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Chirality-dependent electron transport in Weyl
semimetal p–n–p junctions
Zhe Hou1, Yan-Feng Zhou1, Ning-Xuan Yang1 & Qing-Feng Sun1,2,3

Recently discovered Weyl semimetals have received considerable research interest due to

the exotic Weyl fermion-like excitations and the nontrivial π Berry phase near the band

degenerate points. Here we show that by constructing a Weyl semimetal p–n–p junction and

restricting Weyl fermions into closed orbits with electric and magnetic confinements, the

Berry phase acquired by the Weyl fermions can be controlled flexibly. This brings out two

effects on electron transport through the junction: when the Berry phase is integer multiples

of π an obvious phase shift is observed in the transmission map, whereas for non-integer

ones of Berry phase the transmission shows strong chirality dependence and a large chiral or

valley-level splitting can be induced. Utilizing this chirality splitting, we further propose a new

method to measure the Berry phase in Weyl semimetals, which shows accuracy for various

potential profiles and has practical applications in experiments.
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Quasi-particles in solid-state physics with dressed exotic
properties have deep analogies with particle physics. The
discovery of Weyl fermions in topological Weyl semi-

metals (WSMs) is one such case1–8. WSMs are characterized by the
linear band crossing points in momentum space, known as the Weyl
nodes. Excitations near the Weyl node can be described by a
massless Weyl Hamiltonian H ¼P

i
vip̂iσ i (i= x, y, z) with σi the

Pauli matrix and vi the Fermi velocity. Here, the sign of
Q
i
vi

determines the chirality of the node. Weyl nodes with opposite
chirality always appear or annihilate in pairs according to the
Nielsen–Ninomiya theorem9 and are topologically robust against
translational symmetry invariant perturbations10. Similar to the
chiral anomaly in quantum field theory11,12, when applying a par-
allel magnetic field B and electric field E, an electron flow between
different Weyl nodes can be induced, manifesting as a quadratic
negative magnetoresistance in transport experiments13–18. Besides,
any two-dimensional cross-section between the Weyl nodes with
opposite chirality obtains a nonzero Chern number, resulting in the
Fermi arc states in the surface Brillouin zone1. Observing these
Fermi arc states has been an important way to identify WSMs in
angle-resolved photoemission spectroscopy measurements19–23.

In addition to the chiral anomaly and topological Fermi arcs,
the nontrivial Berry phase is another important characteristic of
WSMs associated to their topological properties24–27. As the
Weyl node with positive (negative) chirality acts like a source
(drain) of Berry curvature in momentum space, Weyl fermions
moving around one loop enclosing the Weyl node would acquire
a π Berry phase. Experimentally detecting this π Berry phase can
provide evidence for the existence of Weyl nodes. One commonly
used way is to measure the magnetic Shubnikov-de Haas (SdH)
oscillation in three-dimensional (3D) semimetals and extrapolate
the phase shift by plotting the inverse magnetic field 1/B as a
function of the Landau level index n28,29. However, distinguishing
the peak position from the resistance oscillation is nontrivial and
may lead to inaccurate results30. Furthermore, to reach the
quantum limit a relatively high magnetic field is demanded,
which increases the difficulty of experimental implementations29.

In this paper, we investigate the electron transport through a
WSM p–n–p junction and propose a new method to measure the
Berry phase and to generate the chirality-polarized current in
WSMs. We show that by confining the Weyl fermions into closed
orbits using both electric and magnetic fields, the Berry phase of
the Weyl fermions with different chiralities has opposite signs
and shows significant influence on the transport properties.
When the Weyl fermions move in the plane which is perpendi-
cular with the magnetic filed, the Berry phase undergoes a π jump
as varying the incident angle and an obvious phase shift can be
observed in the transmission spectrum, which is similar to the
graphene p–n–p junction case31,32. However, when the Weyl
fermions have nonzero momentum component parallel with the
magnetic field, the Berry phase takes non-integer multiples of π
and would induce a large chiral or valley-level splitting. We give a
semiclassical analysis for this chirality-dependent transport based
on the Einstein–Brillouin–Keller (EBK) quantization rule33,34 and
propose a new method to measure the Berry phase utilizing the
chirality (valley) splitting. Compared with the traditional SdH
oscillation measurement, this method is accurate for various
potential profiles and does not require a high magnetic field,
which can work as a practical way to explore the nontrivial Berry
phase in 3D semimetals in real expermiments.

Results
Theoretical model. We consider a WSM p–n–p junction shown
in Fig. 1a. The central n region with length 2L is defined by a

potential well U(x) and a uniform magnetic field B is applied in
the z-direction to tune the real-space orbit of the Weyl fermions.
The Weyl fermions are then confined inside the junction as
shown in Fig. 1b (blue region). The Hamiltonian of the pristine
WSM can be written in the two-band form35: Ĥ ¼P

k
cykHðkÞck ,

with ck= (ck↑, ck↓)T being the annihilation operator with wave
vector k and H(k)= tz(2− coskxa− coskya− coskza) · σz+
txsinkxa · σx+ tysinkya · σy. Here, ti with i= x, y, z is the hopping
energy in the i-direction, a is the lattice constant, and σ= (σx, σy,
σz) is the Pauli matrix vector acting on the spin space. The system
we consider satisfies the inversion symmetry but breaks the time-
reversal symmetry and only harbors two Weyl nodes in the first
Brillouin zone, which are located at K±= (0, 0, ±π/2a).

Expanding H(k) around the two Weyl nodes, we obtain the
low-energy effective Hamiltonian for the Weyl fermions:

HτðkÞ ¼ �h
τvz~kz vxkx � ivyky

vxkx þ ivyky �τvz~kz

 !
: ð1Þ

Here τ= ± 1 denotes the Weyl node with positive (negative)
chirality or different valleys and ~kz ¼ kz � τπ=2a is the displace-
ment of kz component measured from K±. The Fermi velocity
is defined with vi= tia/ħ and for simplicity we just set ti= t and
vi= v= ta/ħ in the following calculations. Note that the following
results in this paper applies to the small Fermi energy range
where the above linear expansion on the Hamiltonian H(k)
works. For the Fermi energy away from the Weyl nodes, the
chirality is ill-defined and the effective Hamiltonian Hτ(k) can not
well describe the quasi-particle excitations.

Considering the presence of the potential well U(x) and
magnetic filed B, and substituting the wave vector ki by the
momentum operator p̂i=�h ¼ �i ∂∂i, the low-energy effective
Hamiltonian can be written into the following form:

Ĥτ ¼ vσxp̂x þ vσyðp̂y þ eBxÞ þ vτσzp̂z þ UðxÞ; ð2Þ
where the vector potential A= (0, Bx, 0) has been included
through the minimal coupling. As the system has translational
symmetry along y and z directions, the eigen-wavefunction can be
written as ΨðrÞ ¼ eipyy=�heipzz=�hφðxÞ, where r= (x, y, z) and φ(x) is
the x-component of Ψ(r). The Weyl equation ĤτΨðrÞ ¼ EΨðrÞ
can be reduced to the differential equation Ĥτ;xφðxÞ ¼ EφðxÞ
with

Ĥτ;x ¼ v
τpz �i�h∂x � iΠy

�i�h∂x þ iΠy �τpz

 !
þ UðxÞ; ð3Þ

where Πy= py+ eBx is the kinetic momentum in the y direction.

Semiclassical analysis. Before performing a quantum mechanical
calculation, we first make the semiclassical analysis on Hamilto-
nian Ĥτ;x and estimate the bound levels inside the p–n–p junction
using the EBK quantization rule33,34. The Berry phase’s role in
affecting the chiral levels can be seen clearly here.

To apply the quantization rule, we first substitute the operator
−iħ∂x in Eq. (3) into symbol px using the Weyl
correspondence36,37 and then arrive at the classical Hamiltonian
matrix:

Hτ ¼ v
τpz þ UðxÞ=v px � iΠy

px þ iΠy �τpz þ UðxÞ=v

 !
: ð4Þ

Solving the eignenvalues of the matrix Hτ, we get the following
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Hamiltonian–Jacobi equation:

E ¼ ± v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þΠ2

y þ p2z

q
þ UðxÞ; ð5Þ

where the ± sign corresponds to the electron or hole solution. The
above equation determines the classical turning points xin and
xout in the x-direction where the momentum px= 0. The Weyl
fermions confined inside the p–n–p junction make back and forth
movement between xin and xout, and form a closed loop C in the
classical phase space. Here, the specific form of potential well U
(x) should not influence the main results of this paper (see the
Supplementary Note 1), as long as the potential varies slowly
spatially so that the inter-node scattering can be ignored if the
separation of the Weyl nodes is not too close with each other38–40.
For concreteness we set U(x)= κx2Θ(L− |x|)+U0Θ(|x|− L) in
the following calculations, where Θ(x) is the Heaviside function
and U0= κL2.

Due to the closure of the loop C, the kinetic momentum Π=
(Πx, Πy, Πz) with Πi= p_i+ eAi, i= x, y, z also exhibits an
enclosed trajectory CΠ in the momentum space [see the closed
curves in Fig. 2a]. Note that unlike the canonical momentum py,
the kinetic momentum Πy= py+ eBx is x dependent and not
conserved along the CΠ. The Berry phase Γ accumulated along the
trajectory for Weyl fermions with positive chirality can be
determined by the Π-dependent Hamiltonian H(Π)= vσ ·Π and
is calculated from the following integral along CΠ

41:

Γ ¼ i
I

CΠ

hΠj∂ΠjΠi ð6Þ

with |Π〉 the eigen-vector of H(Π).
Figure 2a gives the distribution of the Berry curvature BΠ

(BΠ= i∇ × 〈Π|∂Π|Π〉) for the conduction band of H(Π) and
shows the momentum trajectories of Weyl fermions under
different magnetic fields. Here, the pz component is set to be 0.5p*
and for simplicity we define the new units with E*= (κv2ħ2)1/3,
x*= ħv/E*, B� ¼ �h=ex2�, and p*= E*/v. From Eq. (6) we know that
the Berry curvature flux through the closed trajectory CΠ is the
Berry phase acquired for the Weyl fermions. Increasing the
magnetic field, the trajectory becomes enlarged, as if the magnetic
field provides a momentum Lorentz force pointing outside the
trajectory and pulls the closed trajectory outward. As a result, the
momentum trajectory CΠ encloses more Berry curvature flux and
accumulates a larger Berry phase.

After obtaining the Berry phase, we use the following EBK
equation: I

C
pxdx þ τΓ ¼ 2πðnþ γÞ ð7Þ

to calculate the chiral bound levels inside the p–n–p junction.
Here, n is an integer number and γ= 0.75 is the Maslov index. As
the spin direction is parallel (anti-parallel) to the momentum for
Weyl fermions with positive (negative) chirality, the Berry phase
or the spin procession angle accumulated for different chirality is
opposite over the same real-space orbit [see Fig. 1b]. This sign
difference is reflected by τ in Eq. (7). Solving the semiclassical
EBK equation, we get the two chiral energy levels as functions of
the magnetic field B, which are shown in Fig. 2b. For zero
magnetic field, the Berry phase of both chiral Weyl fermions is
zero, resulting in the degenerate chiral levels. Increasing the
magnetic field, the Berry phase increases and the two chiral levels
split with each other. Note that this level splitting can be large and
approaches the level spacing of the quantized levels when B= B*.
Here we mainly discuss the type-I WSM with no band tilting. For
the type-II WSM, the chiral level splitting would exhibit strong
anisotropy with respect to the band tilting direction (see
Supplementary Note 2).

Quantum mechanical results. In this part, we solve the Weyl
equation ĤτΨτðrÞ ¼ EΨτðrÞ (τ= ±1) microscopically and cal-
culate the quantum transmission coefficient through the WSM p–
n–p junction. Considering a plane wave with momentum py and
pz incident from the left p region (x <− L), its wave function can
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Fig. 2 Semiclassical quantization of chiral bound levels in the p–n–p
junction. a The Berry curvature distribution for the conduction band of H
(Π) and the trajectories (closed curves) for different magnetic fields in the
momentum space. b The chiral bound levels in the Weyl semimetal p–n–p
junction as functions of the magnetic field B, which are calculated from the
Einstein–Brillouin–Keller quantization rule in Eq. (7). Here we set py/p*=
0.2 and pz/p*= 0.5
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Fig. 1 Schematic of a Weyl semimetal p–n–p junction. a The p–n–p junction
is defined by a potential well U(x) with a uniform magnetic field B applied in
the z-direction. b Real-space orbits of the Weyl fermions with positive/
negative chirality in the p–n–p junction. Here we consider the Weyl
fermions incident normally into the junction and form closed loops in the
central region. The gray regions show the classical forbidden area and the
wavy lines denote the tunneling of Weyl fermions between p and n regions.
Due to the spin-momentum locking relation, the spin direction (blue
arrows) is parallel (anti-parallel) to the velocity of Weyl fermions with
positive (negative) chirality and then the Berry phase acquired would have
opposite signs when Weyl fermions pass through the p–n–p junction
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be written as Ψin
τ ðrÞ ¼ eipyy=�heipzz=�hφin

τ ðxÞ. The outgoing wave
function in the right p region (x > L) can be written as Ψout

τ ðrÞ ¼
eipyy=�heipzz=�htτðE; py; pzÞφout

τ ðxÞ with tτ(E, py, pz) the transmission
amplitude. Here we assume that the electrostatic potential in the p
regions is very large, whereas the magnetic field is relatively small
in the whole system. Then the momentum q= (U0− E)/v in the p
regions changes little by the magnetic field. For this reason, we
only consider the magnetic field existing in the central n region
and make the zero-magnetic field approximation in p regions. In
fact, the results can well remain the same even if the magnetic
field exists in p regions (see Supplementary Note 3). Then φin

τ ðxÞ
can be written as:

φin
τ ðxÞ ¼

τpz � q

px þ iðpy � eBLÞ

 !
expðipxx=�hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qðq� τpzÞ

p ; ð8Þ

where px satisfies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2x þ ðpy � eBLÞ2 þ p2z

q
¼ q. The outgoing

wave function is

φout
τ ðxÞ ¼ τpz � q

p′x þ iðpy þ eBLÞ

 !
expðip′xx=�hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qðq� τpzÞ

p ð9Þ

with p′x satisfying p′2x ¼ q2 � ðpy þ eBLÞ2 � p2z . Then the trans-
mission coefficient through the p–n–p junction for the chirality τ
is Tτ(E, py, pz)= |tτ(E, py, pz)|2 and we define the total trans-
mission coefficient as T= (T++ T−)/2.

The transmission coefficient T is solved using the transfer
matrix method. Figure 3 shows T as a function of the energy E
and the momentum py. The peak position shows the bound
energy levels inside the p–n–p junction. Here the magnetic field is
set to B/B*= 0.2 and the momentum pz/p*= 0.3. As expected
from the semiclassical analysis, the chiral or valley levels
show explicit splitting behaviors. For a large momentum
py (e.g., py/p*= 1.5), the two chiral levels almost degenerate and
the Berry phases for different chiral Weyl fermions are very small.
Decreasing the py component, the level splitting becomes larger
because of the increase of the Berry phase. Here the chiral levels
obtained from the EBK quantization rule are also plotted with
solid (dashed) lines for the positive (negative) chirality as a
comparison. One can see that the peak positions of the
transmission map fit the semiclassical results quite well, which
verifies the Berry phase’s role on inducing the chiral level
splitting.

Experimental observable. To observe the above-mentioned
unusual chiral level splitting, we design an experimental p–n–p
junction device as shown in Fig. 4a. A scanning tunneling
microscope (STM) or transmission electron microscope tip on
top of the WSM can inject a beam of well-collimated Weyl fer-
mions into the junction with a definite direction42. The electron
beam can be described by a Gaussian wavepacket that takes the
form

ψin
gτðrÞ ¼ A

Rþ1
�1dpy

Rþ1
�1dpze

�ðpy�py0Þ2=2Δ2
py

´ e�ðpz�pz0Þ2=2Δ2
pzΨin

τ ðrÞ:
ð10Þ

Here, A denotes the amplitude of the wavepacket, ΔpyðzÞ is the

momentum broadening, and py(z)0 is the average momentum. The
outgoing electron beam in the bottom p region can be described
by

ψout
gτ ðrÞ ¼ A

Rþ1
�1dpy

Rþ1
�1dpze

�ðpy�py0Þ2=2Δ2
py

´ e�ðpz�pz0Þ2=2Δ2
pzΨout

τ ðrÞ:
ð11Þ

The currents following into and out from the WSM are calculated
as I in ¼P

τ
hψin

gτðrÞĵjxjψin
gτðrÞi and Iout ¼P

τ
hψout

gτ ðrÞĵjxjψout
gτ ðrÞi,

with ĵx ¼ �evσx being the current operator.
We use the polar angle θ and the azimuthal angle φ in the

sphere coordinate to describe the incident direction of the wave
packet and they satisfy the following relations:

q sin θ cosϕ ¼ �px0;

q sin θ sin ϕ ¼ �ðpy0 � eBLÞ;

q cos θ ¼ �pz0; ð12Þ

with px0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � ðpy0 � eBLÞ2 � p2z0

q
. Experimentally, one can

fix the value of the incident current Iin and rotate the sample
beneath the STM tip (or rotate the STM tip) with angle (θ, ϕ) to
measure the outgoing current Iout. Figure 4b shows Iout as a
function of the incident energy E and the azimuthal angle ϕ,
where the polar angle θ is fixed to π/2, i.e., the incident electron
beam is injected in the x–y plane. We see that in the presence of
the magnetic field, the transmission map shows a fish-bone shape
and remarkably the peak position of the transmission current has
a sharp shift at a critical ϕ (see the white arrows). This
phenomenon is similar to the graphene p–n–p junction case31

and arises from the π Berry phase jump of the Weyl fermion.
Note that the two chiral bound levels degenerate and the current
is chiral unpolarized in this case, because the Berry phase takes an
integer multiple of π and its sign does not lead to any physical
effect. Tilting the sample with a small angle by setting θ= π/2+
π/180, the chiral energy levels show obvious splitting for small ϕ
as a result of the non-integer multiple π’s Berry phase [see
Fig. 4c]. With a large angle ϕ, the chiral levels degenerate,
indicating the vanishing Berry phase. Here we define the chirality
polarization as P � Iþ�I�

IþþI�
with I± ¼ hψout

g;± 1ðrÞĵjxjψout
g; ± 1ðrÞi being

the outgoing current for the positive/negative chirality. Figure 4d
gives the chirality polarization calculated on the dashed line cut in
Fig. 4c. We see that even in such a small tilting angle θ, the
chirality polarization can be high. Figure 4c, d also show that a
chiral or valley-polarized current can be generated in the present
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Fig. 3 Quantumm transmission spectrum of the Weyl semimetal p–n–p
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0.2B*. The half-length of the n region is L= 15x* and the potential U0=
225E*. The solid (dashed) lines denote the bound levels for Weyl fermions
with positive (negative) chirality, obtained from the quantization equation
in Eq. (7)
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device by tuning the tip orientation or the magnetic field, which
provides a platform for investigating the chirality or valley degree
of freedom in WSMs.

Measuring the Berry phase. The semiclassical EBK quantization
formula in Eq. (7) tells us that the Berry phase difference 2|Γ|
between two chiral Weyl fermions would lead to a chiral level
splitting. Next, we show that this chiral splitting can be used to
measure the Berry phase by merely reading the resonant level
positions from the transmission spectrum. We take Fig. 4c as an
example. From the angle–momentum relations (Eq. (12)), one

can transform the angle-dependent transmission map into the
momentum-dependent one, as shown in Fig. 5a. Here, to enhance
the discriminability of the peak position, we have shown the
second derivative −∂2T/∂E2 of the the transmission coefficient.
By making a line cut py0/p*= 0.2 in Fig. 5a, one can read out the
n-th resonant levels ϵn± for the positive (negative) chirality.
Taking the average ϵn ¼ ðϵnþ þ ϵn�Þ=2, the opposite Berry phase
cancels and one gets the quantized energy levels including no
Berry phase. Here we define the level spacing as Δn � ϵn � ϵn�1,
and from the EBK quantization rule in Eq. (7) we see that as the
Berry phase Γ= ±π, the chiral level splitting equals to Δn.
Whereas for the zero Berry phase, the different chiral levels
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degenerate and the level splitting becomes zero. For simplicity, we
assume that the level splitting varies linearly with the Berry phase
and then the Berry phase for the n-th level can be calculated from
the following formula:

Γn ¼ 2πðϵnþ � ϵnÞ=Δn: ð13Þ

We first give the actual Berry phase of the resonant levels
calculated with the semiclassical EBK method. The results are
labeled by circular solid dots in Fig. 5b, c. The Berry phases
obtained using Eq. (13) are also shown in Fig. 5c with diamond
points for comparison. One can see that the two results fit well,
which shows that our method is effective and accurate.
Experimentally, the p–n–p junction can be constructed by the
electrical or chemical doping43,44. By tuning the electrostatic
potential offset between the p and n regions into 0.18 eV and
setting the length of the central n region to 270 nm, an
electrostatic potential profile that can be approximated with a
parabolic function45 with the strength κ ≈ 10 eV μm−2 is obtained
inside the p–n–p junction. If we take the Fermi velocity v= 3 ×
105 ms−146, the splitting magnetic field 0.2B* is then estimated to
be 0.18 T, which is far less than the filed strength to reach the
quantum limit in the SdH oscillation. Besides, we also test our
method for other kinds of potential profiles U(x) in Supplemen-
tary Note 1 and the results also show accuracy. Thus, the strategy
proposed here could provide a convenient and practical way to
measure the Berry phase in WSMs in real experiments.

Discussion
Before we only consider the inversion symmetric WSMs with two
Weyl nodes in the Brillouin zone. For the time-reversal symme-
trical one47,48, there exist at least two pairs of Weyl nodes with
different chirality, which are related by the time-reversal sym-
metry. The connections between different Weyl nodes with
opposite chirality would become complicated in this case, but the
results should be the same since the Berry phase for Weyl fer-
mions is only chirality dependent and we have ignored the inter-
node scattering between different Weyl nodes (see Supplementary
Note 4). Besides, the Dirac semimetals49,50 in which the Dirac
nodes are composed of two decoupled chiral Weyl points should
also manifest the similar property. Thus, our results obtained
above can be extended to topological semimetal p–n–p junctions.

In conclusion, we investigate the transport property of a WSM
p–n–p junction and find two unusual phenomena due to the
Berry phase effect: when the Weyl fermions acquire an integer
multiple π’s Berry phase, a sharp level shift can be observed in the
transmission spectrum, whereas for non-integer ones of Berry
phase, the chiral or valley levels show explicit splitting and a
chirality (valley)-polarized current can be generated through the
junction. We give a semiclassical analysis on these phenomena
using the EBK quantization rule and propose a new method to
measure the Berry phase in topological semimetals, which is
accurate and can be applied in real experiments.

Methods
Calculating the Berry phase. To obtain the Berry phase, we discretize the
momentum trajectory CΠ into N= 1000 sites and label them by Πj with j= 1, 2, …
N. A periodic boundary condition Π1=ΠN is required to ensure the closed feature
of the orbit. Each site corresponds to one vector |Πj〉, which is the eigenstate of H
(Πj)= vσ ·Πj. Then the Berry phase can be calculated by51

Γ ¼ i
XN�1

j¼1

loghΠjjΠjþ1i: ð14Þ

Calculating the quantum transmission coefficient. In using the transfer matrix
method, we divide the central region (−L < x < L) of the p–n–p junction into M
intervals and in every interval approximate the electrostatic potential by a constant

local value Un=U(xn) and set the vector potential An= (0, Bxn, 0), with xn=−L
+ nh and h= 2L/N. Then, in each interval xn−1 < x < xn, the one-dimensional
Hamiltonian Ĥτ;x in Eq. (3) can be written as:

Ĥτ;n ¼ v½�i�h∂xσx þ ðpy þ eBxnÞσy þ τpzσz � þ Un . The solutions of Ĥn (for sim-
plicity, we have omitted the τ index) have a right-propagating mode denoted by
φn→(x) and a left-propagating one denoted by φn←(x). The wavefunction fn(x) in
the interval n can be written as a composition of φn→ and φn←: fn(x)=Anφn→+
Bnφn←= Sn(x)[An, Bn]T, where Sn= (φn→, φn←) is a 2 × 2 matrix.

At the interface x= xn, we have the following matching condition:

fnðxnÞ ¼ fnþ1ðxnÞ: ð15Þ
The iteration relation for [An, Bn]T is:

Anþ1

Bnþ1

� �
¼ S�1

nþ1ðxnÞ � SnðxnÞ
An

Bn

� �
: ð16Þ

Finally, the relation between the outgoing mode and the incoming mode is

obtained as ½AMþ1;BMþ1�T ¼ QM
i¼0

S�1
Mþ1�iðxM�iÞ � SM�iðxM�iÞ½A0;B0�T . By setting

[A0, B0]T= [1, 0]T, the transmission coefficient through the p–n–p junction is T= |
AM+1|2.

Data availability
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