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Correlated disorder as a way towards robust
superconductivity
Vyacheslav D. Neverov1,2, Alexander E. Lukyanov1,2, Andrey V. Krasavin 1,2✉, Alexei Vagov2,3 &

Mihail D. Croitoru2,4

Ordinary superconductors are widely assumed insensitive to small concentrations of random

nonmagnetic impurities, whereas strong disorder suppresses superconductivity and even

makes superconductor-insulator transition occur. In between these limiting cases, a most

fascinating regime can take place where disorder enhances superconductivity. Hitherto,

almost all theoretical studies have been conducted under the assumption that disorder is

completely independent and random. In real materials, however, positions of impurities and

defects tend to correlate with each other. This work shows that these correlations have a

strong impact on superconductivity making it more robust and less sensitive to the disorder

potential. Superconducting properties can therefore be controlled not only by the overall

density of impurities and defects, but by their spatial correlations as well.
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Founding theoretical studies of Abrikosov and Gorkov1 of
superconductivity in a disordered material were followed up
by a general physical consideration by Anderson2 according

to which superconductivity with the s pairing symmetry is
insensitive to weak nonmagnetic disorder. Subsequent experi-
mental studies, however, demonstrated that superconductivity is
suppressed in strongly disordered samples. A very strong disorder
can lead to a metal–insulator transition in the normal state, to the
appearance of a pseudogap in spectrum, to larger spatial fluc-
tuations of superconductive pairing, and increased Δ/Tc ratio3–10.
Theoretical investigations have largely supported the experi-
mental results11–13.

The recent advent of the quasi-2D materials era has opened up
new horizons in physics of disordered systems including super-
conductors. Many phenomena important for electrical transport,
such as renormalization of the electron-electron interactions,
Anderson localization, and phase fluctuations, are boosted in low-
dimensional structures, resulting in suppression of super-
conductivity. The detrimental effects of lowered dimension in
combination with disorder were observed in amorphous as well
as highly crystalline 2D superconductors14–19.

The disorder can also result in a remarkable enhancement in
superconductivity figures of merit. The disorder potential con-
trols the interplay between the superconductive pairing and long-
range phase coherence. The stronger disorder increases spatial
inhomogeneity, which enhances the local pairing correlations
and superconducting gap, comparing with the clean system20.
Recent studies have revealed an unprecedented disorder-induced
increase in the superconductivity pairing instability in quasi-1D
single crystals made of MoSe chains weakly bound by Na
atoms21. An anomalous superconductivity enhancement due to
large structural disorder was also reported for TaS2 monolayers22.
Disorder-related effects are assumed responsible for a large
increase of the critical temperature in the recently discovered
superconducting NbSe2 monolayers23. Theoretical analysis attri-
butes the enhancement to the disorder-induced multi-fractal
structure of the electronic wave functions24,25, which was
observed by numerically solving microscopic theory equations in
low-dimensional samples26. The calculations predict the cluster
formation and survival of the spectral gap even at extremely large
disorder27.

On the other side, strong disorder enhances phase fluctuations,
thereby reducing the superfluid density (stiffness), and suppres-
sing superconductivity on the global scale. With the changing
disorder strength the system can, therefore, have an optimal
degree of inhomogeneity, where the superconductivity enhance-
ment and the critical temperature Tc are maximal28. Notice, that a
similar mechanism underlies superconductivity enhancement in
samples where inhomogeneities are related to the quantum size
effects29–31.

Introducing random impurities and defects in otherwise
ordered materials can thus be regarded as a tool to control
superconducting characteristics of materials, a design element to
engineer superconductors with desired functionalities. However,
one of the main problem with this approach is to identify key
parameters of the impurity distribution which affect the super-
conductive state. Solving it requires detailed numerical simula-
tions that account for the disorder distribution in real materials.

Most theoretical investigations of disordered superconductors are
based on the models with the spatially uncorrelated disorder, which
are analyzed using the perturbation expansion methods. In real
systems, however, the disorder is almost never completely random.
The inhomogeneities are often arranged in a certain structure,
characterized by the long-range spatial correlations. There is a
growing appreciation of the fact that such correlations can change
essential properties of disordered systems qualitatively32–34.

Prominent examples of this type include opening resonant trans-
mission channels35, modifying metal–insulator transitions36, and
changing mobility edges37. Effects related to the disorder correla-
tions have been experimentally observed in gases of cold atoms38,39

and photonic systems40. Also, correlated deviations from the ideal
periodicity of a crystal structure plays a significant role for func-
tional materials41 that utilize ionic conductivity42 and their
ferroelectric43,44, thermoelectric45, and photoelectric properties46.
Achieving desired functionalities by manipulating patterns of the
structural disorder is one of the goals of contemporary material
science studying disordered crystals33,47.

In recent experiments with dirty superconducting films23, a
visual analysis of the disorder distribution reveals spatial long-
range correlations. It is clear, the superconducting state will be
much more complex when the disorder is spatially correlated.
The correlations introduce an additional characteristic length-
scale that competes with those defined by the BCS coherence
length ξ and the Fermi wave length λF. It has been previously
shown that superconductivity can be strongly boosted in both of
the opposite limiting cases: when the external potential is fully
random and uncorrelated26,27, and when it has a fixed ordered
structure without the random component20,48,49. However, very
little if anything is known about a most relevant situation, where
an inherently random distribution of material inhomogeneities
acquires a certain degree of spatial correlations. The goal of this
work is to initiate studies of an interplay of “order and disorder”
in superconductors, with a strategic goal to find the optimal
balance for the most robust superconducting state.

Here, we investigate the influence of the long-range correla-
tions of the disorder potential on the superconducting state at
zero temperature. The analysis is done by calculating super-
conducting properties of 2D sample using a disordered model
with spatial correlations. Our analysis shows that long-range
correlations can considerably change statistical properties of the
Cooper pairing and enhance multi-fractal features of the order
parameter. As the result, global superconductivity becomes more
robust with respect to the disorder strength.

Results and discussion
The calculations are done using the model of the structural dis-
order where the spatial correlations of the disorder potential in
the inverse space obey the power law

SV ðqÞ / q�α ð1Þ
in the limit of small q. The power exponent α determines the
correlation degree. When α= 0 the random potential Vi at dif-
ferent lattice sites is fully uncorrelated. The spatial correlations of
the random potential in the real space are characterized by the
correlation length ξV calculated in the Methods section.

Spatial profile of the disorder. We start the analysis with
showing in the row (a) of Fig. 1 typical spatial profiles of a dis-
order potential Vi obtained for different values of the correlation
degree α= 0, 1, 2, 3. For the fully uncorrelated disorder with
α= 0 the color density plot representation for the profile appears
as fully randomly distributed array of “pixels" or grains. When α
increases the pixels are smoothed out gradually forming textures
or structures of larger dimensions, on the scale ξV (see Fig. 2a). It
is to be noted that positions, shapes and orientation of those
textures are still random, such that the ensemble-averaged system
remains homogeneous (if the number of disorder realization is
large enough).

Spatial profile of the order parameter. Using the above config-
urations of the disorder potential we solve the Bogoliubov – de
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Fig. 1 Spatial profiles of disorder potential and order parameter. Color density plot of the spatial profile of the random potential Vi (row a) and of the
order parameter Δi (rows (b–e)), calculated assuming the disorder strength of V ¼ 1:0; 1:5; 2:0; 2:5 and the disorder correlation degree α= 0, 1, 2, 3 (panel
columns). Blue and white colors denote, respectively, superconducting S and normal N domains. Each panel has its own scaling chosen for a better contrast
and visibility of the regions with weak superconductivity: dark blue corresponds to the gap value Δi >0:1Δi, where Δi is the average gap value.

Fig. 2 Correlation properties of random potential. a The dependence of the correlation length ξV for the random potential model in Eq. (16) on the
correlation degree α. b the Fourier transform SV(q) of the spatial correlation function of the random potential, given for selected values of α. c the integral
degree of correlations between the disorder potential Vi and the order parameter Δi, defined in Eq. (2), as function of the disorder strength V, given for
several values of the potential correlation degree α.
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Gennes (BdG) equations and obtain the order parameter profile.
The results for different values of the disorder strength V ¼
1; 1:5; 2; 2:5 are shown in the rows (b–e) in Fig. 1, where columns
correspond to the selected values of α. The blue color indicates
domains of the superconductive phase of Δi ≠ 0 and the white
color marks domains of the normal phase with Δi≃ 0. The deep
blue color indicates Δi > 0:1Δi, where Δi is the full-ensemble and
lattice average of the order parameter. Note, that each panel in the
plot has its own scaling for a better contrast, to highlight details of
domains of weak superconductivity.

First, we consider the case of uncorrelated disorder investigated
extensively in earlier works11,12,27. It is well known that when the
disorder is weak the disorder parameter is homogeneous. This
trivial case is not shown in Fig. 1. However, the panel obtained at
relatively small strength V ¼ 1 and α= 0 demonstrates that the
order parameter is close to being homogeneous, and the normal
phase occurs only in a restricted number of small-size domains.

When the strength V increases, the superconducting state
becomes inhomogeneous. Blue superconducting (S) clusters with
larger values of the order parameter are mixed with white normal
state (N) regions. The clustering in the order parameter profile
appears not strongly correlated with the disorder potential: one
sees in Fig. 1 that the disorder profile at α= 0 shows no textures
with sizes comparable to clusters of order parameter V > 1. The
clustering is a manifestation of the multi-fractal properties of the
BdG solutions. The degree of correlations between the potential
and the order parameter can be described by the statistical
correlator

CΔV ¼ jΔijV i � jΔijV i

σΔV
; σΔ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔij2 � jΔij

2
q

ð2Þ

where V i ¼ jVi þ Ui � μij, and which characterizes the suppres-
sion of superconductivity by the random potential. Results for the
calculations are shown in Fig. 2c. At α= 0 and V ¼ 1 one obtains
CΔV ’ �0:5 which corresponds to a relatively weak negative
correlation between the gap Δi and potential Vi.

The order parameter profile, shown in Fig. 1 for α ≠ 0,
demonstrates how it changes with the disorder potential strength
V and the correlation degree α. First, one notes that the order
parameter becomes more homogeneous at larger α: sizes of
normal clusters decrease making the system “more super-
conductive”. At large values of α, a typical size of the order
parameter cluster (N or S) is comparable to that of textures of the
disorder potential. This implies the order parameter and disorder
potential become more correlated, which is demonstrated in
Fig. 2c.

The increased correlations is a consequence of an intuitively
obvious fact that superconductivity is most likely to exist in
valleys of minimal values of V i. For weakly correlated disorder,
superconductive clusters, determined by the BCS coherence
length ξ, are much larger than disorder potential textures,
determined by ξV, reducing correlations between the order
parameter and disorder potential. However, when disorder is
strongly correlated, sizes of the clusters and textures are
comparable and the correlation increases.

This visual analysis of results in Fig. 1 demonstrates two
opposite tendencies. A strong disorder with larger V suppresses
superconductivity, which is accompanied by the increased
inhomogeneity and clusterization with the larger area of N
islands. In contrast, a larger degree of correlation α enhances
superconductivity and smears out the clusters giving rise to a
more homogeneous profile.

Order parameter distribution. Statistical properties of the order
parameter Δi are visualized by its absolute value distribution,
shown in Fig. 3a–c for a few values of V and α. The distribution is
plotted as a function of the relative order parameter Δ=�Δ where
�Δ ¼ jΔij is the averaged order parameter. In a superconductor
with uncorrelated disorder, this distribution is well described by
the log-normal function11,12,27,50

PðΔÞ ¼
�Δ

Δ
ffiffiffiffiffi
2π

p
σ
exp � 1

2σ2
ln Δ=�Δ
� �� λ

� �2� �
; ð3Þ

Fig. 3 Statistical properties of the order parameter. Statistical distribution P(Δ) of the absolute value Δ of the order parameter, relative to its sample and
disorder averaged value �Δ, calculated at V ¼ 1:0 (a), V ¼ 1:5 (b), V ¼ 2:0 (c), for a few selected values of α. The dashed lines give the best fit of the
obtained numerical data using the normal-log distribution in Eq. (3). d, e give the α dependence of the distribution width σ and its peak position Δ0,
obtained in the fit. f is the probability of zero gap PðΔ ’ 0Þ ð0<Δ<0:1�ΔÞ as a function of V. The dashed lines, connecting numerically obtained points in the
lower panels, are guides for an eye.
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where σ and λ are constants, regarded as fitting parameters.
Dashed lines in Fig. 3a–c show the best fit using Eq. (3).

At α= 0 Eq. (3) yields an excellent fit for all values of V. For
weak disorder with V ¼ 1 [blue line in Fig. 3a], P(Δ) is maximal
at Δ ’ 0:5�Δ. In the limit Δ=�Δ ! 0, the distribution P(Δ)
approaches zero [Fig. 3a] which implies the absence of N
domains. When the disorder amplitude increases to V ¼ 1:5, the
maximum of the distribution shifts to smaller values of Δ
[Fig. 3b], approaching the limit Δ→ 0. This corresponds to
profiles in Fig. 1, obtained at V ¼ 1:5 and α= 0, where N-state
clusters appear.

The distribution changes itself when the disorder is correlated
and α ≠ 0. In the weak disorder in Fig. 3a, the distribution is still
well approximated by Eq. (3) for all considered values of α. The
maximum is, however, shifted to larger Δ reflecting the already
noted trend [Fig. 1] that increasing disorder correlations and
amplitude act in the opposite directions. This trend can be seen
also for strong disorder. Figure 3b, c demonstrate the maximum
is shifted to larger Δ=�Δ when α increases.

However, when the disorder has large correlations and is
strong, i.e., both α and V are large, P(Δ) deviates from the log-
normal form (3) at small Δ. For α= 3, the deviation is visible at
V ¼ 1:5 [Fig. 3b], while at V ¼ 2 its is clearly seen also for α= 2
[Fig. 3c and the inset]. Notice that for large α and V, P(Δ) deviates
qualitatively from Eq. (3). It approaches a finite value in the limit
Δ→ 0 and have the opposite slope comparison to the log-normal
distribution.

The changes in the distribution P(Δ) with V and α are
quantitatively characterized by calculating the width σ and Δmax
position of its peak, shown in Fig. 3d and e, respectively, as
functions of α at several values of V. The results reveal the same
opposite trends. The width σ increases at larger V and decreases
at larger α, and the peak position Δmax decreases at large V and
increases at large α. Finally, Fig. 3f illustrates the super-
conductivity suppression and the appearance of N-state clusters
in the order parameter profile by plotting the probability to have
(close to) zero order parameter P(Δ→ 0) (here we use the
criterion Δ< 0:1�Δ). The figure shows this probability increases
with raising V and decreases when α increases.

This analysis of the order parameter distribution and its
defining characteristics quantify visual changes seen in the order
parameter profile in Fig. 1.

Superconductive correlations. We now turn to spatial correla-
tions of the order parameter. As mentioned in the introduction a
weakly disordered system is naturally characterized by the com-
petition between the BCS coherence length and the disorder

correlation length. However, for the strong disorder the super-
conducting state clusterizes becoming inhomogeneous. In this
case, the system is characterized by spatial correlations of the
order parameter with the correlation function defined as

SΔ ri; rj
	 


¼ hΔ�
i Δjis ¼ ∑

nm
uðmÞ�
i uðnÞj vðmÞ�

i vðnÞj

D E
s
; ð4Þ

where uðnÞi and vðnÞi are eigenfunctions of the HF-BdG Hamilto-
nian. This function describes correlations on the longer scale. In a
homogeneous superconductor state it becomes constant equal to
j�Δj2 at large distances, reflecting the off-diagonal long-range
order51 in the mean-field approximation. The disorder destroys
the long-range order and the global superconducting correlations.
The corresponding characteristic length is found as

ξ2Δ ¼ ∑i;jSΔðri; rjÞðri � rjÞ2
∑i;jSΔðri; rjÞ

: ð5Þ

In a clustered superconducting state in a disordered sample ξΔ
can be interpreted as a measure of correlations between different
clusters. It differs from the much shorter BCS coherence length,
which defines the superconducting pairing scale, associated with
the correlation function

Sðri; rjÞ ¼ ∑
n
uðnÞi vðnÞj

����
����
2

* +
s

¼ ∑
nm

uðmÞ�
i uðnÞi vðmÞ�

j vðnÞj

D E
s
; ð6Þ

which has a meaning of a squared absolute value of the Cooper
pair wave function ∣Ψ(i, j)∣2, averaged over disorder realizations.
The BCS coherence length ξ is calculated substituting this
expression in place of SΔ in Eq. (5)27. For a clean system this
expression yields a standard result for the BCS coherence length
ξ0. For a dirty superconductor with uncorrelated disorder this
expression gives a result close to the perturbation theory [see
Supplementary Note 3].

The spatial dependence of SΔ(r), calculated at V ¼ 1 for several
values of α, is illustrated in Fig. 4a. As expected, the correlation
drops at large distances due to disorder. However, it saturates at
large distances leaving a residual correlation across the entire
sample. The value of this residue increases notably with raising
degree of the disorder correlation α.

A quantitative measure of the long-range correlations
described by SΔ(r) can be extracted from the small-q asymptotic
of its Fourier transform. It is shown in Fig. 4b in the log-log scale.
At q→ 0, it gives a linear dependence, so that its asymptotic is
also the power law SΔ(q)∝ q−β. By fitting the linear dependence
we obtain the power exponent β as a function of α, which is
shown in the inset in Fig. 4b. β is small when α≲ 1, but it rises
sharply at α≳ 2. The rising β means that the long-range

Fig. 4 Correlation function of the order parameter. a Spatial correlations of the order parameter SΔ(r), defined in Eq. (4), calculated for several values of α
at V ¼ 1:0. b The Fourier transform SΔ(q) of the correlation function SΔ(r), plotted in the log-log scale. The slope of its linear fit at small q (dashed lines)
yields the power exponent β in the limiting expression SΔ(q)∝ q−β. The inset shows the power exponent β as a function of α. The lines connecting
numerically obtained points serve as guides for an eye.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00933-z ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:177 | https://doi.org/10.1038/s42005-022-00933-z | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


superconducting correlations grow rapidly with the correlations
in the disordered potential. In principle, this is consistent with the
assumption that α= 2 is the border value separating two different
regimes in the chosen model for disorder correlations. The
numerical dependence is well fitted by the expression β= β0+
(α/4)γ with β0= 1.25 and γ= 2.75.
Correlation lengths ξ and ξΔ in Fig. 5 illustrate their

dependence on V and α. Comparing them with Fig. 2a confirms
the expected relation ξV < ξ < ξΔ, which holds for all considered
parameters. For uncorrelated vanishingly small disorder V ! 0, ξ
yields its clean system limit (σ0≃ 9), whereas ξΔ approaches the
effective sample dimension which is L=

ffiffiffi
6

p ’ 16. When V
increases, both ξ and ξΔ reduce monotonically. The rising
correlation degree α results in the opposite trend making both
lengths monotonically increase. Here too, the disorder strength
and correlation degree act on the correlation lengths in the
opposite way.

Superfluid stiffness. In a strongly disordered material, the defi-
nition of superconductivity using characteristics of the local
microscopic state is inadequate. In a weakly disordered sample
the advance of superconductivity is unequivocally connected to
the non-zero order parameter. However, in the case of strong
disorder the superconductive state is strongly non-homogeneous
[Fig. 1] forming weakly connected superconductive clusters with
randomized phases, and the definition of superconductivity via
the local or average order parameter is no longer possible. The
onset of superconductivity in a finite strongly disordered sample
can be characterized by the (Meissner) superfluid stiffness
D0
s
52,53, which is a coefficient in the expression for the “phase

rigidity” term in the energy of the superconducting condensate

E θ½ � ¼ D0
s

2

Z
dr ∇θj j2; ð7Þ

where θ is the phase of the superconducting order parameter.
From the macroscopic point of view this is an elastic energy
associated with the twisted phase of the superconductive con-
densate. A non-zero stiffness D0

s means a spatial variation of the
phase requires additional energy and thus the phase is rigidly
fixed (“stiff”). It is the rigidity of this phase that endows a
superconductor with the ability to sustain a super-current.

Within the mean-field theory the stiffness is determined by the
linear response to an externally applied static vector potential52,

D0
s ¼ �Λxx qx ¼ 0; qy ! 0;ω ¼ 0

	 

þ �Kx

� 
; ð8Þ

where Λxx is the long wavelength limit of the transverse current-
current correlator averaged over both the superconductive state

and the disorder realizations,

Λxx q;ωð Þ ¼ 1
N

Z1
0

dτeiωτ jx q; τð Þ jx �q; 0ð Þ� 
ð9Þ

with jx q; τð Þ being the paramagnetic current and the diamagnetic
component �Kx

� 
is the disorder-averaged kinetic energy along

the x direction. The calculation equations for D0
s within the BdG

approach are presented in the Supplementary Note 2.
The mean-field theory calculations can be further improved by

taking into account phase fluctuations within the effective XY
model and the self-consistent Harmonic approximation. This
gives the renormalized stiffness as12

Ds ¼ D0
s e

� θ2ij

� 
0
=2; ð10Þ

where the mean square fluctuation of the nearest neighbor phase
difference is obtained as

θ2ij

D E
0
¼ 2

Nξ
∑
q<π

ϵq
Dsκ

� �1
2

; ð11Þ

with κ being the mean-field compressibility κ= dn/dμ and ϵq ¼
2½2� cosðqxÞ � cosðqyÞ� the single-particle spectrum. Figure 6a
plots the stiffness as a function of the disorder strength V for a
few values of correlation α. The figure gives both full Ds (full
circles) and the mean-field result D0

s (open circles) for
comparison. As is expected intuitively, the fluctuations reduce
the stiffness and suppress superconductivity. Notice, that Eq. (11)
does not account for all contributions of the quantum fluctua-
tions. However, the role of the fluctuations is expected to decrease
when the disorder becomes correlated and α grows [see detailed
calculations in Supplementary Note 4]. This implies that the
approximate result in Eq. (11) is sufficient to qualitatively
describe the α-dependence of the stiffness.

In agreement with previous works12,27,54 for the non-
correlated disorder (α= 0), the stiffness declines when the
disorder strength V grows [Fig. 6a]. Here we obtain the similar
dependence also for correlated disorder (α ≠ 0). However,
increasing correlation degree α results in the larger stiffness with
a consequence that the critical disorder strength, where the
stiffness becomes zero, increases at larger α.

It must be noted, the calculation of stiffness shows the global
superconductivity ceases at much smaller values of V then
anticipated from the order parameter profile and its distribution.
For example, the stiffness becomes zero at V ≳ 0:75 at α= 0. In
contrast, the order parameter is non-zero in almost the entire
sample at V ¼ 1:0 and α= 0 [Fig. 1]. It is further confirmed by
the distribution P(Δ) [Fig. 3a] and its value at Δ≃ 0 [Fig. 3f], both
showing the order parameter is zero practically nowhere in the

Fig. 5 Correlation lengths. a The BCS coherence length ξ. b The correlation length ξΔ. Both quantities are calculated for a few selected values of V and are
shown as functions of α. The dashed lines connecting numerically obtained points serve as guides for an eye.
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sample. One sees, globally non-zero order parameter is not
sufficient to ensure global superconductivity.

The relations between the increased stiffness and larger
disorder correlation are also traced when looking at the
distribution in Fig. 3a–c. The stiffness is known to decrease due
to phase twists at places where it costs less energy, i.e. where the
order parameter and the condensate density ns are minimal.
When the correlation degree α increases, the distributions in
Fig. 3a–c shift towards larger Δ’s, leading to the larger stiffness.

It is worth to consider diamagnetic �Kx

� 
and paramagnetic

Λxx contributions to the stiffness separately [Fig. 6b]. �Kx

� 
is a

slowly decreasing function of V. It does not depend on α because
it is proportional to the total electron density ne.

The paramagnetic contribution Λxx behaves differently. For the
clean system with V ¼ 0, the total current in the system is
proportional to its momentum. Therefore, the respective current
operator commutes with the Hamiltonian and the current-
current correlator contributing to Λxxðqx ¼ 0; qy ! 0;ω ¼ 0Þ
vanishes. In a disordered system, the operator of the total current
no longer commutes with the Hamiltonian, and Λxx ≠ 0. The
value of Λxx depends on the degree of the non-commutativity
between the current and Hamiltonian operators, controlled by
disorder strength and correlations [Fig. 6b].

A summary of the stiffness calculations is presented in Fig. 6c
as a phase diagram in the α� V plane. The region of non-zero
stiffness is marked by blue (S), and the region of zero-stiffness is
denoted by red (N). Solid and open points are obtained using the
fluctuation corrected (Ds) and bare (Dð0Þ

s ) stiffness.
The phase diagram in Fig. 6c highlights a general tendency: the

correlations inhibit the destructive influence of disorder on
superconductivity. The dashed lines, connecting the points, serve
as guides to an eye, but are expected to follow the real crossover
lines, separating S and N domains, closely. Notice, they increase
monotonically with rising α. Their slope increases at α≳ 2, the
special value for the model.

Conclusions
This work studies superconductivity in systems with spatially
correlated disorder, by solving a full set of microscopic HF-BdG
equations for a finite 2D sample. The long-range correlations of
the disordered potential are taken into account using the model
where the Fourier components of the potential have random
phases. Only the case of zero temperature is considered.

The calculations reveal a very notable role the disorder corre-
lations play in shaping superconductivity, affecting its properties
both on the local and global scales. It was shown that the
superconductivity is enhanced by increasing the degree of dis-
order correlations. It is manifested in the changed character of

spatial profile, statistical distribution and spatial correlations of
the order parameter. The statistical distribution demonstrate that
multifractal features of the HF-BdG eigenstates, reported earlier
for uncorrelated disorder, hold also when the disorder becomes
correlated.

The correlations in the disorder potential enlarge both the BCS
pairing correlations and the spatial correlations of the order
parameter. The sizes and configuration of clusters in the inho-
mogeneous superconducting state are shown to depend strongly
on the correlations degree. The global superconductivity of the
sample, quantified by the superfluid stiffness, is also boosted by
the disorder correlations.

Although our results are obtained for a relatively simple model
of a non-structured disorder, they clearly demonstrate that spatial
correlations in the disorder potential are a very important factor
affecting superconductivity. It can change the whole range of
superconductive properties and cannot be ignored when dis-
cussing the disorder-related effects in such materials. It is also
clear, that deliberate manipulations of the disorder correlations,
when possible, can be used to manipulate superconducting
characteristics. This adds another design parameter to create
superconductors with desired functional properties.

Methods
Microscopic equations for superconductivity. To describe superconductivity
with the s-wave coupling we employ the BCS Hamiltonian for the tight-binding
model for the single-particle states

Ĥ ¼ ∑
i;j;σ

tij ĉ
y
iσ ĉjσ þ∑

i;σ
Vin̂iσ � g∑

i;σ
n̂i"n̂i#; ð12Þ

where ĉi denotes the electron operator at site i of the lattice, tij is the tunneling
amplitude between sites i and j assumed non-zero tij=− t only for the nearest
neighbors, g > 0 is the on-site BCS coupling constant, and Vi is the impurity
potential. Here we consider a 2D lattice with the vector indices denoting sites
i ¼ ðix ; iyÞ. The mean field Bogoliubov – de Gennes (BdG) equations for the
Hamiltonian (12) write as

Ĥ � μ Δ̂

Δ̂
y �Ĥ

y þ μ

 !
u!
v!

 !
¼ E

u!
v!

 !
; ð13Þ

where μ is the system chemical potential, u! and v! are vectors with components vi
and ui, the operators Ĥ and Δ̂ are defined by their matrix elements

Hij ¼ tij þ ðVi þ UiÞδij; Δij ¼ Δiδij; ð14Þ
with δij being the Kroneker symbol. The order parameter Δi and Hartree potential
Ui are found from the self-consistency equations

Δi ¼ g ĉi# ĉi"
D E

; ð15aÞ

Ui ¼ � g
2
∑
σ

ĉyiσ ĉiσ
D E

; ð15bÞ

where 〈…〉 are quantum mechanical averages. Notice that the Hartree self-
consistency Eq. (15b) modifies the effective potential for electrons in an inhomo-
geneous system. It plays a crucial role when the disorder is strong and cannot be

Fig. 6 Superfluid stiffness and the phase diagram. a superfluid stiffness Ds (solid circles) as a function of V, calculated for selected values of α. The bare
BCS stiffness D0

s is shown by open circles for comparison. b Diamagnetic 〈− Kx〉 and paramagnetic Λxx(qx= 0, qy= 0, iω= 0) contributions to D0
s are

plotted as functions of V for several values of α. c The phase diagram of disordered superconductors in the plane α� V. The blue S and red N
regions denote the domains of non-zero and zero stiffness, respectively. Two crossover boundaries between the S and N domains are found using the
fluctuation-corrected Ds (filled circles) and bare D0

s (empty circles) superfluid stiffness. The lines connecting the points are guides for an eye.
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neglected as in weakly disordered systems55. The model neglects the long-range
repulsive Coulomb interactions between electrons, as is also done in many previous
studies of the role of disorder in superconductive systems26,27. Although the
influence of the interactions can become notable in disordered systems with
localized carriers, it is expected to decrease when the disorder becomes correlated.
We also do not consider the d-wave pairing that can be strongly enhanced by
combining the Coulomb repulsion with a fully random potential for electrons56.

Correlated disorder model. Disordered models with the power-law correlation
asymptotic have long been proposed57, in particular, to investigate the correlation-
induced changes in the Anderson localization58,59, and the percolation threshold60.
Those models, sometimes referred to as speckle, have been applied to model, e.g., of
cold gases in randomized optical lattices38,59,61–63. The power-law correlations in a
spatial distribution of linear or planar crystal dislocations have been recently
confirmed experimentally64, and the asymptotic (1) agreed well with those
observations.

The power-law dependence (1) is realized by assuming a model with the
random potential Vi on a lattice site i given by

Vi ¼
1

N2 ∑
N=2

jx ;jy¼1
q�α=2
j cos qjri þ ϕj

	 

; ð16Þ

where ri is the lattice position, qj= (2πjx/N, 2πjy/N) is a discrete inverse space
vector, jx,y= 1,…,N and qj= ∣qj∣. Finally, ϕj are random phases, uniformly
distributed in the interval 0; 2π½ Þ. The spatial correlations of the random potential
are defined as

SV ðri; rjÞ ¼ hViVjis ð17Þ
with brackets 〈…〉s denoting the statistical ensemble average. Notice, that for the
large system this quantity depends only on the difference ri− rj, but this is violated
in practical calculations for a finite system with a limited number of disorder
potential realizations. In the inverse space this correlator is obtained by evaluating a
sum

SV ðqÞ ¼
1

N4 ∑
i;j
SV ðri; rjÞ eiqðri�rjÞ: ð18Þ

One can easily see the model (16) yields Eq. (1) [see Supplementary Note 1]. The
dependence of SV(q) calculated using numerically ensemble averages hViVjis of
randomly generated Vi according to the model in Eq. (16) is shown in Fig. 2b for a
few selected values of α (SV(q) depends only on q for a homogeneous system). For
all values of α, the log-log dependence is linear with the slope− α in full agreement
with Eq. (1). Notice, that Vq / ffiffiffiffiffiffiffiffiffiffiffi

SV ðqÞ
p

, where Vq is the Fourier transform of the
potential defined in Eq. (16) but without the random phases.

Spatial correlations in the real space can be characterized by the correlation
length ξV calculated as

ξ2V ¼ ∑i;jSV ðri; rjÞðri � rjÞ2
∑i;jSV ðri; rjÞ

: ð19Þ

The calculated ξV is shown in Fig. 2a. It increases monotonically as a function of α,
indicating a larger correlation length at larger α. At α= 0 this length is ξ < 1,
meaning the potential is fully uncorrelated at the most close lattice sites.

Finally, it is convenient to shift the potential as

Vi ! Vi � Vi; Vi ¼ ∑ihViis ð20Þ
to ensure its average value is zero. Here the numerical averaging denoted by the
overline is done both over lattice sites and the statistical distribution. This constant
shift in the potential excludes the change in the chemical potential. The amplitude
of the disorder potential is defined by the quantity

V ¼
ffiffiffiffiffiffi
V2

i

q
; ð21Þ

referred to as disorder strength.
The model in Eq. (16) was employed to describe real stochastic processes with

the long-range correlations including nucleotide sequences in DNA molecules65,66,
and other systems where disorder correlations affects electronic transport, plasma
fluctuations67, and patterns in surface growth68.

Numerical parameters. Equations (13) are solved numerically on a square lattice
with dimensions A=N ×N with the periodic boundary conditions. We take
N= 40 which is an optimal trade-off between the numerical load and our goal to
describe a bulk system, where results are already not sensitive to the sample size.
The chemical potential μ is chosen so that the average electron density is set to
ne= 0.875. We note that a particular value of ne is not important for as long as we
sufficiently far from the half filling of ne= 1 with additional symmetries.

The analysis is done in the limit of nominally large coupling constant of g= 1,
and the limit of very large Debye window of ℏωD= 5, which implied the coupling
involves all single-particle states. (All energy quantities in the problem are
expressed in units of the hopping integral t.) Note, however, that a typical average
value of the gap function �Δ ’ 0:04 is much less than the Fermi energy EF≃ 3.76.

The ratio of the two quantities �Δ=EF ’ 0:01, which implies that we are in the weak
coupling regime of BCS superconductivity. Finally, the physical quantities of
interest are statistically averaged over Ns= 50 independent disorder realizations
that has the same V and α.

Data availability
The data-sets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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