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Three-observer classical dimension witness
violation with weak measurement
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Dimension is an important resource in quantum information theory. Based on weak mea-

surement technology, we propose the three-observer dimension witness protocol in a

prepare-and-measure setup. By applying the dimension witness inequality based on the

quantum random access code and the nonlinear determinant value, we demonstrate that

double classical dimension witness violation is achievable if we choose appropriate weak

measurement parameters. Analysis of the results will shed new light on the interplay

between the multi-observer quantum dimension witness and the weak measurement tech-

nology, which can also be applied in the generation of semi-device-independent quantum

random numbers and quantum key distribution protocols.
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D imension is an important resource in quantum informa-
tion theory, for instance, a high dimensional quantum
system can enhance the performance of the quantum

computation1, 2, quantum entanglement3, quantum commu-
nication complexity4 and others, and it can also reduce the
security of certain practical quantum key distribution systems5.
To estimate the lower bound of the dimensions of a physical
system, quantum dimension witness has been proposed and
experimentally realized6–9, which has important applications in
the semi-device-independent quantum key distribution and
quantum random number generation10–15. Until now, it has been
demonstrated that two-observer classical dimension witness vio-
lation can be achieved with the Bell inequality test, quantum
random access code test, and determinant value test respec-
tively16–18, but whether the multi-observer classical dimension
witness violation can be obtained or not is still an open question.

Similar to a quantum dimension witness, quantum nonlocality
also plays a fundamental role in quantum information theory,
which can be used to guarantee the security of device-
independent quantum information protocols19, 20. In a two-
observer system, two observers can perform independent mea-
surements on their subsystem to test the Clauser-Horne-
Shimony-Holt (CHSH) inequality21, the violation of which cer-
tifies quantum nonlocality. Recently, it has been demonstrated
that nonlocality sharing among three observers can be established
by applying weak measurement technology22–24, which demon-
strates that subsequent measurements can not be described by
using classical probability distributions.

Inspired by the work of sharing nonlocality with weak mea-
surement technology, three-observer classical dimension witness
violation will be analyzed in this paper, in which we analyze the
dimension witness inequality based on the quantum random
access code and the nonlinear determinant value. The analysis
result indicate that double classical dimension witness violations
can be realized. More interestingly, we demonstrate local and
global randomness generation in the three-observer protocol, and
the analysis method can also be applied to future multi-observer
quantum network studies.

Results
Quantum dimension witness based on quantum random access
code. The first quantum dimension witness inequality based on
the quantum random access code in the two-observer system is
given by10, 11, 18

W1 ¼ pð1j000Þ þ pð1j001Þ þ pð1j010Þ � pð1j011Þ

�pð1j100Þ þ pð1j101Þ � pð1j110Þ � pð1j111Þ:

ð1Þ

In the two-dimensional Hilbert space, it has been proved that
the upper bound of the classical dimension witness value W1 is 2,
while the upper bound of the quantum dimension witness value
W1 is 2

ffiffiffi
2

p
. We will apply this dimension witness equation to

analyze the dimension witness values between Alice and Bob
W1AB and between Alice and Charlie W1AC.

Based on the state preparation and measurement model given
in the Method section, the dimension witness value between Alice
and Bob is given by

W1AB ¼ ffiffiffi
2

p ðcosðϵÞ þ 1Þ: ð2Þ

The dimension witness value between Alice and Charlie is
given by

W1AC ¼ 2
ffiffiffi
2

p
sin2ðϵÞ: ð3Þ

Note that ε= 0 indicates W1AB ¼ 2
ffiffiffi
2

p
and W1AC= 0, which

demonstrates that Charlie’s quantum state has no interaction
with Bob’s system. In this case, only W1AB violates the classical
upper bound, which is reduced to a two-observer system (Alice-
Bob). Similarly, ϵ ¼ π

2 indicates W1AB= 0 and W1AC ¼ 2
ffiffiffi
2

p
,

which is reduced to a two-observer system (Alice-Charlie). Thus,
our protocol is more general compared with the previous 2-
observer protocols, which sheds new light on the dimension
witness in the network environment.

The detailed quantum dimension witness values W1AB and
W1AC with different weak measurement parameter ε values are
given in Fig. 1. The analysis results indicate that double classical
dimension witness violations (min{W1AB,W1AC}>2) can be
obtained if the weak measurement parameter ε satisfies
arcsin

ffiffi
1
2

4

q� �
<ϵ<arccosð ffiffiffi

2
p � 1Þ.

Quantum dimension witness based on the determinant value.
The second quantum dimension witness inequality based on the
nonlinear determinant value test in the two-observer system is
given by13, 14

W2 ¼
pð1j000Þ � pð1j010Þ pð1j100Þ � pð1j110Þ
pð1j001Þ � pð1j011Þ pð1j101Þ � pð1j111Þ

����
����: ð4Þ

Assuming that the state preparation and measurement devices
are independent, it has been proved that this nonlinear dimension
witness can tolerate an arbitrarily low detection efficiency. In the
two-dimensional Hilbert space, the upper bound of the quantum
dimension witness value is 1, while the classical dimension
witness value is 0. Similar to the previous subsection, the
dimension witness values between Alice and Bob W2AB and
between Alice and Charlie W2AC can be analyzed.

Based on the state preparation and measurement model given
in the Method section, the dimension witness value between Alice
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Fig. 1 Three-observer classical dimension witness violation based on the
quantum random access code test. ε is the weak measurement parameter.
The dashed green line corresponds to the quantum dimension witness
value W1AB, solid blue line corresponds to the quantum dimension witness
value W1AC, and red area corresponds to the double classical dimension
witness violation.
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and Bob is given by

W2AB ¼ 1
2
cosðϵÞ þ 1

2

� �2

: ð5Þ

The dimension witness value between Alice and Charlie is
given by

W2AC ¼ sin4ðϵÞ: ð6Þ

Note that ε= 0 indicates W2AB= 1 and W2AC= 0, which
demonstrates that Charlie’s quantum state has no interaction
with Bob’s system. In this case, only W2AB violates the classical
upper bound, which is reduced to a two-observer system (Alice-
Bob).

The detailed quantum dimension witness values W2AB and
W2AC with different weak measurement parameters ε are given in
Fig. 2.

The analysis result demonstrates that double classical dimen-
sion witness violations (W2AB > 0, W2AC > 0) can be obtained if
0 < ε < π. However, since Bob’s system may be influenced by Alice
and Charlie’s system, the security of the measurement outcome b
should be guaranteed by considering the double classical
dimension witness violation W2AB > 0 and W2AC > 0.

Semi-device-independent random number generator. The
classical dimension witness violation can generate semi-device-
independent quantum random numbers, for which we can only
assume knowledge of the dimension of the underlying physical
system, but otherwise nothing about the quantum devices. The
generated random numbers in our protocol are the measurement
outcomes b and c, and the eavesdropper can not guess the
measurement outcomes even if the state preparation and mea-
surement devices are imperfect.

Randomness generation can be divided into global randomness
and the local randomness, where global randomness must analyze
the global conditional probability distribution p(b,c|x,y,z), while
local randomness must analyze the local conditional probability
distribution p(b|x,y). With the given conditional probability
distributions, the random number generation efficiency can be

estimated by following min-entropy functions25

Hmin1 ¼ � log2
1
16

P
x;y;z

maxb;cðpðb; cjx; y; zÞÞ
" #

;

Hmin2 ¼ � log2
1
8

P
x;y

maxbðpðbjx; yÞÞ
" #

:

ð7Þ

To analyze the global randomness generation efficiency Hmin1,
the maximal guessing probability 1

16

P
x;y;z

maxb;cðpðb; cjx; y; zÞÞ can
be estimated by

1
16

P
x;y;z

maxb;cpðb; cjx; y; zÞ

¼ 1
16

P
x;y;z

maxb;cpðbjx; y; zÞpðcjx; y; z; bÞ

¼ 1
16

P
x;y;z

maxb;cðpðbjx; y; zÞpðcjx; zÞÞ

� 1
8

P
x;z

maxcpðcjx; zÞ
" #

´maxb;x;y;z p bjx; y; zð Þð ;

ð8Þ

where the second line is based on the condition for which
Charlie’s measurement outcome c can not be effected by Bob, and
the corresponding randomness generation efficiency Hmin1 is
given by

Hmin1 � � log2
1
8

X
x;z

maxcpðcjx; zÞÞ
" #

� log2½maxb;x;y;z pðbjx; y; zÞð �;

ð9Þ

where the first part is the randomness generation in Charlie’s
side, and the second part is the randomness generation in Bob’s
side.

In the two-observer system, with a given random access code
based dimension witness value W1, the relationship between W1

and the randomness generation efficiency H′
min2ðW1Þ26 is given

by

H′
min2ðW1Þ ¼ � log2

1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðW2

1�4
4 Þ2

q
2

vuut
0
BB@

1
CCA: ð10Þ

However, the eavesdropper can apply Charlie’s input para-
meter z to guess Bob’s measurement outcome b, thus the previous
method can not be directly applied in our protocol. To estimate
the local randomness generation in Bob’s side, we will estimate
the dimension witness value between Alice and Bob W1AB(z) with
different input random number z∈ {0,1} as follows

W1ABðz¼0Þ ¼ W1ABðz¼1Þ ¼
ffiffiffi
2

p
cosðϵÞ þ ffiffiffi

2
p

; ð11Þ

with the detailed calculation is given in the Method section, and
the corresponding local randomness generation efficiency in
Bob’s side is H′

min2ðW1 ¼
ffiffiffi
2

p
cosðϵÞ þ ffiffiffi

2
p Þ.

With the given determinate value based on dimension witness
W2 in the two-observer system, the relationship between the
quantum dimension witness value W2 and the randomness
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Fig. 2 Three-observer classical dimension witness violation based on the
determinant value. The dashed green line corresponds to the quantum
dimension witness value W2AB, and solid blue line corresponds to the
quantum dimension witness value W2AC.
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generation efficiency H′′
min2 W2ð Þ13 is given by

H′′
min2ðW2Þ ¼ � log2

1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�W2

2

p
2

s0
@

1
A: ð12Þ

Similar to the previous calculation, the dimension witness value
between Alice and Bob W2AB(z) with different input random
number z can be given by

W2ABðz¼0Þ ¼ W2ABðz¼1Þ ¼ cosðϵÞ; ð13Þ

with the detailed calculation is given in the Method section, and
the corresponding local randomness generation efficiency in
Bob’s side is H′′

min2ðW2 ¼ cosðϵÞÞ.
Based on the previous analysis result, the detailed local

randomness generation efficiency with different weak measure-
ment parameter ε values are given in Fig. 3. Note that the local
random number generation in Charlie’s side can be directly
estimated by the two-observer protocol. Thus double local
randomness generation can be realized if we choose an
appropriate weak measurement parameter.

Comparing with the random access code based protocol, the
determinant value based protocol can provide the double classical
dimension witness violation except the special case (ε= kπ, k= 0,
1, 2,...), thus it has the advantage in the experimental realization.
However, the disadvantage is that this protocol has a strong
assumption that the state preparation and measurement devices
are independent.

Discussion
We proposed a three-observer dimension witness protocol, where
the weak measurement technology was applied to analyze the
double classical dimension witness violations. The results of our
analysis shed new light on understanding the quantum dimension
witness in the network environment. The three-observer dimen-
sion witness protocol can be assumed to be a sequential mea-
surement protocol, and it will be interesting to analyze a higher
dimensional multi-observer quantum system with sequential
measurement27 technology. We demonstrated the randomness
generation in the three-observer protocol, and the analysis results
demonstrate that weak measurement may have significant
applications in multi-observer semi-device-independent quantum

information theory. This study also provides tremendous moti-
vation for further experimental research.

Methods
Weak measurement protocol. Weak measurement is a powerful method to
extract less information about a system with smaller disturbance28, which has
proven to be useful for signal amplification, state tomography, solving quantum
paradoxes and others29–33. In this work, we use the weak measurement definition
given in refs. 22–24, and the corresponding analysis model is given in Fig. 4.

There are three observers Alice, Bob and Charlie in the analysis model, and the
purpose of our protocol is to establish double classical dimension witness violations
under the two-dimensional Hilbert space restriction. More precisely, Alice prepares
the two-dimensional quantum state ρx∈ C2 and sends it through the quantum
channel with a different classical input random number x∈ {00,01,10,11}. Then,
Charlie receives the quantum state and applies the following operation with the
input random number z∈ {0,1}

Rþ
z j0i ¼ jωzi;Rþ

z j1i ¼ jω?
z i; ð14Þ

where the above operation illustrates that the rotation maps the initial Hilbert
space basis of {|0〉,|1〉} to a new basis of fjωzi; jω?

z ig depending on the given z
value. Charlie also has an two-dimensional ancillary quantum state jþi ¼
1ffiffi
2

p ðj0i þ j1iÞ in the quantum channel, and then, the following control operation is
applied when Charlie receives the quantum state |1〉

eiεσz ¼ eiε 0

0 e�iε

� �
: ð15Þ

where ε is the weak measurement parameter. If Charlie receives the quantum state |

0〉, he will apply the identity operation I ¼ 1 0
0 1

� �
, thus the total unitary

operation in Charlie’s side can be given by

U ¼ Rþ
z j0ih0jRz � I þ Rþ

z j1ih1jRz � eiεσz

¼ jωzihωz j � I þ jω?
z ihω?

z j � eiεσz

¼ Wþz
B � I þW�z

B � eiεσz ;

ð16Þ

where we define Wþz
B ¼ jωzihωz j, W�z

B ¼ jω?
z ihω?

z j. Note that Charlie will apply
the identity operation I if the weak measurement parameter ε is 0, which can be
simply proved since Wþz

B � I þW�z
B � I ¼ I. In this case, Charlie will only obtain

the initial ancillary quantum state þj i after the control operation, which
demonstrates that Charlie can not gain any information about Alice’s state ρx, and
there is no interaction introduced by Charlie correspondingly.

To prove the dimension witness in the three-observer system, we should
analyze the density matrix to illustrate Bob and Charlie’s system. The initial
quantum state can be given by

ρBCx ¼ ρx � jþihþj: ð17Þ
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Fig. 3 Local random number generation efficiency with different weak
measurement parameters ε. The dashed green line corresponds to
H′
min2ðW1 ¼

ffiffiffi
2

p
cosðϵÞ þ ffiffiffi

2
p Þ, and solid blue line corresponds to

H′′
min2ðW2 ¼ cosðϵÞÞ.
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Fig. 4 Analysis model of three-observer classical dimension witness
violation. Alice prepares the two-dimensional quantum state ρx, and Bob
and Charlie apply the two-dimensional strong measurement and weak
measurement respectively
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By applying the previous unitary transformation U, the quantum state ρBCx will
be transformed into

ρ′BCx ¼ UρBCxU
y

¼ Wþz
B � IρBCxW

þz
B � I

þWþz
B � IρBCxW

�z
B � e�iεσz

þW�z
B � eiεσz ρBCxW

þz
B � I

þW�z
B � eiεσz ρBCxW

�z
B � e�iεσz :

ð18Þ

The quantum state ρ′Bx ¼ TrCρ′BCx will be transmitted to Bob, as follows

ρ′Bx ¼ TrCρ′BCx

¼ Wþz
B ρxW

þz
B þW�z

B ρxW
�z
B

þ cos ϵðWþz
B ρxW

�z
B þW�z

B ρxW
þz
B Þ

¼ ð1� cosðϵÞÞðWþz
B ρxW

þz
B þW�z

B ρxW
�z
B Þ

þcosðϵÞρx :
ð19Þ

Similarly, the quantum state ρ′Cx ¼ TrBρ′BCx will be transmitted to Charlie, as
follows

ρ′Cx ¼ TrBρ′BCx

¼ TrBðWþz
B ρxÞ þj ihþj

þTrBðW�z
B ρxÞeiεσz jþihþje�iεσz :

ð20Þ

After receiving the quantum state ρ′Bx , Bob will apply the two-dimensional
projective measurement depending on the input random number y∈ {0,1}. If Bob’s
input random number is 0, the corresponding measurement basis in Bob’s side is
given by

fjν0ihν0j; jν?0 ihν?0 jg: ð21Þ

If Bob’s input is 1, Bob’s measurement basis is

fjν1ihν1j; jν?1 ihν?1 jg; ð22Þ

where the measurement outcomes |ν0〉〈ν0| and |ν1〉〈ν1| indicate classical bit 1, and
the measurement outcomes jν?0 ihν?0 j and jν?1 ihν?1 j indicate classical bit −1.

After receiving the quantum state ρ′Cx , Charlie will apply the two-dimensional
projective measurement

fjtihtj; jt?iht?jg; ð23Þ

where the measurement outcomes |t〉〈t| and |t⊥〉〈t⊥| respectively indicate the
classical bit 1 and −1. Before the state measurement, Charlie randomly chooses
rotation fRz ;Rþ

z g with respect to the input random number z∈ {0,1}.
In the case where the weak measurement parameter ε is 0, there is no

interaction on Charlie’s side, and then, Charlie’s density matrix will be transformed
into ρ′Cx ¼ TrBðWþz

B ρx þW�z
B ρxÞjþihþj ¼ jþihþj, and Bob’s density matrix will

be transformed into ρ′Bx ¼ ρx . In the following section, we will focus on the
situation 0 ≤ ε ≤ π, and analyze the interaction introduced by the weak
measurement, which can be used to obtain the information gain in Charlie’s side.

The general representation of a qubit can be illustrated by using the density
matrix formalism Iþ~r�~σ

2 , where ~σ is the Pauli matrix vector

σx ¼ 0 1
1 0

� �
; σy ¼ 0 �i

i 0

� �
; σz ¼ 1 0

0 �1

� �� �
, and~r ¼ ðrx ; ry ; rzÞ is a real

three-dimensional vector such that rk k � 1, thus the conditional probability

distribution to illustrate Alice and Bob’s system can be given by

pðbjxyÞ ¼ P
z
pðzÞTrðBb

yρ
′
BxðzÞÞ

¼ 1
2 ð1� cosðϵÞÞP

z
pðzÞbωz � νy ´ωz � ρx

þ 1
2 cosðϵÞð1þ bνy � ρxÞ þ 1

2 ð1� cosðϵÞÞ;

ð24Þ

where Bb
y is the measurement operator acting on the two-dimensional Hilbert space

with input parameter y and output parameter b by considering the prepared
quantum state ρ′BxðzÞ. The conditional probability distribution to illustrate Alice
and Charlie’s system is given by

pðcjxzÞ ¼ TrðCcρ′CxðzÞÞ

¼ 1
2 ð1þ ωz � ρxÞð1þ c� c sin2ðϵÞÞ;

ð25Þ

where Cc is the measurement operator acting on the two-dimensional Hilbert space
to obtain the measurement outcome c with the state ρ′CxðzÞ.

Based on the previous observed statistics p(b|xy) and p(c|xz), we can calculate
the dimension witness value between Alice and Bob and between Alice and Charlie
respectively.

Three-observer dimension witness based on quantum random access code.
The general representation of a qubit can be illustrated by using the density matrix
formalism Iþ~r�~σ

2 , where ~σ is the Pauli matrix vector

σx ¼ 0 1
1 0

� �
; σy ¼ 0 �i

i 0

� �
; σz ¼ 1 0

0 �1

� �� �
, and~r ¼ ðrx ; ry ; rzÞ is a real

three-dimensional vector such that rk k � 1. In the following section, we apply
~r ¼ ðrx ; ry ; rzÞ to demonstrate the quantum state ρx (x∈ {00,01,10,11}), |νy〉〈νy|
(y∈ {0,1}), |ωz〉〈ωz| (z∈ {0,1}) and |t〉〈t|.

To prove the double classical dimension witness violation under Eq. (1), we
propose the following density matrix prepared in Alice’s side

ρ00 ¼ 1ffiffi
2

p ; 0; 1ffiffi
2

p
� �

;

ρ01 ¼ � 1ffiffi
2

p ; 0; 1ffiffi
2

p
� �

;

ρ10 ¼ 1ffiffi
2

p ; 0;� 1ffiffi
2

p
� �

;

ρ11 ¼ � 1ffiffi
2

p ; 0;� 1ffiffi
2

p
� �

:

ð26Þ

The measurement operator in Bob’s side is given by

ν0 ¼ ð0; 0; 1Þ;
ν1 ¼ ð1; 0; 0Þ: ð27Þ

The measurement operator in Charlie’s side is given by

t ¼ ð1; 0; 0Þ: ð28Þ

The rotation operator in Charlie’s side is given by

ω0 ¼ ð0; 0; 1Þ;
ω1 ¼ ð1; 0; 0Þ: ð29Þ

Based on the previous state preparation and measurement operator, we can
calculate the corresponding conditional probability distribution p(b= 1|x,y)AB with
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different classical input random numbers x∈ {00,01,10,11} and y∈ {0,1}.

pð1j000ÞAB ¼
ffiffi
2

p
8 cosðϵÞ þ 4þ ffiffi

2
p
8 ;

pð1j001ÞAB ¼
ffiffi
2

p
8 cosðϵÞ þ 4þ ffiffi

2
p
8 ;

pð1j010ÞAB ¼
ffiffi
2

p
8 cosðϵÞ þ 4þ ffiffi

2
p
8 ;

pð1j011ÞAB ¼ �
ffiffi
2

p
8 cosðϵÞ þ 4� ffiffi

2
p
8 ;

pð1j100ÞAB ¼ �
ffiffi
2

p
8 cosðϵÞ þ 4� ffiffi

2
p
8 ;

pð1j101ÞAB ¼
ffiffi
2

p
8 cosðϵÞ þ 4þ ffiffi

2
p
8 ;

pð1j110ÞAB ¼ �
ffiffi
2

p
8 cosðϵÞ þ 4� ffiffi

2
p
8 ;

pð1j111ÞAB ¼ �
ffiffi
2

p
8 cosðϵÞ þ 4� ffiffi

2
p
8 :

ð30Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AB,
the dimension witness value10, 11, 18 between Alice and Bob is given by

W1AB ¼ pð1j000ÞAB þ pð1j001ÞAB þ pð1j010ÞAB

�pð1j011ÞAB � pð1j100ÞAB þ pð1j101ÞAB

�pð1j110ÞAB � pð1j111ÞAB

¼ ffiffiffi
2

p ðcosðεÞ þ 1Þ:

ð31Þ

Based on the previous state preparation and measurement operator, we can
calculate the corresponding conditional probability distribution p(b= 1|x,z)AC as
follows

pð1j000ÞAC ¼ 2þ ffiffi
2

p
4 sin2ðϵÞ;

pð1j001ÞAC ¼ 2þ ffiffi
2

p
4 sin2ðϵÞ;

pð1j010ÞAC ¼ 2þ ffiffi
2

p
4 sin2ðϵÞ;

pð1j011ÞAC ¼ 2� ffiffi
2

p
4 sin2ðϵÞ;

pð1j100ÞAC ¼ 2� ffiffi
2

p
4 sin2ðϵÞ;

pð1j101ÞAC ¼ 2þ ffiffi
2

p
4 sin2ðϵÞ;

pð1j110ÞAC ¼ 2� ffiffi
2

p
4 sin2ðϵÞ;

pð1j111ÞAC ¼ 2� ffiffi
2

p
4 sin2ðϵÞ:

ð32Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AC,
the dimension witness value between Alice and Charlie is given by

W1AC ¼ 2
ffiffiffi
2

p
sin2ðϵÞ: ð33Þ

To prove local randomness generation in Bob’s side, we analyze the dimension
witness value W1ABz with different input weak measurement parameters z∈ {0,1}.

In the case of z= 0, we can obtain the corresponding conditional probability
distributions p(b= 1|x,y)AB,z= 0 as follows

pð1j000ÞAB; z¼0 ¼ 2þ ffiffi
2

p
4 ;

pð1j001ÞAB; z¼0 ¼ 2þ ffiffi
2

p
cosðϵÞ
4 ;

pð1j010ÞAB; z¼0 ¼ 2þ ffiffi
2

p
4 ;

pð1j011ÞAB; z¼0 ¼ 2� ffiffi
2

p
cosðϵÞ
4 ;

pð1j100ÞAB; z¼0 ¼ 2� ffiffi
2

p
4 ;

pð1j101ÞAB; z¼0 ¼ 2þ ffiffi
2

p
cosðϵÞ
4 ;

pð1j110ÞAB; z¼0 ¼ 2� ffiffi
2

p
4 ;

pð1j111ÞAB; z¼0 ¼ 2� ffiffi
2

p
cosðϵÞ
4 :

ð34Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AB,z= 0,
the dimension witness value between Alice and Bob is given by

W1AB; z¼0 ¼
ffiffiffi
2

p
cosðϵÞ þ

ffiffiffi
2

p
: ð35Þ

In the case of z= 1, we obtain the corresponding conditional probability
distribution p(b= 1|x,y)AB,z= 1 as follows

pð1j000ÞAB; z¼1 ¼ 2þ ffiffi
2

p
cosðϵÞ
4 ;

pð1j001ÞAB; z¼1 ¼ 2þ ffiffi
2

p
4 ;

pð1j010ÞAB; z¼1 ¼ 2þ ffiffi
2

p
cosðϵÞ
4 ;

pð1j011ÞAB; z¼1 ¼ 2� ffiffi
2

p
4 ;

pð1j100ÞAB; z¼1 ¼ 2� ffiffi
2

p
cosðϵÞ
4 ;

pð1j101ÞAB; z¼1 ¼ 2þ ffiffi
2

p
4 ;

pð1j110ÞAB; z¼1 ¼ 2� ffiffi
2

p
cosðϵÞ
4 ;

pð1j111ÞAB; z¼1 ¼ 2� ffiffi
2

p
4 :

ð36Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AB,z= 1,
the dimension witness value between Alice and Bob is given by

W1AB; z¼1 ¼
ffiffiffi
2

p
cosðϵÞ þ

ffiffiffi
2

p
: ð37Þ

Three-observer dimension witness based on determinant value. To prove the
double classical dimension witness violation under Eq. (4), we propose the fol-
lowing density matrix preparation in Alice’s side

ρ00 ¼ ð0; 0; 1Þ;
ρ01 ¼ ð0; 0;�1Þ;
ρ10 ¼ ð1; 0; 0Þ;
ρ11 ¼ ð�1; 0; 0Þ:

ð38Þ

The measurement operator in Bob’s side is given by

ν0 ¼ ð0; 0; 1Þ;
ν1 ¼ ð1; 0; 0Þ: ð39Þ

The measurement operator in Charlie’s side is given by

t ¼ ð1; 0; 0Þ: ð40Þ

The rotation operator in Charlie’s side is given by

ω0 ¼ ð0; 0; 1Þ;
ω1 ¼ ð1; 0; 0Þ: ð41Þ

Note that the state preparation and measurement operator are the same as the
Bennett and Brassard 1984 (BB84) quantum key distribution protocol34, but the
weak measurement model may disturb Alice’s quantum state with the different
weak measurement parameter ε, and this disturbance can be detected by the
quantum bit error rate.

Based on the previous state preparation and measurement, we can calculate the
corresponding conditional probability distribution p(b= 1|x,y)AB as follows

pð1j000ÞAB ¼ 1
4 cosðϵÞ þ 3

4 ;

pð1j001ÞAB ¼ 1
2 ;

pð1j010ÞAB ¼ � 1
4 cosðϵÞ þ 1

4 ;

pð1j011ÞAB ¼ 1
2 ;

pð1j100ÞAB ¼ 1
2 ;

pð1j101ÞAB ¼ 1
4 cosðϵÞ þ 3

4 ;

pð1j110ÞAB ¼ 1
2 ;

pð1j111ÞAB ¼ � 1
4 cosðϵÞ þ 1

4 :

ð42Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AB,
the dimension witness value13, 14 between Alice and Bob is given by

W2AB

¼ pð1j000ÞAB � pð1j010ÞAB pð1j100ÞAB � pð1j110ÞAB
pð1j001ÞAB � pð1j011ÞAB pð1j101ÞAB � pð1j111ÞAB

����
����

¼ 1
2 cosðεÞ þ 1

2

� 	2
:

ð43Þ
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Based on the previous state preparation and measurement, we can also
calculate the corresponding conditional probability distribution p(b= 1|x,z)AC as
follows

pð1j000ÞAC ¼ sin2ðϵÞ;
pð1j001ÞAC ¼ 1

2 sin
2ðϵÞ;

pð1j010ÞAC ¼ 0;

pð1j011ÞAC ¼ 1
2 sin

2ðϵÞ;
pð1j100ÞAC ¼ 1

2 sin
2ðϵÞ;

pð1j101ÞAC ¼ sin2ðϵÞ;
pð1j110ÞAC ¼ 1

2 sin
2ðϵÞ;

pð1j111ÞAC ¼ 0:

ð44Þ

By applying the previous conditional probability distributions
p(b= 1|x,y)AC, the dimension witness value between Alice and Charlie is
given by

W2AC ¼ sin4ðϵÞ: ð45Þ

To prove local randomness generation in Bob’s side, we will analyze the
dimension witness valueW2ABz with different input weak measurement parameters
z∈ {0,1}.

In the case of z= 0, we can obtain the corresponding conditional probability
distribution p(b= 1|x,y)AB,z= 0 as follows

pð1j000ÞAB;z¼0 ¼ 1;

pð1j001ÞAB;z¼0 ¼ 1
2 ;

pð1j010ÞAB;z¼0 ¼ 0;

pð1j011ÞAB;z¼0 ¼ 1
2 ;

pð1j100ÞAB;z¼0 ¼ 1
2 ;

pð1j101ÞAB;z¼0 ¼ 1þcosðϵÞ
2 ;

pð1j110ÞAB;z¼0 ¼ 1
2 ;

pð1j111ÞAB;z¼0 ¼ 1�cosðϵÞ
2 :

ð46Þ

Based on the previous conditional probability distributions p(b= 1|x,y)AB,z= 0,
the dimension witness value between Alice and Bob is given by

W2AB;z¼0 ¼ cosðϵÞ: ð47Þ

In the case of z= 1, we can obtain the corresponding conditional probability
distribution p(b= 1|x,y)AB,z= 1 as follows

pð1j000ÞAB;z¼1 ¼ 1þcosðϵÞ
2 ;

pð1j001ÞAB;z¼1 ¼ 1
2 ;

pð1j010ÞAB;z¼1 ¼ 1�cosðϵÞ
2 ;

pð1j011ÞAB;z¼1 ¼ 1
2 ;

pð1j100ÞAB;z¼1 ¼ 1
2 ;

pð1j101ÞAB;z¼1 ¼ 1;

pð1j110ÞAB;z¼1 ¼ 1
2 ;

pð1j111ÞAB;z¼1 ¼ 0:

ð48Þ

By applying the previous conditional probability distributions p(b= 1|x,y)AB,z= 1,
the dimension witness value between Alice and Bob is given by

W2AB;z¼1 ¼ cosðϵÞ: ð49Þ

Code availability. Source codes of the plots are available from the corresponding
authors on request.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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