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Observation of slowly decaying eigenmodes
without exceptional points in Floquet dissipative
synthetic circuits
Roberto de J. León-Montiel 1, Mario A. Quiroz-Juárez1, Jorge L. Domínguez-Juárez 2,3,

Rafael Quintero-Torres2, José L. Aragón2, Andrew K. Harter4 & Yogesh N. Joglekar 4

Passive parity-time symmetry breaking transitions, where long-lived eigenmodes emerge in a

locally dissipative system, have been extensively studied in recent years. Conventional wis-

dom says that they occur at exceptional points. Here we report the observation of multiple

transitions showing the emergence of slowly decaying eigenmodes in a dissipative, Floquet

electronic system with synthetic components. Remarkably, in our system, the modes emerge

without exceptional points. Our setup uses an electrical oscillator inductively coupled to a

dissipative oscillator, where the time-periodic inductive coupling and resistive-heating losses

are independently controlled. With a Floquet dissipation, slowly-decaying eigenmodes

emerge at vanishingly small dissipation strength in the weak coupling limit. With a moderate

Floquet coupling, multiple instances of their emergence and disappearance are observed.

With an asymmetric dimer model, we show that these transitions, driven by avoided-level-

crossing in purely dissipative systems, are generically present in static and Floquet domains.
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Over the past decade, systems described by non-Hermitian,
parity-time PTð Þ symmetric Hamiltonians have become
a subject of intense research1,2. Such a Hamiltonian HPT

is invariant under the combined operations of parity Pð Þ and
time-reversal Tð Þ, but it does not commute with either of the two.
When its non-Hermiticity is small, its eigenvalues λk are real and
its eigenvectors are simultaneous eigenvectors of the antilinear
PT operator with eigenvalue one. The spectrum changes into
complex-conjugate pairs when the non-Hermiticity exceeds a
threshold called the PT symmetry breaking threshold3,4. At the
threshold, two or more eigenvalues of HPT become degenerate as
do the corresponding eigenvectors, i.e., the PT symmetry
breaking point is an exceptional point (EP)5. While not funda-
mental in their origin6–8, such Hamiltonians faithfully describe
open classical systems with balanced gain and loss, and have been
implemented in photonic lattices9–12, microring resonators13–15,
superconducting wires16, and electrical circuits17,18. In addition
to studying the dynamics across the PT transition, experiments
on these systems have observed an enhanced sensitivity 19,20 and
important topological properties21 of the EPs, near the PT
threshold.

When a system has unbalanced gain and loss, the eigenvalues
of its non-PT -symmetric Hamiltonian are complex and the EP is
replaced by an avoided level crossing (ALC)22. ALC refers to the
flow of complex eigenvalues towards, and then away from, each
other23–28. A laser, with its constant cavity loss and a pump-
current adjustable gain, is a prototypical system with local,
unbalanced gain and loss. Many counter-intuitive transitions
such as pump-induced laser death29,30, loss-induced revival13,
and self-termination31,32 in coupled lasers have been observed or
predicted, based on the ALC. In all cases, however, the transitions
occur when the largest imaginary part of complex eigenvalues
changes sign, and system parameters where the ALC occurs, i.e
the distance between the eigenvalues in the complex plane is the
shortest, do not signal any transition.

Apart from a shift along the imaginary axis, the Hamiltonian
for a neutral-loss system is the same as that of a gain-loss system.
Thus, the language of PT symmetry has been adopted to systems
with localized dissipation that are “identity-shifted” from a PT
symmetric Hamiltonian33. When the loss strength γ is small, the
equal decay rates of the two eigenmodes of the dissipative
Hamiltonian HD increase with γ. Beyond the threshold, one of the
eigenmodes (fast mode) has a rapid decay and the decay rate for
the second one (slow mode) decreases with increasing γ. Indeed,
the first observation of a passive PT transition was in a lossy
dimer wherein the net transmission increased with the local
loss34. In the strictest sense, however, HD does not commute with
the PT operator, and thus HD and PT cannot have simultaneous
eigenvectors.

Based on these observations, a passive PT -symmetry
breaking transition can be defined as follows. When the local
loss is small, the eigenmode decay rates Γk≡−=λk > 0 increase
with it. Past a critical value γPT, a slowly-decaying mode
emerges, whose decay rate Γs(γ) decreases when γ is increased
further. The passive PT -symmetry breaking threshold γPT,
then, corresponds to a maximum in Γs(γ), i.e.,

dΓsðγ�PTÞ=dγ>0 and dΓsðγþPTÞ=dγ<0; ð1Þ

where γ±
PT denotes approaching the threshold γPT from the left

or right, respectively. For dissipative Hamiltonians that are
identity-shifted from HPT, the emergence of the slow mode is
equivalent to the PT breaking transition of HPT, and both
occur at an EP. However, Eq. (1) also encompasses dissipative
Hamiltonians that are not identity shifted from an HPT and do
not have an EP at the threshold γPT. The key, experimental

signature of “loss-induced transparency”34–36, indicating the
emergence of slow-mode, does not depend upon whether it
occurs at an EP37. Therefore, we call the region of the
parameter-space where the eigenmode decay rates increase with
γ as the “PT -symmetric” phase and regions where the slowly-
decaying eigenmodes exist as “passive PT -symmetry broken”
phase.

There is a compelling reason for studying the systems with
localized dissipation. The fundamental obstacle to realizing a
quantum system with PT -symmetric Hamiltonian is that
amplification is accompanied by quantum noise38,39. In optical
settings, at a few-photon level, the gain is randomized by
spontaneous emission, while the loss is statistically linear down
to a single-photon level. Consequently, there are no realizations
of gain-loss systems that show quantum correlations present. A
dissipative system, on the other hand, can be implemented
down to the quantum level. This approach has led to the
observation of passive PT breaking transitions in the quantum
domain with correlated single photons40 and a degenerate
Fermi gas;41 in both cases, however, the passive PT transition
occurs at an EP. Equation (1) provides a meaningful way to
extend this notion to truly quantum, dissipative systems that do
not have an EP.

Here we demonstrate that inductively coupled electronic cir-
cuits have the passive PT symmetry breaking transition in the
absence of EPs in both static and Floquet domains. Our system
comprises an inductor-capacitor (LC) oscillator inductively cou-
pled to a second one with Joule-heating loss. With static and
Floquet versions of the effective, lossy Hamiltonian that describes
this system, we characterize the passive PT -symmetric and
passive PT -symmetry broken regions, and observe the emer-
gence of slowly decaying eigenmodes that indicate the passive PT
broken region. Finally, by using an asymmetrical dimer model, we
show that passive PT transitions at the ALC occur in both static
and Floquet dissipative Hamiltonians. In contrast to the coupled
LC circuits with gain and loss17,18, our system undergoes passive
PT transitions without EPs; it signals an ALC-driven paradigm
that is also applicable to a broad array of dissipative quantum
systems.

Results
Theory of passive PT transitions with a static Hamiltonian.
Our system is a neutral LC oscillator, formed by a synthetic
inductor and capacitor, inductively coupled to another parallel,
synthetic, resistive LC (RLC) circuit with a coupling inductor Lx
(see Fig. 1a). In parity-time symmetric systems one generally
investigates the dynamics of the local density of a quantity
QðtÞ � hψðtÞjψðtÞi that is conserved when the system is isolated
and described by a Hermitian Hamiltonian. For optical PT
systems, Q is the total energy in the electromagnetic pulse or,
equivalently, the number of photons, and |ψ(t)〉 then represents
the location-dependent amplitude of the electric-field envelope; in
a passive PT system with ultracold atoms, QðtÞ is the total
number of atoms in the trap and |ψ(t)〉 is the hyperfine-level
associated wavefunction of a single atom. In our case, the time-
dependent energy stored in and across the two coupled oscillators
is given by a positive-definite quadratic form, i.e.,
QðtÞ � hψðtÞjψðtÞi ¼ hϕðtÞjAjϕðtÞi. Here A= diag(C, C, L, L,
Lx)/2 is a real, diagonal matrix, and |ϕ〉= (V1, V2, I1, I2, Ix)T is a
real column-vector comprising the voltages V1,2 across the two
capacitors, the currents I1,2 across the two inductors, and the
current Ix flowing across the coupling inductor. The decay
dynamics of the energy QðtÞ in the system is determined by
Kirchhoff laws and leads to a Schrödinger-like equation i∂t|ψ(t)〉
=HD|ψ(t)〉 (Methods, Hamiltonian description from Kirchhoff
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laws). The rank-4, 5 × 5 lossy Hamiltonian is given by

HDðγÞ ¼

�iγ 0 �iω0 0 �iω0M

0 0 0 �iω0 iω0M

iω0 0 0 0 0

0 iω0 0 0 0

iω0M �iω0M 0 0 0

2
6666664

3
7777775
: ð2Þ

Here, ω0 ¼ 1=
ffiffiffiffiffiffi
LC

p
is the frequency of an isolated oscillator,

M ¼
ffiffiffiffiffiffiffiffiffiffi
L=Lx

p
is the dimensionless coupling between the two

oscillators, and γ= 1/RC is the dissipation rate of the parallel RLC
oscillator. Because this is a classical system, HD has purely
imaginary entries; it ensures that the “state vector” |ψ(t)〉 remains
real at all times. Apart from the trivial eigenvalue λ= 0, the
characteristic equation for HD is given by

ðλ2 � ω2
0Þðλ2 � ω2

MÞ � iγλ λ2 � ω2
0ð1þM2Þ

� �
¼ 0; ð3Þ

where ωM ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M2

p
. It follows from Eq. (3) that if λ is an

eigenvalue of the Hamiltonian HD, so is −λ*.
The resulting flow of eigenvalues <λkðγÞ and =λk(γ) as a

function of the dissipation, for M= 0.4, are shown in Fig. 1b,c,
respectively. Starting from ±ω0 (red solid and dot-dashed lines)
and ±ωM (blue solid and dot-dashed lines), the <λk approach
each other as γ/ω0 is increased. The levels reach a minimum gap
∝M3 at loss strength γ/ω0∝ 2M2 and then they diverge again, i.e.,
the static Hamiltonian has an ALC near γ � 2M2ω0. Note that
due to this scaling, in the weak coupling limit M � 1, the gap
appears to vanish, just as it does in the balanced gain-loss
electrical circuits17. The inset shows an enlarged view of the
transition region. Figure 1c shows the evolution of the doubly-
degenerate decay rates Γk≡−=λk. At small dissipation, both (red
and blue) decay rates increase with γ. However, at γ=ω0 � 2M2,
two “slowly decaying” (blue) eigenmodes with dΓs/dγ < 0 emerge,
indicating a passive PT symmetry breaking transition which

occurs at the location of the ALC. The inset shows an enlarged
view of this region, where the shaded part indicates “passive PT
symmetric” region (dΓs/dγ > 0) and the unshaded part indicates
the “passive PT -symmetry broken” region (dΓs/dγ < 0). In
contrast, we note that in systems with unbalanced gain and
loss31,32, the interesting physical phenomena13,30 do not occur at
the location of the ALC, but instead at system parameters where
max=λk changes sign.

The results for an RLC oscillator coupled to a gain-LC
oscillator, Fig. 1d, are shown in the subsequent panels17. Note
that the corresponding Hamiltonian HPT(γ) is identical to HD(γ)
except for an additional nonzero term given by HPT(2,2)=+iγ.
The resulting flow of <λk, Fig. 1e, shows that starting from ±ω0

(red solid and dot-dashed lines) and ±ωM (blue solid and dot-
dashed lines), the levels for <λk attract each other and become
degenerate at the exceptional point γ= ωM− ω0. Figure 1f shows
that starting from zero, =λk take off in a characteristic square-
root pattern at the same EP, i.e. γ= (ωM− ω0) ≈ ω0M2. As an
aside, we note that both Hamiltonians have an exceptional point
deep in the PT symmetry broken region, at γ=ω0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
.

However, in either case, this EP does not signal any transition.
The results in Fig. 1 predict that in our lossy, static system, a

slowly decaying eigenmode emerges at the location of the ALC.
When a static, PT -symmetric Hamiltonian is replaced by its
Floquet version, a rich phase diagram with multiple PT
transitions with concomitant lines of EPs emerges42–44. How do
these results change if we periodically drive a dissipative system
that has no exceptional points?

The fate of periodically driven systems, such as children’s
swings, has been studied over centuries. The energy dynamics in
such a system is either periodic or, near a resonance, unstable in
which the energy diverges with time. In real systems, this
divergence is saturated by the nonlinearities. Over the past
decade, periodically driven quantum systems45, i.e., systems with
a Floquet Hamiltonian have been extensively investigated46–48.
Such a Hamiltonian gives rise to Floquet quasi-energy bands and
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Fig. 1 Flow of eigenvalues and transitions in neutral-loss and gain-loss coupled electrical oscillators. a Schematic of an inductor-capacitor (LC) oscillator
(gray) inductively coupled to an resistive-LC oscillator (blue). In the weak coupling limit, M ¼
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reach a minimum gap ∝M3 near loss strength γ=ω0 � 2M2 before diverging again, thus indicating an avoided level crossing (ALC). c Flow of eigenmode
decay rates −=λk shows that the slowly decaying modes (blue) emerge at γ=ω0 � 2M2 signaling a passive parity-time PTð Þ transition at the location of
the ALC. The insets show expanded view of the transition region. d Schematic circuit with gain and loss17. Flows of <λk , e, and =λk, f, as a function of the
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the time evolution of the system is described by an effective, static
Hamiltonian, along with kick operators. Due to its Hermiticity,
the time evolution of the system is unitary but the dynamics of
energy fluctuations is non-trivial49. The energy fluctuations show
bounded oscillations at high driving frequencies; at low
frequencies, there are “instability regions” where the fluctuations
grow exponentially with time until their growth is saturated by
the interactions49.

In contrast to its Hermitian counterpart, a PT -symmetric
Floquet Hamiltonian has complex quasi-energies and non-
orthogonal Floquet eigenvectors, and therefore generates a non-
unitary time evolution. In this case, the PT transitions, which
always occur at EPs, can be induced by periodically varying the
Hermitian part42 or the gain-loss part43,44 of the Hamiltonian in
a classical18 or quantum settings41. Armed with these insights, we
now experimentally investigate the fate of the slowly decaying
eigenmodes–which occur without EPs–in the presence of a
periodic loss or coupling.

Experimental results for PT transitions with Floquet loss. We
implement a circuit where the resistance in the lossy (RLC) unit is
switched between an open circuit and R0 during a time period
Tf≡ 1/f. The time-periodic, dissipative Hamiltonian in this case is
given by Eq. (2) with a square-wave dissipation function, i.e.,

γðtÞ ¼
γ0 0 � t � Tf =4;

0 Tf =4 � t � 3Tf =4;

γ0 3Tf =4 � t � Tf :

8><
>: ð4Þ

The lossy Hamiltonian HD is shifted along the imaginary axis
from a PT symmetric Hamiltonian HPT by a non-identity,
diagonal matrix I2= diag(1, 1, 0, 0, 0), i.e.

HDðγÞ ¼ HPTðγ=2Þ � i
γ

2
I2: ð5Þ

Since I2 is not invariant under arbitrary, change-of-basis
transformations, HD(t) and HPT(t) do not share the same
topological structure for their static or Floquet eigenvalue spectra.
The PT phases of the Floquet Hamiltonian HD(t) are determined
by the eigenvalues νk of the one-period time-evolution operator

GDðTf Þ ¼ T exp �i
R Tf

0 dt′HDðt′Þ
h i

where T stands for the time-

ordered exponential50,51. Because we have a piecewise constant
Hamiltonian, Eq. (4), the monodromy matrix GD(Tf) can be
explicitly calculated. In addition to the trivial eigenvalue ν= 1,
which reflects the rank-4 nature of the 5 × 5 Hamiltonian HD(t),
the remaining eigenvalues νk of GD(Tf) give four dissipative
quasienergies λk≡lnνk that also occur in pairs (λ, −λ*). Thus,
there are two distinct, particle-hole symmetric, frequency values
j<λkj and two decay rates −=λk > 0 for our system. The passive
PT -symmetric phase is signaled by Δν � ðmaxjνkj �minjνkjÞ �
0 and Δν > 0 indicates a passive PT -symmetry broken phase52.
However, due to the presence of two frequencies and two decay
rates that have to be determined from the decaying voltage and
current signals, this approach is not experimentally suitable. This
is in a stark contrast with the PT -symmetric, Floquet electrical
system18 where only two real parameters are required to
characterize either the real quasi-energies (with zero “decay
rates”) in the PT symmetric phase, or a single complex quasi-
energy in the PT -broken phase.

An alternate, experimentally friendly approach to track the
passive, PT symmetry breaking transition is to define a scaled

energy,

EðtÞ ¼ hψð0ÞjGy
DðtÞeþγI2tGDðtÞjψð0Þi: ð6Þ

For a dissipative two-level system, this scaled quantity shows
oscillatory behavior in the PT symmetric phase, with its
amplitude and period both diverging as the system approaches
the PT phase boundary, and an exponential rise with time in the
PT symmetry broken phase33,40,41. This qualitative difference is
quantified by the ratio

μ ¼ log
max E 0 � t � 2τð Þ½ �
max E 0 � t � τð Þ½ �

� �
; ð7Þ

where τ is an arbitrary (large) time window. When μ= 0, the
system is in the passive PT -symmetric phase, while μ > 0 reveals
the rate of exponential growth of the scaled energy in the passive
PT -broken phase. This procedure provides an operationally
straightforward metric to track the transitions between the
passive PT -symmetric and passive PT -symmetry broken
regions in the two-dimensional parameter space (γ0, f) of Floquet
dissipation.

We experimentally implement the system described in Eqs. (2)
and (4) by using functional blocks synthesized with operational
amplifiers and passive linear electrical components. (See Meth-
ods, Circuit design and parameters, and refs. 53,54 for details.) Our
experimental setup is designed so that the synthetic inductance
and capacitance in each oscillator are L= 1 mH and C= 0.1mF,
respectively, leading to natural frequency of each oscillator
ω0/2π= 503 s−1. The remaining parameters of the electronic
circuit are defined depending on the specific configuration of the
system. For the dynamic-dissipation case, the coupling inductor is
set to Lx= 8 mH M ¼ 1=2

ffiffiffi
2

p
¼ 0:35

� �
and the resistance is

periodically driven by means of an external square-wave signal.
The maximum value of the resistance is Rmax= 400Ω, i.e., minγ
(t)= 25 s−1. The minimum resistance is selected from Rmin=
{50, 75, 95, 130, 180} Ω, and gives γ0= {200, 133, 105, 77, 56} s−1,
respectively. The parallel resistance in the neutral LC circuit is RN
= 1 kΩ and leads to a loss-rate γN= 10 s−1 that is far smaller than
the loss rate γ(t) in the RLC circuit. In all cases, our time-trace
data are take up to tmax= 200 ms, beyond which the effects of the
resistor RN become relevant.

Figure 2a shows that the numerically obtained phase diagram
Δν(γ0, f) has a triangular passive PT -symmetry broken region
centered at f= 60 s−1. In its neighborhood, the system is driven
from a passive PT -symmetric phase to the passive PT -sym-
metry broken phase and back at vanishingly small loss-strength
by sweeping the frequency f of the Floquet dissipation43,44.
Figure 2b shows that the experimentally friendly ratio μ(γ0, f),
obtained by numerically solving the Kirchhoff-law differential
equations (Methods, Hamiltonian description from Kirchhoff
laws) and using τ= 40 ms, has the same features. Because of the
divergent period of E(t) oscillations near the phase boundary, at a
finite τ, points in the passive PT -symmetric regions with period
≳τ also exhibit a positive ratio μ, and broaden the μ > 0 region in
Fig. 2b compared to the Δν > 0 region in Fig. 2a. In both cases, the
loss-strength γ0 is one order of magnitude smaller than the static
passive PT -symmetry breaking threshold � 2M2ω0.

Figure 2c shows the experimentally measured time-traces for
the circuit energy QðtÞ obtained for γ0= 77 s−1 and different
loss-modulation frequencies f (red lines: data; surface plot:
theory). As the modulation frequency is changed from 40 s−1

to 60 s−1, the decay rate for QðtÞ dramatically slows down and
signals the emergence of a slowly decaying mode, i.e., the passive
PT -symmetry broken phase. Increasing the modulation
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frequency further to 80 s−1 drives the system back into the
passive PT symmetric phase. (See Methods, Quantitative analysis
of agreement between theory and experiment, for experimental
time-traces with additional values of γ0.) Fig. 2d shows that μ(γ0,
f), obtained from Eq. (7) with τ= 40 ms, changes from zero to
maximum as f is swept from 40 s−1 to 60 s−1, and drops back to
zero when f is increased further to 80 s−1. The red points are data
(with 5% error bars); the surface plot is from theory. The
frequency-averaged, time-integrated relative error between theory
and experimental results in Fig. 2c is δQ ¼ �0:025 ± 0:076 and in
Fig. 2d is δμ= 0.0021 ± 0.0017 (Methods, Quantitative analysis of
agreement between theory and experiment).

Circuit energy dynamics with moderate Floquet coupling. In
this subsection, we experimentally explore the dynamics of circuit
energy QðtÞ when the coupling M(t) is periodically varied. The
effective Hamiltonian in this case is given by Eq. (16). In addition
to the constant dissipative term, it has a periodic driving term
−i∂tlnM(t) that, on average, does not add or subtract energy from
the system. We investigate the emergence of a slowly-decaying
eigenmode in this system by tracking the circuit energy Qðt; f Þ
and the ratio μ(γ0, f), when the coupling inductance Lx is varied
from Lmin= 2 mH (M= 0.707) to Lmax= 4 mH (M= 0.5) in a
square-wave fashion over a period Tf= 1/f. The values for the
static resistance in this configuration are R= {75, 100, 150, 200}
Ω, and correspond to loss rates γ= {133, 100, 67, 50} s−1.

Figure 3a shows the numerically obtained phase diagram for
the ratio μ(γ,f), where μ � 0 indicates a regime where the circuit
energy QðtÞ decays rapidly and the eigenmode decay rates
increase with γ (passive PT -symmetric region). In contrast, the
regions with μ > 0 denote emergence of a slowly decaying
eigenmode (passive PT -symmetry broken region). The experi-
mentally obtained values of the ratio μ are compared with the
theoretical predictions in Fig. 3b (red: data, surface: theory). We

see that the emergence of the slowly decaying mode near
f= 220 s−1 is clearly visible in the data, whereas the other,
weaker, peaks are only partially captured. The frequency-
averaged, time-integrated relative error between theory and
experimental results in Fig. 3b is δQ ¼ �0:038 ± 0:071 and
δμ= 0.0076 ± 0.027 (Methods, Quantitative analysis of agreement
between theory and experiment). The larger error in the Floquet
coupling case is a consequence of the instabilities produced by the
injection (removal) of energy into (from) the system, which is
produced by the periodic changes of the coupling inductance, Eq.
(16). These instabilities and resulting parasitic losses become
increasingly dominant after half-a-dozen Floquet cycles, and thus
limit the time range for reliable data to 2τ ~ 15 ms.

We note that the multiple emergences of slowly decaying
eigenmodes over a small range of coupling modulation frequency
is a salient feature of the not-weakly-coupled oscillators. In the
weak coupling limit M � 1, periodic variations of Lx translate
into square-wave variation of the effective dimer coupling J �
M2ω0=2 (Methods, Quantitative analysis of agreement between
theory and experiment). Such Floquet dimer coupling leads to
passive PT -symmetry broken regions at vanishingly small
dissipation strength γ0 only in the neighborhood of resonances
2πf/J= 1,1/2,1/3,…41. In contrast, results in Fig. 3 demonstrate
emergence of slowly decaying eigenmodes at frequencies that are
far off the resonance values.

Discussion
In this paper, we have presented the theory and experimental
observation of passive PT symmetry breaking transitions, driven
by avoided level crossing, in a dissipative, synthetic circuit with
static and time-periodic parameters. We have observed multiple
instances of the emergence of slowly decaying eigenmodes at loss
strengths that are one order of magnitude smaller than the static
threshold loss strength.
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Is the phenomenon of a passive PT -symmetry breaking
transition, which occurs without an EP and is driven by an ALC,
a property singular to our system? Or is it broadly present in
dissipative systems that are not “identity shifted” from a balanced
gain and loss system? The answer to the latter question is a yes. In
the weak coupling limit (M→0,ω0→∞) the electrical, two-
oscillator system maps onto a dimer with tunneling amplitude
J= ω0M2/2= const. (Methods, Equivalence between quantum
and electrical-oscillator systems). When the dissipation in the first
oscillator is taken into account, the effective dimer Hamiltonian
becomes

HdðtÞ ¼ �Jσx �
iγdðtÞ þ δ

2
ð12 þ σzÞ: ð8Þ

where σk are the Pauli matrices, γd(t)= γ(t)/2 is the Floquet loss
in one level of the dimer, γ(t) is the square-wave dissipation with

a mean-value of γ0/2, Eq. (4), and the on-site-potential asym-
metry δ is present only in the lossy circuit.

When δ= 0 Eq. (8) reduces to the classic case33,34. Figure 4a
shows its decay rates Γk as a function of loss strength γ0 and
modulation frequency f. In the static case, i.e., f= 0, (filled red/
yellow circles), the decay rates are equal to each other and
increase with the loss strength when γ0/J < 2. The slowly decaying
mode (filled red circles) emerges past the passive transition at the
EP γ0= 2J. In the Floquet case, the surface plots for 0.5 ≤ 2πf/J ≤
2.5 show that the passive PT transition occurs at vanishingly
small γ0 when the modulation frequency is near a resonance, i.e.,
2πf/J= 2,2/3,…;41,43,44. The lines of EPs that separate the fast-
mode decay-rate surface ΓF(γ0, f) and the slow-mode decay-rate
surface Γs(γ0, f) are also visible.

Figure 4b shows the results for an asymmetric dimer with δ=
0.05J. In the static case (filled red/yellow circles), the two, slightly
unequal decay rates increase with the loss strength, dΓk/dγ > 0,
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when the loss strength is small. That changes for γ=J≳2, where
one eigenmode becomes slowly decaying, dΓs/dγ < 0 (filled red
circles), without an attendant EP. In the Floquet case, the surface
plots for decay rates indicate the emergence of a slow mode at
γ0=J � 1 in the vicinity of resonances 2πf/J= 2,2/3,…. However,
the nonzero separation between the two surfaces clearly signals
that the passive PT transitions occur at the location of the ALC.
The contour lines of the slow-mode decay rate in the (γ0,f) plane
also show that in the vicinity of resonances, Γs becomes smaller
with increasing loss strength γ0. In our experiments with Floquet
dissipation, the coupling between oscillators is
M ¼ 1=2

ffiffiffi
2

p
¼ 0:35, and the oscillator frequency is ω0= 2π ×

503 s−1; this gives the dimer tunneling amplitude J= 2π × 30 s−1.
Thus, the observed sequence of transitions in the vicinity of f=
60 s−1 in Fig. 2d corresponds to the primary resonance at 2πf/J=
2. Remarkably, QðtÞ decay dynamics at moderate coupling shows
emergence of slowly decaying eigenmodes at multiple frequencies
that are not captured by the asymmetric dimer model.

Non-Hermitian degeneracies, exceptional points, and avoided
level crossings play an important role in the dynamics of classical,
gain-loss PT symmetric systems. Truly quantum versions of such
systems, however, are likely to be of a dissipative nature40, and
may or may not be “identity shifted” from a balanced gain-loss
system. Our results show that in such dissipative systems, the
location of the ALC, where the eigenvalue flows are shortest
distance apart, is instrumental to the passive PT -symmetry
breaking transition. With its versatility, our system provides a
starting point for investigating the effects of interaction (non-
linearity), time-delay, and memory - all of which can be imple-
mented via synthetic electronic circuits–on the dynamics of
dissipative PT symmetric systems.

Methods
Hamiltonian description from Kirchhoff laws. The equations of motion for the
voltages V1,2(t) across the two capacitors C, the currents I1,2(t) across the two
inductors L, and the current Ix across the coupling inductor Lx in Fig. 1a are
determined by Kirchhoff laws, and are given by

dV1
dt ¼ � 1

RC V1 � 1
C I1 � 1

C Ix ;
dV2
dt ¼ � 1

C I2 þ 1
C Ix ;

dI1
dt ¼ 1

L V1;

dI2
dt ¼ 1

L V2;

dIx
dt ¼ 1

Lx
ðV1 � V2Þ:

ð9Þ

This set of five linear equations can be written in a matrix form, i∂t jϕðtÞi ¼
~HjϕðtÞi where jϕi ¼ ðV1;V2; I1; I2; IxÞ

T is a real column vector, and the purely
imaginary, non-symmetric, non-Hermitian matrix ~H is

~H ¼ i

� 1
RC 0 � 1

C 0 � 1
C

0 0 0 � 1
C

1
C

0 1
L 0 0 0

1
Lx

� 1
Lx

0 0 0

2
66664

3
77775: ð10Þ

The energy in this circuit is given by

QðtÞ ¼ 1
2
CV2

1 þ
1
2
CV2

2 þ
1
2
LI21 þ

1
2
LI22 þ

1
2
LxI

2
x ð11Þ

and can be represented by a positive quadratic form, i.e., Q ¼ hϕjAjϕi where A=
diag(C, C, L, L, Lx)/2 is a diagonal matrix. Defining a new variable |ψ〉=A1/2|ϕ〉
with the dimensions of square-root of energy

ffiffiffiffiffiffiffiffiffiffi
Joule

p� �
, in the static case, the

Kirchhoff-law Eq. (9) lead to

i∂t jψðtÞi ¼ HDjψðtÞi; ð12Þ

HD � A1=2 ~HA�1=2: ð13Þ

Although ~H is not Hermitian in the zero-loss case (1/R= 0), the transformed
Hamiltonian matrix HD, Eq. (2), is Hermitian in that limit (γ= 0). The dissipative
Hamiltonian HDðγÞ is shifted from its PT symmetric counterpart by
HPTðγ=2Þ ¼ HDðγ=2Þ þ iðγ=2ÞI2. The Hamiltonian HPT commutes with the PT
operator where the block-diagonal, 5 × 5 parity and time-reversal operators are
given by

P ¼
σx 0 0

0 σx 0

0 0 �1

0
B@

1
CA; T ¼

12 0

0 �13

	 

K; ð14Þ

where 1k is a k × k identity matrix, and K denotes complex conjugation.
When the circuit parameters are time dependent, the change-of-basis matrix

A1/2(t) may become time dependent as well. In this case, to change from the |ϕ〉
basis to the |ψ〉= A1/2(t)|ϕ〉 basis, we have to include the gauge-field term that is
generated by the time-dependent change of basis. Taking it into account gives

HDðtÞ ¼
ffiffiffiffiffiffiffiffiffi
AðtÞ

p
~HðtÞ 1ffiffiffiffiffiffiffiffiffi

AðtÞ
p � i

ffiffiffiffiffiffiffiffiffi
AðtÞ

p
∂t

1ffiffiffiffiffiffiffiffiffi
AðtÞ

p : ð15Þ

In the Floquet dissipation case, the change-of-basis matrix is time independent
and so the dissipative Hamiltonian HDðtÞ ¼ A1=2 ~HðtÞA�1=2 only has a time-
dependent loss rate γ(t)= 1/R(t)C. In the Floquet Lx(t) case, the gauge-field term is
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nonzero and leads to HD(t)=

�iγ 0 �iω0 0 �iω0MðtÞ
0 0 0 �iω0 iω0MðtÞ
iω0 0 0 0 0

0 iω0 0 0 0

iω0MðtÞ �iω0MðtÞ 0 0 �i∂t lnMðtÞ

2
6666664

3
7777775
; ð16Þ

where MðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=LxðtÞ

p
characterizes the dimensionless coupling between the

lossy oscillator and the neutral oscillator. Equations (13), (15), and (16) thus
provide the requisite mapping from the Kirchhoff-laws description to the
Hamiltonian description.

Circuit design and parameters. Our experimental setup starts with two identical
RLC electrical oscillators coupled by an inductor. The objectives of this work
demands versatility in defining the elements used in the oscillators, as well as the
coupling, in terms of static and dynamic changes in magnitude. For the static
condition, a controllable and fixed value is needed, and for the dynamic case, a
precise control in the magnitude, frequency, and phase is required. Additionally,
two independent and synchronized clocks are needed as well, one to define the
initial conditions and the second to define the demanded dynamic changes. The
solution is possible with the help of electronically synthesized circuits, using an
analog computer built from different configurations of operational amplifiers53–55.

The problems associated with the faulty contacts and poor stability are resolved
by mounting and soldering the electronic components of each oscillator and the
coupling on a printed circuit board (PCB). The PCBs are designed in Altium
Software and fabricated in a standard chemical etching process. Along these lines,
the reproducibility and stability requires components to control offset, drift, and
hidden frequency dependence. The implementation includes metal resistors (1%
tolerance), polyester capacitors, operational amplifiers (MC1458 and LF353) and
analog multipliers (AD633). A stable DC power source is used to energize the
electronic circuit, particularly, the 12 V bias voltage for the operational amplifiers.

The voltage signals in the electronic circuit correspond to the physical variables
used in the mathematical model. The dynamics of the system are followed by
measuring independently the variables of each oscillator (the voltage in the
capacitor and the current in the inductor) and the coupling current, i.e., we
measure the real, time-dependent vector |ϕ(t)〉. The acquisition of the voltage
signals is performed with a Rohde & Schwarz oscilloscope, which has a 12-bits
resolution in its analog/digital converter (impedance 1MΩ), and can transmit

directly to a computer through a PC-OSCILLOSCOPE interface, which transfers
the information by a USB connection. Each measurement is averaged up to 64
times to reduce the influence of the electronic noise associated to the components.

The initial input energy Qðt ¼ 0Þ is injected into the system using an Arbitrary
Waveform Generator (AWG) from Agilent 33,220 A. The signal generated consists
of a single pulse with a pulse duration of 0.2 ms and frequency 5 s−1. The high-level
voltage amplitude is 5 V, while the low-level voltage amplitude is 0 V. Besides
setting the initial conditions, this clock synchronizes the system with the
components’ dynamical changes.

To implement the Floquet Hamiltonians, dynamic variations are introduced in
the system by means of changes in the desired element of the system. The
frequency, phase, and magnitude of the changes are defined by the period, phase,
and amplitude of a voltage signal, which is provided by the second AWG from
Agilent 33,220 A. The high-voltage and the low-voltage amplitude levels
correspond to the high and low energy-dissipation in the resistor, whereas in the
case of dynamic coupling, the high level corresponds to a high inductance value,
and the low level is related to a low inductance. All experiments are performed
using the same PCB. The different configurations are reached by means of three
mechanical selectors that remain in place during the course of the experiments.

Quantitative analysis of agreement between theory and experiment. In this
section we provide a quantitative analysis of the similarity between our experi-
mental results and the theoretical predictions. For this, first, we focus on the raw
data of the experiment, that is, the decaying-energy QðtÞ directly measured in the
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show that the error is typically positive in the passive parity-time PTð Þ symmetric region and negative in the passive PT -symmetry broken region

Table 1 Frequency-averaged relative error in the Floquet-
dissipation circuit energy

Loss rate γ0 (s−1) Relative δQðγ0Þ Relative δμ(γ0)

200 −0.0075 ± 0.042 0.0019 ± 0.0535
133 0.053 ± 0.051 0.0046 ± 0.0252
105 0.0098 ± 0.06 0.0016 ± 0.0176
77 −0.025 ± 0.076 0.0025 ± 0.0091
56 0.013 ± 0.049 0 ± 0

Note: The ratio δQ quantifies the good agreement between theory and experimental results
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circuit, Eq. (11). Figure 5 shows typical energy scans in the time-modulation fre-
quency plane for two different γ0 values (red lines: data; surface: theory). In each
case, we see that the energy decay rate is dramatically lowered at f= 60 s−1 and the
relative magnitude of the change is larger for higher loss strength γ0.

We define a time-averaged relative error for a given loss strength γ0 and
frequency f as

δQðγ0; f Þ � 1� 1
2τ

Z 2τ

0

Qexpðt′Þ
Qthðt′Þ

dt′; ð17Þ

where Qexpðt′Þ is the experimentally measured circuit energy and Qthðt′Þ is the
theoretical prediction for it. The resulting relative error values for the Floquet-loss
experimental data are shown in Fig. 6. We also define the relative error in the ratio,
Eq. (7), as

δμðγ0Þ ¼ 1� μexpðγ0; f Þ
μthðγ0; f Þ

� �
f

; ð18Þ

where 〈…〉f denotes the average over loss-modulation frequencies.The second and
third column in Table 1 show the frequency-averaged δQðγ0Þ and δμ(γ0) for the
experimental data.

Figure 7 and Table 2 show that the relative error in the circuit energy δQðγ; f Þ
for the dynamic coupling case is, typically, larger than that in the dynamic
dissipation case. This is due to the fact that any change in the coupling between
oscillators, represented by the inductor Lx, removes (injects) energy from (into) the
system. This creates instabilities in the experimental system, which leads to a larger
uncertainty in the measurement of the circuit variables.

Circuit to dimer mapping. The dynamics of a single excitation in a system
comprising two coupled quantum oscillators is described by the Schrödinger
equation

i∂t ψ tð Þj i ¼ Ĥosc ψ tð Þj i; ð19Þ

where the Hamiltonian Ĥosc is given by

Ĥosc ¼
X2
n¼1

εn nj i nh j þ
X2
n≠m

Jnm nj i mh j; ð20Þ

with |n〉 denoting the energy density at the nth oscillator. The nth-site energies and

the coupling between sites n and m are described by εn and Jnm, respectively. By
expanding the time-dependent wavefunction in the site basis, i.e.,
ψ tð Þj i ¼

P
n cn tð Þ nj i, it is easy to find that Eq. (19) leads to a set of coupled

equations of first order in the time derivative,

i∂t cn ¼ εncn tð Þ þ
X2
n≠m

Jnmcm tð Þ: ð21Þ

In the weak-coupling limit Jnm � εnð Þ, the time-derivative of Eq. (21)
becomes56,57

∂2t cn þ ε2ncn þ εn
X2
n≠m

2Jnmcm ð22Þ

Thus, by considering similar oscillators ε ¼ ε1 ’ ε2ð Þ, we can define K= 2εJ12=
2εJ21= 2εJ and obtain56

∂2t cþ þ ε2 þ K
� �

cþ ¼ 0; ð23Þ

∂2t c� þ ε2 � K
� �

c� ¼ 0; ð24Þ

where c±= c1 ± c2 denote the normal modes of the two oscillator system.
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Fig. 7 Relative error in the circuit energy δQðγ; fÞ shows that μ > 0 regions correlate with negative δQ, as they do in the Floquet dissipation case, Fig. 6. The
time-window used for calculating the ratio μ is τ= 7ms

Table 2 Frequency-averaged relative error in the Floquet-
coupling circuit energy

Loss rate γ0 (s−1) Relative δQ(γ0) Relative δμ(γ0)

133 0.0085 ± 0.023 −0.055 ± 0.081
100 0.01 ± 0.029 −0.021 ± 0.07
67 0.0068 ± 0.023 −0.041 ± 0.067
50 0.0049 ± 0.033 −0.035 ± 0.066

Note: The ratio δQ quantifies the agreement between theory and experimental results
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To establish a connection between the quantum model and our experimental
setup, let us consider Eq. (9) in the non-dissipative limit, that is, when 1/R= 0,

dV1
dt ¼ � 1

C I1 � 1
C Ix ;

dV2
dt ¼ � 1

C I2 þ 1
C Ix ;

dI1
dt ¼ 1

L V1;

dI2
dt ¼ 1

L V2;

dIx
dt ¼ 1

Lx
V1 � 1

Lx
V2:

ð25Þ

It is straightforward to rewrite these equations as54

∂2t Vþ þ ω2
0ð1þM2Þ þ ω2

0M
2

� �
Vþ ¼ 0; ð26Þ

∂2t V� þ ω2
0ð1þM2Þ � ω2

0M
2

� �
V� ¼ 0; ð27Þ

where V±=V1 ±V2 are the symmetric and antisymmetric normal modes of two LC
circuits, ω0 ¼ 1=

ffiffiffiffiffiffi
LC

p
is the frequency of an isolated LC circuit, and M2= L/Lx.

By comparing Eqs. (23)–(24) with Eqs. (26)–(27), we find that our experimental
setup, in the weak-coupling regime, is equivalent to a quantum-mechanical system
by setting c1,2→V1,2, ε ! ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p
, and an effective tunneling amplitude

J ! ω0M
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þM2

p : ð28Þ

Thus, the weak-coupling limit can be formally defined by M→ 0, ω0→∞ such
that the product J= ω0M2/2 remains constant.

Data availability
The data that support the findings of this study are available from the corre-
sponding authors upon reasonable request.
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