be used to realize a perfect circulator as shown below, which is
impracticable yet by tailoring η1 and η2. Our giant-atom model
bears also another nontrivial feature - the non-Markovian
retardation effect, which could result in multiple peaks in the
reflection (and also transmission) spectra as shown in Fig. 4, and
might enable the simultaneous manipulation of more than one
incident photon with different frequencies.

More interestingly, the ∇-type giant atom is also a promising
candidate of realizing a single-photon circulator. When turning
on the external field and setting θ= π/2 and θ0 ¼ 3π=2, the two
waveguides are coupled to the atom with ideally equivalent chiral
couplings in opposite manners, respectively. That is to say, the
atom is only coupled to the left-incident photons in Wa yet to
right-incident photons in Wb. Then, as shown in Fig. 8d, one has
S2→1= S3→4≡ 1 over the whole frequency range and
S1→3= S4→2= 1 around the resonance. Consequently, for a
resonant photon, directional scattering along the direction
1→ 3→ 4→ 2→ 1 can be realized suggesting a high-
performance single-photon circulation scheme for quantum
networks59,60.

Comparison with the Δ-type scheme. Finally, we consider a Δ-type
giant-atom scheme where the∇ -type atom in Fig. 5a is replaced by
a Δ-type one in Fig. 5b and compare the single-photon scatterings of
these two schemes. The Δ-type structure is constructed with an
external coherent filed ϵeiβ which couples the two ground states
jg1;2i of a Λ-type atom that has been broadly studied to demonstrate

quantum interference phenomena, such as coherent population
trapping83 and electromagnetically induced transparency84.

For the Δ-type giant-atom system, the Hamiltonians of the
atom and the atom-waveguide interaction become

H0
a ¼ ωg2

� i
γg2
2

� �
jg2ihg2j þ ωe � i

γe
2

� �
ej i eh j

þ ðεeiβjg1ihg2j þ H.c.Þ;

H0
I ¼

Z þ1

�1
dxfδðxÞg1eiθ1

h
ayRðxÞ þ ayLðxÞ

i
jg1i eh j

þ δðx � dÞg1eiθ2
h
ayRðxÞ þ ayLðxÞ

i
jg1i eh j

þ δðxÞg2eiθ3
h
byRðxÞ þ byLðxÞ

i
jg2i eh j

þ δðx � dÞg2eiθ4
h
byRðxÞ þ byLðxÞ

i
jg2ihej þ H.c.



ð21Þ

The single-excitation eigenstate of the system takes the form

Ψj i ¼
Z þ1

�1
dx
nh

ΦaRðxÞayRðxÞ þ ΦaLðxÞayLðxÞ
i
j0; g1i

þ
h
ΦbRðxÞbyRðxÞ þΦbLðxÞbyLðxÞ

i
j0; g2i

o
þ uej0; ei:

ð22Þ

With the same procedure above (see Supplementary Note 2), one
can obtain the scattering probabilities in this case.

Setting the atom in the ground state jg1i initially, we plot in Fig. 9
the scattering spectra of ~S1!4 and ~S4!1. It is worth noting that, even
in the absence of the local coupling phases, i.e., θ ¼ θ0 ¼ 0, the
nonreciprocal scatterings still exist. This is obviously distinct from
the∇ -type case. The nonreciprocity of the∇ -type case stems from
the equivalent chiral couplings owing to the nontrivial coupling
phase difference, and is independent of the phase of the external
field. For the Δ-type scheme, however, the nonreciprocity arises
from the typical which-way quantum interference, i.e., the
interference between the two transition paths jg1i ! jg2i and
jg1i ! jei ! jg2i. In this case, the optical responses are typically
sensitive to the phase of the external field encoded in the closed-
loop level structure85. However, the main drawback to the Δ-type
scheme is that one cannot switch on/off the photon transfer
between the two waveguides by tuning the external field solely.
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Fig. 9 Nonreciprocal scattering behaviors in a three-level Δ-type giant-
atom system. Scattering probabilities versus the detuning ~Δ0 with different
phases of the external coherent filed β. Other parameters: atomic
dissipation rates γe1 ¼ γe2 ¼ 0, the ratio of two atomic emission rates into
different waveguides Γ2/Γ1= 1, Rabi frequency of the external coherent
field ε= 30Γ1, and accumulated phases of the photon traveling in
waveguides Wa and Wb ϕa0= ϕb0= π/2.
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Our∇ -type and Δ-type giant atoms will reduce to the
corresponding small atoms if we set ϕa= ϕb= 0 (i.e.,
da= db= 0). In this case, chiral scattering disappears for both
∇-type and Δ-type small atoms due to the intrinsic symmetry of
atom-waveguide interactions. On the other hand, nonreciprocal
scattering still can be observed for the Δ-type small atom due to
the asymmetric interference (for left- and right-incident photons)
between two transitions sharing the same starting and ending
states, but will not occur for the ∇-type small atom in the
presence of only one accompanied transition and thus absence of
any interference effects (see Supplementary Note 3).

Conclusions
In summary, we have investigated step-by-step the conditions of
single-photon nonreciprocal and chiral scatterings in the two-
level and three-level giant-atom structures with tunable local
phase on each atom-waveguide coupling. We found that the
atomic excitation in the two-level giant-atom structure depends
on the propagation direction of waveguide modes and can be
tuned by the nontrivial coupling phase difference. In such sce-
nario, our two-level giant atom in the Markovian regime is
equivalent to a two-level small atom chirally coupled to the
waveguide mode. However, it is worth noting that the realization
of nonreciprocal scatterings requires the combination of the time-
reversal symmetry breaking induced by the local coupling phases
and the non-Hermiticity induced by the external atomic dis-
sipation due to the surrounding non-waveguide modes. More-
over, in the non-Markovian regime, the reflection spectra exhibit
peculiar non-Markovian features with multiple reflection peaks
that are absent in the chiral small-atom case.

For exploring more interesting asymmetric scattering proper-
ties and applications with such giant-atom structures, we
have extended the two-level structure to the three-level ∇-type
and Δ-type ones coupled to two waveguides via different atomic
transitions. We found that, for the atomic transition coupled to
one waveguide, the transition coupled to the other waveguide can
serve as the external dissipation channel. Such three-level giant-
atom structures coupled to double waveguides enable the non-
reciprocal and chiral scatterings without external dissipations.
Based on this mechanism, the high-efficiency single-photon tar-
geted router and circulator can be implemented. Finally, we
explained the different physical mechanisms that lead to the
nonreciprocal and chiral scatterings for the two phase-sensitive
closed-loop three-level giant-atom structures. We believe that our
results have promising applications in designing effective and
efficient single-photon optical elements for quantum network
engineering and optical communications.

Methods
In this theoretical work, the methods used are solving the stationary Schrödinger
equation with the Hamiltonian and single-excitation eigenstate (as described in the
main text [Eq. (3)] and Supplementary Material).

Data availability
All data are available in the main text or in the supplementary materials.

Code availability
The code used to produce the figures in this article is available from the corresponding
author upon request.
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