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Dynamically encircling exceptional points
in a three-mode waveguide system
Xu-Lin Zhang1,2 & C.T. Chan1

Dynamically encircling exceptional points (EPs) in non-Hermitian systems has attracted

considerable attention recently, but all previous studies focused on two-state systems, and

the dynamics in more complex multi-state systems is yet to be investigated. Here we con-

sider a three-mode non-Hermitian waveguide system possessing two EPs, and study the

dynamical encircling of each single EP and both EPs, the latter of which is equivalent to

the dynamical encircling of a third-order EP that has a cube-root behavior of eigenvalue

perturbations. We find that the dynamics depends on the location of the starting point of

the loop, instead of the order of the EP encircled. Compared with two-state systems, the

dynamical processes in multi-state systems exhibit more non-adiabatic transitions owing to

the more complex topological structures of energy surfaces. Our findings enrich the under-

standing of the physics of multi-state non-Hermitian systems and may lead to the design

of new wave manipulation schemes.
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In non-Hermitian systems, both the eigenvalues and eigen-
vectors can coalesce at a degeneracy point known as the
exceptional point (EP)1–4, which exhibits interesting proper-

ties and has given rise to a variety of applications5–12. Recently,
considerable attention has been paid to the topological structure
of the energy surface (also known as Riemann surface) around the
EP, which is typically investigated by designing a loop in the
parameter space to encircle the EP13. In a two-state system,
eigenmode exchange occurs when the EP is encircled strobo-
scopically (i.e., assuming the process is adiabatic)14–16. Strobo-
scopic encircling of a high-order EP can reveal the more complex
topological structure of multi-state systems17,18. Unexpected
physics and phenomena have also been revealed when EPs are
encircled stroboscopically along non-homotopic loops in multi-
state systems19.

In contrast to the stroboscopic encircling of EPs which assumes
an adiabatic process, dynamically encircling EPs in non-
Hermitian systems exhibits more complex dynamics since adia-
baticity may break down due to the presence of non-
Hermiticity20–30. One of the first two experiments on dynami-
cal encircling of an EP was performed in an optomechanical
device with the Hamiltonian evolving in real time7. Another
experiment used a microwave waveguide with specially designed
boundaries that are used to mimic the evolution of Hamiltonian
in space24. A chiral transmission behavior is found in the sense
that different encircling directions result in different output states.
The starting point of the loop lies near the region where two
eigenmodes (i.e., symmetric and anti-symmetric modes) share the
same loss and they can be used for asymmetric mode switching.
When the starting point moves far away from such region, the
eigenmodes are symmetry-broken modes, on the contrary, and
the dynamics is found to be non-chiral27. Recent study also
demonstrated that the EP can be dynamically encircled in anti-
parity-time (PT) symmetric systems and the dynamics is chiral
with the starting point in the PT-broken phase29. As a result,
symmetry-broken modes can also be used for asymmetric mode
switching as long as the system is anti-PT-symmetric.

Although the dynamical encircling of EPs has drawn much
attention, all the previous works consider systems consisting of
only two states and the EP is a second-order EP. A natural
question to ask is what the dynamics would be when an EP is
dynamically encircled in multi-state systems. And what if the EP
is a high-order EP? Multi-state systems possess more complex
topological structures of energy surface so that the dynamical
processes should be more complicated. Does the starting point
still have an important role to determine the dynamics? These
questions remain open.

In this paper, we address the above questions by studying a
three-waveguide non-Hermitian system which possesses two EPs.
We design a configuration to dynamically encircle these EPs. The
field distributions and the amplitudes of instantaneous eigen-
modes along the waveguiding direction are calculated to help
understand the dynamics in the encircling process. In the fol-
lowing, we first study the energy surface of the proposed system
in a two-parameter phase space. Then we investigate the
dynamics when each EP is encircled individually to clarify the
condition for the dynamics to be chiral or non-chiral. In parti-
cular, we investigate the dynamics when the loop encloses both
EPs, and we will see that dynamically encircling two EPs in our
system is equivalent to the dynamical encircling of a third-order
EP that has a cube-root behavior of eigenvalue perturbations.

Results
System under investigation. We consider a non-Hermitian sys-
tem consisting of three waveguides with the cross section shown

in Fig. 1a. Waveguide-2 and waveguide-3 have the same widthW,
and that of waveguide-1 is αW with α being a detuning para-
meter. The three waveguides have the same height H. Symbols g
and D represent the gap distance between the corresponding
waveguides. Two absorbers (see the yellow region) are attached to
waveguide-2 and waveguide-3 to introduce loss, with their height
denoted by h and width by w2 and w3, respectively. Throughout
this paper, we fix the parameters W= 8 mm, H= 4 mm, D= 3.2
mm, g= 1 mm, w3= 5mm, and h= 1 mm. The working fre-
quency is 10 GHz. The waveguides are made of yttrium iron
garnet (YIG) with permittivity of 15.26, and that of the micro-
wave absorber is assumed to be 4+ 20i. For simplicity, the sub-
strate and the background are assumed to have the same
refractive index as vacuum.

We first used COMSOL to calculate the effective mode index
neff, i.e., the eigenvalue of the eigenmodes, as a function of α and
w2. Figure 1b, c plots the real part and imaginary part of the
eigenvalues, respectively. The system supports three eigenmodes
and their complex eigenvalues form three Riemann sheets
distinguished by the red, blue, and gray color. There are two
EPs labeled as EP-1 and EP-2 in the parameter space. They are
second-order EPs, since EP-1 is the coalescence of the red and
blue sheet, while EP-2 is the coalescence of the red and gray sheet
(see Fig. 1c). For each EP, we use the term RPC (short for “real
part coalescence”) to represent the coalescence of Re[neff]
between the adjacent Riemann sheets. The two white dashed
lines in Fig. 1b represent RPC-1 and RPC-2, respectively. For the
sake of the following analysis, we also use the term IPC (short for
“imaginary part coalescence”) to represent the coalescence of Im
[neff] for each EP (see the two white dashed lines in Fig. 1c).
Figure 1d shows the parameter space with the two EPs marked by
stars. It is known that in a two-state system, the dynamical
encircling of an EP exhibits a chiral transmission behavior when
the starting point of the loop lies on the IPC where the two
eigenmodes have the same loss24. As our system is a three-state
system with two IPCs and a more complex energy surface, it is a
good candidate to study whether the chiral behavior still exists in
multi-state systems.

We consider two loops in the parameter space using the
following formula:

α zð Þ ¼ α0 þ Δα cos π sin πz=Lð Þ þ π=2½ �
w2 zð Þ ¼ Δw 1þ sin π sin πz=Lð Þ þ π=2½ �ð Þ=2 ð1Þ

where L is the system length, and z is ranging from −L/2 to L/2.
The other parameters (α0, Δα and Δw) are used to tune the loop,
and we choose α0= 1.09, Δα= 0.1, and Δw= 4 mm for loop-1.
For loop-2, we choose α0= 0.937, Δα= 0.1, and Δw= 5.5 mm.
With these choices, the starting point of the loop (i.e., z=−L/2
or L/2) lie exactly on the IPCs. A schematic of the system with the
above parameters is shown in Fig. 2a (top view) and Fig. 2b (side
view), where waveguide-3 is set to be transparent from the top
view for better visibility. The variations of α and w2 as a function
of z are plotted in Fig. 2c, d, respectively. The transmission of
electromagnetic waves through the system is equivalent to
eigenstate evolving along the designed loop in the parameter
space. Input waves from the left-hand side lead to counter-
clockwise loops while injections from right-hand side correspond
to clockwise loops (see Fig. 2a–d). In potential experiment, the
waveguides with irregular shapes can be fabricated by polishing
commercially available YIG stripes using a hand polishing
machine27.

Single EP encirclement starting from IPC. In this section, we
will consider loop-1 and loop-2, both of which correspond to the
dynamical encircling of a single EP. We first use loop-1 to study
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the dynamical encircling of EP-1 with the starting point on IPC-1.
The length of the system is set to be 800 mm. Since we can
consider both counter-clockwise and clockwise loops, and for
each loop the input can be either one of the three eigenmodes,
there are a total of six cases to be investigated. Throughout this
paper, we sort the three eigenmodes at any point of the parameter

space based on their real part of the eigenvalues. An eigenmode is
called mode-1 when it has the largest Re[neff], while mode-3 has
the smallest Re[neff]. We first study counter-clockwise loops.
Figure 3a–c plots the power flow distributions along the wave-
guiding direction with mode-1, mode-2, and mode-3 as the input
eigenmode, of which the energy is predominantly localized in
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Fig. 3 Dynamics of counter-clockwise loop-1 that encloses exceptional point 1 (EP-1). a–c Numerically simulated power flow distributions along the z-axis
for counter-clockwise loop-1 with a mode-1, b mode-2, and c mode-3 being the input eigenmode. The field distribution in waveguide-3 is plotted between
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respectively, the coefficient of the eigenmode on the red, blue, and gray sheet. In each figure, the two insets show the power flow distributions at the input
(left) and output (right) interface. g–i Trajectories of the state evolution on the real part of Riemann sheets (i.e., the real part of the effective mode index
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waveguide-1, waveguide-2, and waveguide-3, respectively. In our
simulations, the desired eigenmodes at the input side can be
excited efficiently by pre-calculating their eigenfields and then
using them as boundary conditions (see Methods section). In the
experiment, injecting signals from either waveguide will excite all
the three eigenmodes. The desired eigenmode will still dominate
the input state since its eigenfields are more similar to the injected
signal and hence will couple predominantly with the injected
signal. We plot the field distribution of waveguide-3 between that
of waveguide-1 and waveguide-2, since the field strength outside
the waveguides is very weak. The fields are captured in a x–z
plane which is the central plane of each waveguide. As the power
flow decays along the z-axis, the fields are normalized to have the
same maximum intensity at each cross section in order to
improve the readability. We find that regardless of which eigen-
mode is injected into the system, the output mode is always
mode-2 with the power flow mainly localized in waveguide-2.

To investigate the details in the wave transmission process, we
consider the instantaneous eigenfields obtained from COMSOL
simulations at each cross section of the system (i.e., each z
position with a particular configuration in the parameter space of
α and w2). The instantaneous electric/magnetic fields at each
point can be written as a sum of the instantaneous eigenfields
corresponding to the eigenmodes of the system configuration at
that point, e.g., E zð Þ ¼ cr zð ÞER

r zð Þ þ cb zð ÞER
b zð Þ þ cg zð ÞER

g zð Þ,
where E(z) is the instantaneous electric field, ER

r zð Þ, ER
b zð Þ, and

ER
g zð Þ are the instantaneous electric eigenfields of eigenmode on

the red, blue, and gray sheet, respectively, and cr, cb, and cg are the
corresponding amplitude coefficients. These eigenfields are in fact
right eigenvectors of the non-Hermitian system so that we use a
superscript “R”. We can use them to construct the corresponding
left eigenvectors [e.g., EL

r zð Þ, EL
b zð Þ, and EL

g zð Þ] and then the
amplitude coefficients can be calculated by projecting the
instantaneous fields onto the left eigenfields (see Methods section
for details). The results with mode-1, mode-2, and mode-3 being
the input mode are shown in Fig. 3d–f, respectively, where cr, cb,
and cg can represent, respectively, the proportion of the
eigenmode on the red, blue, and gray sheet. We note that at
the starting point, the coefficients for the non-excited states (e.g.,
cb and cg in Fig. 3d) are not zero. They are mainly due to
reflections since the system has a finite length, but it will not
affect the physics studied in this work. Using the extracted
amplitude coefficients, we can draw the trajectory of the mode
evolution on the Riemann sheets. The trajectory is marked on the
red/blue/gray sheet when cr/cb/cg dominates the instantaneous
state at each point in parameter space. Figure 3g–i plots the
trajectory on the real part of Riemann sheets, and Fig. 3j–l shows
that on the imaginary part of Riemann sheets. In the following,
we will analyse the dynamics based on the results in Fig. 3.

Figure 3d shows that when mode-1 (mainly localized in
waveguide-1) is injected, the process is adiabatic. The end state is
mode-2, which corresponds to a state flip after encircling EP-1.
Non-adiabatic transitions (NATs) may occur when the EP is
dynamically encircled in non-Hermitian systems because of the
presence of gain and loss22. But in the considered process, the
state always evolves on the red sheet which has the lowest loss
(see the trajectory in Fig. 3g, j). Therefore, the state evolution
process is stable. The profiles of the power flow at the input and
output interface are shown in the inset of Fig. 3d. The variation in
the eigenmode is evident, which is due to the dynamical
encircling of EP-1.

When we inject mode-2 (mainly localized in waveguide-2) into
the system, the state at first propagates on the blue sheet (see
Fig. 3e, h, k), which is in fact not the Riemann sheet with the
lowest loss. The mode evolution is not stable and after some time,

a NAT occurs and the state jumps to the red sheet which exhibits
the lowest loss (see Fig. 3h, k). After the NAT, the state evolution
follows the adiabatic trajectory and the final state is mode-2,
indicating that the state returns to itself after the loop because of
the NAT. From the power flow distributions shown in Fig. 3b,
this NAT is characterized by a transfer of the power flow from
waveguide-2 to waveguide-1 (marked by the yellow dashed line).
The crossing between the red curve and the blue dashed curve in
Fig. 3e is also an evidence of the NAT.

The dynamical process of the case with mode-3 (mainly
localized in waveguide-3) as the input is even more complex. We
find that there are a total of two NATs, since the state at first
evolves on the gray sheet which has the highest loss (see Fig. 3l).
The first NAT corresponds to the state jump from the gray sheet
to the blue sheet, while the second NAT corresponds to that from
the blue sheet to the red sheet (see Fig. 3i, l). Once the state
reaches the red sheet, the following evolution process is adiabatic
and the final state is still mode-2. These two NATs can also be
observed from the field distributions (see the two yellow dashed
lines in Fig. 3c) and the amplitude coefficients (see the two
crossings in Fig. 3f).

The above results indicate that the output of counter-clockwise
loops is always mode-2. We can use the same method to study
clockwise loops in which the signal is injected from the right-
hand side of the system. Figure 4a–c shows the calculated
amplitudes of the instantaneous eigenmodes with mode-1, mode-
2, and mode-3 being the input, respectively. The corresponding
trajectories on the real part of Riemann sheets are plotted in
Fig. 4d–f. We find that the output of clockwise loops is mode-1
for the three cases. Although the final state is the same, the
dynamical behaviors in the encircling process are quite different.
In brief, the encircling process is adiabatic when mode-2 is
injected and the energy is gradually transferred from waveguide-2
to waveguide-1 (see Fig. 4b, e). When the input mode is mode-1
(see Fig. 4a, d) or mode-3 (see Fig. 4c, f), however, there are NATs
since at the beginning the state does not evolve on the red sheet
which has the lowest loss. The corresponding trajectories on the
imaginary part of Riemann sheets are given in Supplementary
Fig. 1.

The chiral transmission behavior is now evident for loop-1
with the starting point on IPC-1, i.e., the final state of counter-
clockwise loops is always mode-2 while that of clockwise loops is
mode-1. This is an extension of the chiral dynamics from two-
state systems24 to three-state systems, which implies that the
chiral transmission behavior should also apply to systems with
more than three states, as long as the starting point in the
parameter space lies on IPCs where two eigenmodes share the
lowest loss. The phenomenon is due to the fact that in a
dynamical process in non-Hermitian systems, the state prefers to
stay on the Riemann sheet with the lowest loss. When the state
evolves on the sheet that does not have the lowest loss, NATs
would occur after some delay time23 and the state jumps to the
sheet of lower loss. Provided the system is long enough (i.e., L is
sufficiently large so that each NAT has enough time to occur), the
state will eventually land on the sheet with the lowest loss, i.e.,
the red sheet in our system, when it approaches the end point of
the loop. We can use this principle to study loop-1 with the
starting point on IPC-1. Figure 1b indicates that the final state
should be mode-2 and mode-1, respectively, for counter-
clockwise and clockwise loops, since the red sheet is not
continuous on IPC-1. This can give an intuitive explanation of
the chiral dynamics.

We can apply the same principle to study loop-2 with the
starting point lying on IPC-2. Figure 1b indicates that the final
state should be mode-3 for counter-clockwise loops whereas
mode-2 for clockwise loops. Such prediction can be verified by
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the calculated amplitudes of the instantaneous eigenmodes for
counter-clockwise loops (Fig. 5a–c) and clockwise loops
(Fig. 5d–f) with L= 1200mm. We note at the input and output
interface, the power flow of mode-1, mode-2, and mode-3 is
mainly localized in waveguide-3, waveguide-2, and waveguide-1,
respectively. This is different from the eigenmode distributions
for loop-1 (see the inset of Fig. 3d–f). The difference is due to
the different widths of waveguide-1 (i.e., α0= 1.09 for the starting
point of loop-1 and α0= 0.937 for that of loop-2) which can affect

the energy distribution of the three eigenmodes. Figure 5a–f
shows that for both loops, no matter which eigenmode is injected
into the system, the final state is always on the lowest red sheet,
leading to a chiral transmission behavior due to the topological
structure of the energy surfaces around EP-2 (see Fig. 1b).

The chiral transmission behaviors of loop-1 and loop-2 are
summarized in Table 1 for comparison. We emphasize that the
chiral behavior is not only a result of the location of the starting
point on IPCs, but also due to the fact that the eigenmodes on

a b

1 1 1 2 31

NAT NAT

�

EP-1

End

Start

NAT

c

d f

EP-1

Start

End

EP-1

Start/End

NAT

e
1 21 1

1 3

A
m

pl
itu

de

–400 –200 0 200

Z (mm)

400

101

10–3

10–1

10–5

A
m

pl
itu

de

–400 –200 0 200

Z (mm)

400

101

10–3

10–1

10–5

A
m

pl
itu

de

–400 –200 0 200

Z (mm)

400

101

10–3

10–1

10–5

R
e[

ne
ff]

2.8

2.6

2.4

�

0.8 1 1.2

w
2
 (

m
m

)

0

3

6
R

e[
ne

ff]

2.8

2.6

2.4

R
e[

ne
ff]

2.8

2.6

2.4

�
0.8 1 1.2

0

3

6

w
2
 (

m
m

) w
2  (m

m
)

0

3

6
1.2 1 0.8

cr cb cg

Fig. 4 Dynamics of clockwise loop-1 that encloses exceptional point 1 (EP-1). a–c Calculated amplitudes of the three instantaneous eigenmodes along the
z-axis for clockwise loop-1 with amode-1, b mode-2, and cmode-3 being the input eigenmode, where cr, cb, and cg represent, respectively, the coefficient of
the eigenmode on the red, blue, and gray sheet. d–f Trajectories of the state evolution on the real part of Riemann sheets (i.e., the real part of the effective
mode index neff as a function of the detuning parameter α and the absorber width w2) for clockwise loop-1 with d mode-1, e mode-2, and f mode-3 being
the input eigenmode. The output state is always mode-1 for clockwise loop-1. The term “NAT” denotes the non-adiabatic transition

a b

1 3 2 3 33

NAT NAT

c

d e
2 1 2 2 32

NAT
NAT

f

100

10–3A
m

pl
itu

de

–600 –300 0 300 600
Z (mm)

100

10–3A
m

pl
itu

de

–600 –300 0 300 600

Z (mm)

100

10–3A
m

pl
itu

de

–600 –300 0 300 600

Z (mm)

100

10–3A
m

pl
itu

de

–600 –300 0 300 600

Z (mm)

100

10–3A
m

pl
itu

de

–600 –300 0 300 600

Z (mm)

100

10–3A
m

pl
itu

de

–600 –300 0 300 600

Z (mm)

cr
cb
cg

| |
| |
| |

Fig. 5 Chiral dynamics for loop-2 that encloses exceptional point 2 (EP-2). a–c Calculated amplitudes of the three instantaneous eigenmodes along the
z-axis for counter-clockwise loop-2 with a mode-1, b mode-2, and c mode-3 being the input eigenmode, where cr, cb, and cg represent, respectively,
the coefficient of the eigenmode on the red, blue, and gray sheet. d–f Same as (a–c) but for clockwise loop-2. The dynamics is chiral in the sense that the
output state is mode-3 for counter-clockwise loop-2 but mode-2 for clockwise loop-2. The term “NAT” denotes the non-adiabatic transition
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the IPC exhibit the lowest loss. In our system, IPC-1 and IPC-2
both meet this requirement (see Fig. 1c). But if a system possesses
an IPC on which the eigenmodes do not have the lowest loss,
then the dynamics may not be chiral since NATs to the lowest-
loss sheet would occur. When a multi-state system possesses
multiple IPCs that exhibit the lowest loss, different IPCs will
show different chiral dynamics, i.e., loops in the same
encircling direction but enclosing different EPs can give different
final states.

Single EP encirclement starting from RPC. We have demon-
strated the chiral dynamics when the loops start from IPCs in the
proposed system. For loops with a starting point far away from
IPCs, the dynamics would not be chiral. To show this point, we
consider a loop-3 as illustrated in Fig. 6a. The trajectory of loop-3
is exactly the same as that of loop-1, except that the starting point
lies near RPC-1 (α= 1.09 and w2= 4 mm; see the circle in
Fig. 6a). In this case, the three eigenmodes at the starting/end

point have different losses. There is only one eigenmode
exhibiting the lowest loss, which is in contrast to the case with
a starting point on IPCs where two eigenmodes share the lowest
loss. Therefore, counter-clockwise and clockwise loops should
make no difference to the final state.

Numerical simulations were performed to verify the above
prediction in a system with L= 800 mm. Figure 6b–d plots the
trajectories of state evolution on the imaginary part of Riemann
sheets for counter-clockwise loops, which are obtained by
calculating the amplitudes of instantaneous eigenmodes in
Fig. 6e–g, with mode-1 (mainly localized in waveguide-1),
mode-2 (mainly localized in waveguide-2), and mode-3 (mainly
localized in waveguide-3) being the input eigenmode, respec-
tively. At the starting point, mode-1 exhibits the lowest loss since
waveguide-1 is lossless, while the other two waveguides have
absorbers attached. Figure 6b shows that the input mode lies on
the lowest-loss red sheet. When z > 0 (i.e., after IPC-1), the state
climbs up to the blue sheet which is no longer the lowest loss

Table 1 Comparison of the dynamical process of the four loops

Loop Dynamics End state of counter-clockwise loops End state of clockwise loops

Loop-1 enclosing EP-1 Chiral Mode-2 Mode-1
Loop-2 enclosing EP-2 Chiral Mode-3 Mode-2
Loop-3 enclosing EP-1 Non-chiral Mode-1 Mode-1
Loop-4 enclosing EP-1 and EP-2 Chiral Mode-2 Mode-1
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Fig. 6 Non-chiral dynamics for loop-3 that encloses exceptional point 1 (EP-1). a Parameter space of the system where loop-3 has the same trajectory as
loop-1 except that the starting point lies near real part coalescence 1 (RPC-1). b–d Trajectories of the state evolution on the imaginary part of Riemann
sheets (i.e., the imaginary part of the effective mode index neff as a function of the detuning parameter α and the absorber width w2) for counter-clockwise
loop-3 with b mode-1, c mode-2, and d mode-3 being the input eigenmode. e–g Calculated amplitudes of the three instantaneous eigenmodes along
the z-axis for counter-clockwise loop-3 with e mode-1, f mode-2, and g mode-3 being the input eigenmode, where cr, cb, and cg represent, respectively,
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sheet. As a result, a NAT to the lowest-loss red sheet occurs at
z= ~ 120 mm and the final state is mode-1 (also see Fig. 6e for
IPC-1 and the NAT). The dynamical processes with mode-2
(Fig. 6c) or mode-3 (Fig. 6d) as injections are different at the
beginning of the trajectories, i.e., there is a NAT since at the
starting point, the eigenmodes on the blue and gray sheet do not
have the lowest loss. The following processes are the same, i.e., the
state becomes unstable again after IPC-1 and jumps to the red
sheet via a second NAT (also see Fig. 6f, g). The final state is
always mode-1 since it exhibits the lowest loss. The dynamical
processes of clockwise loops are similar and the final state is still
mode-1 (see Fig. 6h–j, also see Supplementary Fig. 2). The
consequence is a non-chiral transmission behavior (also see
Table 1), i.e., different encircling directions result in the same
state. The non-chiral dynamics was first observed in two-state
systems27. Our results in this work indicate that the non-chiral
dynamics would also exist in multi-state systems as along as the
starting point lies away from IPCs, i.e., there is only one
eigenmode exhibiting the lowest loss.

Double EPs encirclement starting from IPC. Generally speak-
ing, a three-state system can support two types of third-order EPs
based on the topology of Riemann sheets31. The first type of
third-order EP has three perturbed eigenvalues around it, with
three branches of cube-root expansion. In the vicinity of the
second type of third-order EP, two eigenvalues are given by
branches of square-root expansion, whereas the third one has a
conventional Taylor expansion. In our three-state system, there
are two second-order EPs in the parameter space. It was shown
that encircling two second-order EPs in such a system will shift
eigenmodes in a cyclic manner like encircling the first type of
third-order EP mentioned above18. To show this point, we con-
sider in Fig. 1d (also see Supplementary Fig. 3a) a loop-4 (α0=
1.09, Δα= 0.2, and Δw= 6 mm) that encloses both EP-1 and EP-
2 with the starting point on IPC-1. The adiabatic trajectory of
state evolution following loop-4 is shown in Supplementary
Fig. 3b, where the sequence of eigenmode variations is indeed the
same as that of encircling the first type of third-order EP men-
tioned above17,18,31. In fact, the position of EP-1 and EP-2 can be
tuned by changing the system parameters. The degeneracy will
become the first type of third-order EP when EP-1 and EP-2
merge together. Therefore, we can use loop-4 to study the
dynamical encircling of an equivalent third-order EP.

Let us now consider the dynamical encircling. The calculated
amplitudes of instantaneous eigenmodes for counter-clockwise
loops are shown in Fig. 7a–c, with mode-1, mode-2, and mode-3
as the injection mode, respectively. The corresponding dynamical
trajectories on the real part of Riemann sheets are plotted in
Fig. 7d–f. By the same way, the results for clockwise loops are
shown in Fig. 7g–l. We find the mode conversion behavior is
exactly the same as that of loop-1 (which encloses EP-1 only), i.e.,
the final state for counter-clockwise loops is mode-2 whereas that
for clockwise loops is mode-1 (also see Table 1 and Supplemen-
tary Fig. 4). This means the dynamical encircling of a third-order
EP with the starting point on the IPC also exhibits a chiral
transmission behavior. It is actually the location of the starting
point that determines the chiral dynamics, instead of the number
or even the order of the encircled EP. A recent study showed that
the dynamics can be chiral when the loop excludes any EP26, as
long as the loop is in the direct vicinity of the EP and the starting
point lies near the IPC with two eigenmodes sharing the lowest
loss.

Although the consequences are the same, the dynamical
processes of encircling a third-order EP are more complex. In
brief, there are more NATs (see Fig. 7) than the case when a

second-order EP is dynamically encircled (see Figs. 3, 4), since in
each process the state can cross over the RPC and IPC of both
EPs. As a result, the state has more chances to evolve on the
unstable sheets and the number of NATs increases. This also
indicates that the number of NATs may increase with the increase
in the order of the EP.

Discussion
In summary, we have revealed the dynamics when second-order
EP and equivalent third-order EP are dynamically encircled in a
three-state system (see Table 1 for a summary). From the view-
point of the encircling process, there are more NATs when
compared to that in two-state systems, since the Riemann sheets
possess more RPCs and IPCs, via which the state has more
chances to evolve on the unstable sheets, which is a necessary
condition for NATs to occur. From the viewpoint of outcome, the
dynamics is found to be chiral if the starting point lies on IPCs
where two eigenmodes share the lowest loss (e.g., loop-1, loop-2,
and loop-4). For starting point lying elsewhere (e.g., loop-3 with a
starting point near RPCs), the dynamics is non-chiral. Since there
are more than one IPC, starting points on different IPCs can
result in different chiral dynamics. We have used loop-1 and
loop-2 to demonstrate this point. Specifically, for loop-1, the
outcome of counter-clockwise loops is mode-2 and that of
clockwise loops is mode-1. For loop-2, meanwhile, the final state
of counter-clockwise loops is mode-3, while that of clockwise
loops is mode-2. This is a phenomenon unique to multi-state
systems. We also showed that the chiral and non-chiral dynamics
are in fact a result of the location of the starting point, instead of
the number of EPs encircled and even the order of the encircled
EP. The same outcome for loop-1 and loop-4 is an evidence to
this point, although the dynamics when a high-order EP is
dynamically encircled (i.e., loop-4) is more complex. The con-
clusion should also apply to systems with more than three states.
In experimental realizations, one may only find approximate
chiral/non-chiral dynamics, since the system has a finite length
which will induce scatterings into the system. The new physics
revealed in our three-state system may lead to the design of new
wave manipulation schemes in multi-state systems.

Methods
Numerical simulations. The effective mode index (e.g., in Fig. 1b, c) and eigen-
fields distributions (e.g., in Fig. 3d–f) of the eigenmodes were calculated using the
eigenmode analysis study in electromagnetic waves module of COMSOL. For the
simulation of the wave transmissions (e.g., in Fig. 3a–c), we first solved the
eigenmode field distributions at the input and output interfaces using boundary
mode analysis study in electromagnetic waves module of COMOSL. The obtained
eigenfields were then used as boundary conditions and the wave transmission in
the system was calculated using the frequency domain study of COMSOL.

Extracting the amplitudes of the eigenmodes. We show here the way to extract
the amplitudes of the instantaneous eigenmodes at a given cross section in a three-
waveguide system. We define the transverse electric and magnetic eigenfields of the
eigenmodes as ER

1 , E
R
2 , E

R
3 and HR

1 , H
R
2 , H

R
3 , where the superscript Rmeans that they

are right eigenvectors. Their corresponding left eigenvectors are defined as EL
1 , E

L
2 ,

EL
3 and HL

1 , H
L
2 , H

L
3 . We consider eigenmode 1 and its left eigenvectors should take

the form

EL
1 ¼ ER

1 � α1E
R
2 � η1E

R
3

HL
1 ¼ HR

1 � α1H
R
2 � η1H

R
3

( )
ð2Þ

where α1 and η1 are coefficients that are to be determined. The left and right
eigenvectors satisfy the orthogonal relation

1
4

R
S EL

1 x; yð Þ ´HR�
2 x; yð Þ þ ER�

2 x; yð Þ ´HL
1 x; yð Þ� � � zds ¼ 0

1
4

R
S EL

1 x; yð Þ ´HR�
3 x; yð Þ þ ER�

3 x; yð Þ ´HL
1 x; yð Þ� �� � � zds ¼ 0

( )
ð3Þ

where we perform the integration over the entire cross section S of the waveguides
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system. For the simplicity of representation, we define

ξm;n ¼ 1
4

Z
S
ER
m x; yð Þ ´HR�

n x; yð Þ þ ER�
n x; yð Þ ´HR

m x; yð Þ� � � zds ð4Þ

where m, n= 1,2,3. By inserting Eq. (2) into Eq. (3), we obtain

ξ1;2 � α1ξ2;2 � η1ξ3;2 ¼ 0

ξ1;3 � α1ξ2;3 � η1ξ3;3 ¼ 0

( )
ð5Þ

Eq. (5) can then be solved to obtain the coefficients and we have

α1 ¼ ξ1;2ξ3;3�ξ1;3ξ3;2
ξ3;3ξ2;2�ξ3;2ξ2;3

η1 ¼ ξ1;3ξ2;2�ξ1;2ξ2;3
ξ3;3ξ2;2�ξ3;2ξ2;3

8<
:

9=
; ð6Þ

We now obtain the left eigenvectors. The transverse electric and magnetic fields
at a given cross section can be written as a linear combination of the right

eigenfields:

Et x; yð Þ ¼ c1E
R
1 x; yð Þ þ c2E

R
2 x; yð Þ þ c3E

R
3 x; yð Þ

Ht x; yð Þ ¼ c1H
R
1 x; yð Þ þ c2H

R
2 x; yð Þ þ c3H

R
3 x; yð Þ

( )
ð7Þ

Then we calculate the amplitude coefficients by projecting the transverse fields
onto the left eigenvectors, e.g.,

cm ¼
R
S EL�

m x; yð Þ ´Ht x; yð Þ þ Et x; yð Þ ´HL�
m x; yð Þ� � � zdsR

S EL�
m x; yð Þ ´HR

m x; yð Þ þ ER
m x; yð Þ ´HL�

m x; yð Þ� � � zds ð8Þ

Using the procedure shown above, we obtain the results in Figs. 3d–f, 4a–c,
5a–f, 6e–j, 7a–c, and 7g–i.

Data availability
The data that support the findings of this work are available from the corresponding
author upon reasonable request.
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Fig. 7 Chiral dynamics of loop-4 that encloses both exceptional point 1 (EP-1) and exceptional point 2 (EP-2). a–c Calculated amplitudes of the three
instantaneous eigenmodes along the z-axis for counter-clockwise loop-4 with a mode-1, b mode-2, and c mode-3 being the input eigenmode, where
cr, cb, and cg represent, respectively, the coefficient of the eigenmode on the red, blue and gray sheet. d–f Trajectories of the state evolution on the real
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is mode-2 for counter-clockwise loop-4, whereas mode-1 for clockwise loop-4. The term “NAT” denotes the non-adiabatic transition
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Code availability
All the simulations in this work were performed using COMSOL (www.comsol.com).
The source code is available from the corresponding author upon reasonable request.
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