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Three-observer classical dimension withess
violation with weak measurement
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Dimension is an important resource in quantum information theory. Based on weak mea-
surement technology, we propose the three-observer dimension witness protocol in a
prepare-and-measure setup. By applying the dimension witness inequality based on the
quantum random access code and the nonlinear determinant value, we demonstrate that
double classical dimension witness violation is achievable if we choose appropriate weak
measurement parameters. Analysis of the results will shed new light on the interplay
between the multi-observer quantum dimension witness and the weak measurement tech-
nology, which can also be applied in the generation of semi-device-independent quantum
random numbers and quantum key distribution protocols.
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tion theory, for instance, a high dimensional quantum

system can enhance the performance of the quantum
computationl’ 2 quantum entanglement3, quantum commu-
nication complexity? and others, and it can also reduce the
security of certain practical quantum key distribution systems.
To estimate the lower bound of the dimensions of a physical
system, quantum dimension witness has been proposed and
experimentally realized®=, which has important applications in
the semi-device-independent quantum key distribution and
quantum random number generation!%1>, Until now, it has been
demonstrated that two-observer classical dimension witness vio-
lation can be achieved with the Bell inequality test, quantum
random access code test, and determinant value test respec-
tively'®~18, but whether the multi-observer classical dimension
witness violation can be obtained or not is still an open question.

Similar to a quantum dimension witness, quantum nonlocality
also plays a fundamental role in quantum information theory,
which can be used to guarantee the security of device-
independent quantum information protocols'® ?°. In a two-
observer system, two observers can perform independent mea-
surements on their subsystem to test the Clauser-Horne-
Shimony-Holt (CHSH) inequality?!, the violation of which cer-
tifies quantum nonlocality. Recently, it has been demonstrated
that nonlocality sharing among three observers can be established
by applying weak measurement technology?>~%4, which demon-
strates that subsequent measurements can not be described by
using classical probability distributions.

Inspired by the work of sharing nonlocality with weak mea-
surement technology, three-observer classical dimension witness
violation will be analyzed in this paper, in which we analyze the
dimension witness inequality based on the quantum random
access code and the nonlinear determinant value. The analysis
result indicate that double classical dimension witness violations
can be realized. More interestingly, we demonstrate local and
global randomness generation in the three-observer protocol, and
the analysis method can also be applied to future multi-observer
quantum network studies.

D imension is an important resource in quantum informa-

Results

Quantum dimension witness based on quantum random access
code. The first quantum dimension witness inequality based on
the quantum random access code in the two-observer system is
given by!0 11, 18

Wiy = p(1/000) + p(1]001) 4 p(1]010) — p(1]011)

(1)
—p(1]100) + p(1|101) — p(1]|110) — p(1]111).

In the two-dimensional Hilbert space, it has been proved that
the upper bound of the classical dimension witness value W, is 2,
while the upper bound of the quantum dimension witness value
Wy is 24/2. We will apply this dimension witness equation to
analyze the dimension witness values between Alice and Bob
W4 and between Alice and Charlie Wy 4c.

Based on the state preparation and measurement model given
in the Method section, the dimension witness value between Alice
and Bob is given by

Wias = V2(cos(e) + 1). (2)
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Fig. 1 Three-observer classical dimension witness violation based on the
quantum random access code test. ¢ is the weak measurement parameter.
The dashed green line corresponds to the quantum dimension witness
value Wiag, solid blue line corresponds to the quantum dimension witness
value Wiac, and red area corresponds to the double classical dimension
witness violation.

The dimension witness value between Alice and Charlie is
given by

Wiac = 2v/2sin(e). (3)

Note that ¢ =0 indicates Wixp = 2v/2 and Wiac =0, which
demonstrates that Charlie’s quantum state has no interaction
with Bob’s system. In this case, only W;,p violates the classical
upper bound, which is reduced to a two-observer system (Alice-
Bob). Similarly, ¢ =7 indicates Wixg=0 and Wjsc = 2v/2,
which is reduced to a two-observer system (Alice-Charlie). Thus,
our protocol is more general compared with the previous 2-
observer protocols, which sheds new light on the dimension
witness in the network environment.

The detailed quantum dimension witness values Wj,p and
Wiac with different weak measurement parameter ¢ values are
given in Fig. 1. The analysis results indicate that double classical
dimension witness violations (min{Wjag,Wiac}>2) can be
obtainzd 3f the weak measurement parameter & satisfies

arcsin % <e<arccos(v/2 — 1).

Quantum dimension witness based on the determinant value.
The second quantum dimension witness inequality based on the
nonlinear determinant value test in the two-observer system is
given by!> 14

B ‘p(1|000) —p(1]010) p(1]100) — p(1]110)

p(1]001) — p(1]011)  p(1]101) — p(1]111) |

=

Assuming that the state preparation and measurement devices
are independent, it has been proved that this nonlinear dimension
witness can tolerate an arbitrarily low detection efficiency. In the
two-dimensional Hilbert space, the upper bound of the quantum
dimension witness value is 1, while the classical dimension
witness value is 0. Similar to the previous subsection, the
dimension witness values between Alice and Bob W,,p and
between Alice and Charlie W,,¢ can be analyzed.

Based on the state preparation and measurement model given
in the Method section, the dimension witness value between Alice
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Fig. 2 Three-observer classical dimension witness violation based on the
determinant value. The dashed green line corresponds to the quantum
dimension witness value W5ag, and solid blue line corresponds to the
quantum dimension witness value Woac.

and Bob is given by

Wrs = G cos(e) + ;)2 (5)

The dimension witness value between Alice and Charlie is
given by

Waac = sin*(e). (6)

Note that e=0 indicates Wr,g=1 and W,,c =0, which
demonstrates that Charlie’s quantum state has no interaction
with Bob’s system. In this case, only W,,p violates the classical
upper bound, which is reduced to a two-observer system (Alice-
Bob).

The detailed quantum dimension witness values W,,p and
Wjac with different weak measurement parameters € are given in
Fig. 2.

The analysis result demonstrates that double classical dimen-
sion witness violations (W55 >0, W,ac>0) can be obtained if
0 < & <. However, since Bob’s system may be influenced by Alice
and Charlie’s system, the security of the measurement outcome b
should be guaranteed by considering the double classical
dimension witness violation W5 >0 and Wy, > 0.

Semi-device-independent random number generator. The
classical dimension witness violation can generate semi-device-
independent quantum random numbers, for which we can only
assume knowledge of the dimension of the underlying physical
system, but otherwise nothing about the quantum devices. The
generated random numbers in our protocol are the measurement
outcomes b and ¢, and the eavesdropper can not guess the
measurement outcomes even if the state preparation and mea-
surement devices are imperfect.

Randomness generation can be divided into global randomness
and the local randomness, where global randomness must analyze
the global conditional probability distribution p(b,c|x,y,z), while
local randomness must analyze the local conditional probability
distribution p(blx,y). With the given conditional probability
distributions, the random number generation efficiency can be
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estimated by following min-entropy functions®®

Hminl - - 10g2 |:116 Z maxb,c(P(ba C|~x7y7 Z)):| 3

X2

(7)
Hpinz = —log, [%% maxb(p(b|x,y))} .

To analyze the global randomness generation efficiency Hypin1,
the maximal guessing probability & >~ max; (p(b, c|x, y,z)) can
be estimated by xyz

7= > maxy p(b, c|x,y,z)

X,

=L 3" maxy p(blx, y,2)p(clx, y, 2, b)

x,9,2

= 16 2 max;,.(p(blx, , 2)p(clx, 7)) (8)

X,z

< [é 2 maxcp(clx, 2)} x maxp,vy .z (p(blx, y, 2),

X,z

where the second line is based on the condition for which
Charlie’s measurement outcome ¢ can not be effected by Bob, and
the corresponding randomness generation efficiency Hp,; is
given by

1
Hpin1 > —log, LZmaxcp(cx, z))} — log, [maxy .- (p(blx, y, 2)],
)

where the first part is the randomness generation in Charlie’s
side, and the second part is the randomness generation in Bob’s
side.

In the two-observer system, with a given random access code
based dimension witness value W, the relationship between W,
and the randomness generation efficiency H, ,(W;)%° is given

in2
by
W?—4.2
, 1 1 |1+y1=(F)
Hminz(wl)zilogz 5+5 P (10)

However, the eavesdropper can apply Charlie’s input para-
meter z to guess Bob’s measurement outcome b, thus the previous
method can not be directly applied in our protocol. To estimate
the local randomness generation in Bob’s side, we will estimate
the dimension witness value between Alice and Bob W45, with
different input random number z € {0,1} as follows

WiaB(z—0) = Wia(e—1) = V2co0s(€) + V2, (11)

with the detailed calculation is given in the Method section, and
the corresponding local randomness generation efficiency in
Bob’s side is H, , ,(W, = v/2cos(e) + v/2).

With the given determinate value based on dimension witness
W, in the two-observer system, the relationship between the
quantum dimension witness value W, and the randomness
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Fig. 3 Local random number generation efficiency with different weak
measurement parameters e. The dashed green line corresponds to

H. 2 (Wi = V2 cos(e) + v/2), and solid blue line corresponds to
Hpnin2 (W2 = cos(e)).

(W,)13 is given by

1 [14++/1— W?

2 2

generation efficiency H,,

min2

" 1
HminZ(Wz) = _logz E_'_ (12)

Similar to the previous calculation, the dimension witness value
between Alice and Bob W,,p(,) with different input random
number z can be given by

(13)

with the detailed calculation is given in the Method section, and
the corresponding local randomness generation efficiency in
Bob’s side is H, . ,(W, = cos(e)).

Based on the previous analysis result, the detailed local
randomness generation efficiency with different weak measure-
ment parameter ¢ values are given in Fig. 3. Note that the local
random number generation in Charlie’s side can be directly
estimated by the two-observer protocol. Thus double local
randomness generation can be realized if we choose an
appropriate weak measurement parameter.

Comparing with the random access code based protocol, the
determinant value based protocol can provide the double classical
dimension witness violation except the special case (¢ = km, k=0,
1, 2,...), thus it has the advantage in the experimental realization.
However, the disadvantage is that this protocol has a strong
assumption that the state preparation and measurement devices
are independent.

WiaB(z=0) = WaaB(e=1) = cos(e),

Discussion

We proposed a three-observer dimension witness protocol, where
the weak measurement technology was applied to analyze the
double classical dimension witness violations. The results of our
analysis shed new light on understanding the quantum dimension
witness in the network environment. The three-observer dimen-
sion witness protocol can be assumed to be a sequential mea-
surement protocol, and it will be interesting to analyze a higher
dimensional multi-observer quantum system with sequential
measurement?’ technology. We demonstrated the randomness
generation in the three-observer protocol, and the analysis results
demonstrate that weak measurement may have significant
applications in multi-observer semi-device-independent quantum
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Fig. 4 Analysis model of three-observer classical dimension witness
violation. Alice prepares the two-dimensional quantum state p,, and Bob
and Charlie apply the two-dimensional strong measurement and weak
measurement respectively

information theory. This study also provides tremendous moti-
vation for further experimental research.

Methods
Weak measurement protocol. Weak measurement is a powerful method to
extract less information about a system with smaller disturbance?®, which has
proven to be useful for signal amplification, state tomography, solving quantum
paradoxes and others?®=33, In this work, we use the weak measurement definition
given in refs. 22724, and the corresponding analysis model is given in Fig. 4.
There are three observers Alice, Bob and Charlie in the analysis model, and the
purpose of our protocol is to establish double classical dimension witness violations
under the two-dimensional Hilbert space restriction. More precisely, Alice prepares
the two-dimensional quantum state p, € C? and sends it through the quantum
channel with a different classical input random number x € {00,01,10,11}. Then,
Charlie receives the quantum state and applies the following operation with the
input random number z € {0,1}

R7|0) = |wz), RY 1) = |o), (14)

where the above operation illustrates that the rotation maps the initial Hilbert
space basis of {|0),|1)} to a new basis of {|w,), |w})} depending on the given z
value. Charlie also has an two-dimensional ancillary quantum state |+) =

% (|0) 4 |1)) in the quantum channel, and then, the following control operation is
applied when Charlie receives the quantum state |1)

; e 0
i€o,
¢ ( 0 e ) '

where ¢ is the weak measurement parameter. If Charlie receives the quantum state |
10
0 1

(15)

0), he will apply the identity operation I = < ), thus the total unitary

operation in Charlie’s side can be given by

U =R}|0)(0|R, ® I + R} |1)(1|R, ® e’*c

. 16
= Jox)w:] @1+ b)Yk | @ e (16)

=Wy @I+ Wy @ e,

where we define Wii* = |w;)(w,|, W5? = |w})({w’|. Note that Charlie will apply
the identity operation I if the weak measurement parameter ¢ is 0, which can be
simply proved since Wj* ® I + Wy? ® I = I. In this case, Charlie will only obtain
the initial ancillary quantum state |+) after the control operation, which
demonstrates that Charlie can not gain any information about Alice’s state p,, and
there is no interaction introduced by Charlie correspondingly.

To prove the dimension witness in the three-observer system, we should
analyze the density matrix to illustrate Bob and Charlie’s system. The initial
quantum state can be given by

Prcy = Px @ [H){+]. (17)
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By applying the previous unitary transformation U, the quantum state ppc, will
be transformed into

Pocx = Upyc, Ut

= Wi @ Ippe W™ ®1

(18)

+W5? ® Ipye, Wp* @ eiec:
FW ® e pye Wi* @ 1

+W§Z ® eiwzchx W};Z ® e*ieaz.
The quantum state py, = Trcppc, will be transmitted to Bob, as follows

Pre = Trcppcy
= Wgp, Wy* + Wysp Wy~
+cose(Wg?p W5? + WgZp, W5?)
= (1 — cos(e)) (W"p, Wy* + Wg*p, Wg*

+cos(€)p,.-
(19)

Similarly, the quantum state p, = Trpppc, will be transmitted to Charlie, as
follows

pee = Trappe,

— Tra(Wip,) )+ (20)

+Trp(Wy?p, )€ [+) (+]e 7.

After receiving the quantum state p,_, Bob will apply the two-dimensional
projective measurement depending on the input random number y € {0,1}. If Bob’s
input random number is 0, the corresponding measurement basis in Bob’s side is
given by

{Ivo) ol [ Y (g [}-

(1)

If Bob’s input is 1, Bob’s measurement basis is

HIZVCARIZSIC) (22)
where the measurement outcomes |vo){vo| and |v,)(v,| indicate classical bit 1, and
the measurement outcomes |3 )(vy | and [vi)(v; | indicate classical bit —1.

After receiving the quantum state p., Charlie will apply the two-dimensional
projective measurement

{Ie)el, [e) e 1 (23)
where the measurement outcomes [£){¢| and |t+)(t*| respectively indicate the
classical bit 1 and —1. Before the state measurement, Charlie randomly chooses
rotation {R;, R} with respect to the input random number z € {0,1}.

In the case where the weak measurement parameter ¢ is 0, there is no
interaction on Charlie’s side, and then, Charlie’s density matrix will be transformed
into po, = TrB(Wgzp); + WgZp,)|+){(+| = [+){+]|, and Bob’s density matrix will
be transformed into pp, = p,. In the following section, we will focus on the
situation 0 < & < 77, and analyze the interaction introduced by the weak
measurement, which can be used to obtain the information gain in Charlie’s side.

The general representation of a qubit can be illustrated by using the density

matrix formalism 29, where & is the Pauli matrix vector

RO )

three-dimensional vector such that ||7|| < 1, thus the conditional probability

,and 7 = (ry, 1y, 7,) is a real
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distribution to illustrate Alice and Bob’s system can be given by

pblxy) = X p(2) Tx(Bypy, (2)

z

1 (24)

=2(1—cos(e)) > p(z)bw, - vy x w, - p,

+1cos(e)(1+ by, - p,) +1(1 = cos(e)),

where Bﬁ is the measurement operator acting on the two-dimensional Hilbert space
with input parameter y and output parameter b by considering the prepared
quantum state py (z). The conditional probability distribution to illustrate Alice
and Charlie’s system is given by

plelss) = Tr(Cpe, () )

=10t @ p)(1+c—csind(e)),

where C° is the measurement operator acting on the two-dimensional Hilbert space
to obtain the measurement outcome ¢ with the state p¢. (z).

Based on the previous observed statistics p(b|xy) and p(c|xz), we can calculate
the dimension witness value between Alice and Bob and between Alice and Charlie
respectively.

Three-observer dimension witness based on quantum random access code.
The general representation of a qubit can be illustrated by using the density matrix

formalism HZ’ %, where & is the Pauli matrix vector

0 1 0 —i 1 0
(o= (3 o)er= (5 )= (p )
three-dimensional vector such that ||r|| < 1. In the following section, we apply
7 = (ry,1y,7;) to demonstrate the quantum state p, (x € {00,01,10,11}), [v,){v,|
(y €{0,1}), |w){w,| (z€{0,1}) and |£)(¢].
To prove the double classical dimension witness violation under Eq. (1), we
propose the following density matrix prepared in Alice’s side

,and 7 = (ry, 1y, 1) is a real

Por = (‘%»Qﬁ), (26)
P10 = (ﬁvm*%)
P = (7\%70»7%>
The measurement operator in Bob’s side is given by
Yo = (0,0, 1),
27
v = (1,0, @)
The measurement operator in Charlie’s side is given by
t=(1,0,0). (28)
The rotation operator in Charlie’s side is given by
wy = (0,0,1),
b= (001 9
w; = (1,0,0).

Based on the previous state preparation and measurement operator, we can
calculate the corresponding conditional probability distribution p(b = 1|x,y) 45 with
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different classical input random numbers x € {00,01,10,11} and y € {0,1}.

(30)

By applying the previous conditional probability distributions p(b = 1|x,y) a5,
the dimension witness value!® 1> 18 between Alice and Bob is given by

Wias = p(IIOOO)AB +p(1‘001)AB +p(1‘010)AB
—p(1]011) 55 — p(1]100) 45 + p(1]101) 5
—p(1[110) 55 — p(1]111) 5

= v/2(cos(e) + 1

Based on the previous state preparation and measurement operator, we can
calculate the corresponding conditional probability distribution p(b = 1|x,z)sc as
follows

p(1]000),c = n2(€)7
p(l\om)AL:—f in?(e),
p(1]010) ¢ = 252sin? (e),
p(1j011) ¢ =22sin’ c), 2
p<1\100>Ac:—f in?(e),
p(1]101),,c = nz(s),
p<1\no>Ac:—f in?(e),
P(l‘lll)Ac: nz(€)<

By applying the previous conditional probability distributions p(b = 1|x,y)ac,
the dimension witness value between Alice and Charlie is given by

Wiac = Zﬁsinz(e) (33)

To prove local randomness generation in Bob’s side, we analyze the dimension
witness value Wi ,p, with different input weak measurement parameters z € {0,1}.
In the case of z=0, we can obtain the corresponding conditional probability
distributions p(b = 1|x,y)ap. = ¢ as follows
242
3

p(1]001) 5 o :w7

p(1]000) \p . =

Pp(1]010) 45, =2+4—\/§7
p(1]011) 5 g 2@' (34)
p(11100),5 .y =252,
PI101) oy = 2500
pA110)y5 . = 274‘/27
PN g . = == ﬁw”

By applying the previous conditional probability distributions p(b = 1|x,y)apz— 0
the dimension witness value between Alice and Bob is given by

Wias =0 = V2 cos(€) + V2. (35)
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In the case of z=1, we obtain the corresponding conditional probability
distribution p(b = 1|x,y)ap. —1 as follows

T
p(1]001) g g = #5-,
P1[010) 55 ., = 225210
P(1|011)AB,Z:1 = %[7
p(IIIOO)AB,z:I = @
p(L101) 5 .y = HTﬁv
P(1|110)AB,Z:1 = 27@%8(6)

p(1111) gy =252

)

)

(36)

)

)

By applying the previous conditional probability distributions p(b = 1|x,)ap. - 1,
the dimension witness value between Alice and Bob is given by

Wias =1 = V'2cos(€) + V2. (37)

Three-observer dimension witness based on determinant value. To prove the
double classical dimension witness violation under Eq. (4), we propose the fol-
lowing density matrix preparation in Alice’s side

Poo = (01 Ov 1)7
Por = (07 0, 71)7 (38)
Po = (1,0,0),
P = (=1,0,0).
The measurement operator in Bob’s side is given by
vo = (0,0,1), (39)
=(1,0,0).
The measurement operator in Charlie’s side is given by
~ (1,0,0). (40)
The rotation operator in Charlie’s side is given by
wo = (0,0,1), (41)
=(1,0,0).

Note that the state preparation and measurement operator are the same as the
Bennett and Brassard 1984 (BB84) quantum key distribution protocol®, but the
weak measurement model may disturb Alice’s quantum state with the different
weak measurement parameter &, and this disturbance can be detected by the
quantum bit error rate.

Based on the previous state preparation and measurement, we can calculate the
corresponding conditional probability distribution p(b = 1|x,y) 5 as follows

p(1]000) . = Lcos(e) +32,
p(1]001) .5 =3,
p(1]010) .5 = —1cos(e) +1,
p(1jo11) 5 = %
p(1]100)4 = 3,
p(1]101) 5 = Fcos(e) +
p(1[110),5 =3,
P(U[111) g = —feos(e) +5-

mw

By applying the previous conditional probability distributions p(b = 1|x,y)p,
the dimension witness value!> 1 between Alice and Bob is given by

Waas
_ |P(1]000) 5 = p(1]010) 5 p(1]100),5 — p(1[110) g "
p(11001) 45 — p(1]011) 5 p(1[101),5 — p(1[111) )

= (Leos(e) +1)°.
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Based on the previous state preparation and measurement, we can also
calculate the corresponding conditional probability distribution p(b = 1|x,2)sc as
follows

p(1/000) . = sin?(e),
p(1]001) 1c =} sin*(e),
p(1]010),c =0,
p(1]011) ¢ = §sin’(e),
Pp(1]100) ¢ = }sin*(e),
p(1]101) o = sin®(e),
p(1[110) ¢ = §sin’(e),
p(lllll)AC =0.

(44)

By applying the previous conditional probability distributions
p(b=1]x,y)ac, the dimension witness value between Alice and Charlie is
given by

Waac = sin®(e). (45)

To prove local randomness generation in Bob’s side, we will analyze the
dimension witness value W4z, with different input weak measurement parameters
z€{0,1}.

In the case of z=0, we can obtain the corresponding conditional probability
distribution p(b = 1|x,y)ap. = o as follows

(I‘OOO)ABZ 0o =1
P(1]001) 45 . 7%7
P(11010),5 = 0,
P(1[011) 5,9 =3,
(1|100>ABZ 0=} (46)

P01 g =5
P(A110) 55, =

_ 1ot

p(A[111) 4, = C2 .

Based on the previous conditional probability distributions p(b = 1|x,y) s = 0
the dimension witness value between Alice and Bob is given by

Waap z=0 = cos(€). (47)

In the case of z=1, we can obtain the corresponding conditional probability
distribution p(b = 1|x,y)ap. =1 as follows

p(1]000) yp,_; = H%OS([)*

P(1|001)AB,2:1 = %7

1—cos(€)

p(1[010) 5,y = —7,

(1]011) 5p o=y 2 (48)
p(1]100) 55, =3,
p(1[101) 4, =1
P(U110) 55, =3
P(U111)yp .y =0

By applying the previous conditional probability distributions p(b = 1|x,y) A, — 1>
the dimension witness value between Alice and Bob is given by

Wapz=1 = cos(€). (49)
Code availability. Source codes of the plots are available from the corresponding

authors on request.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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