
communications chemistry Article

https://doi.org/10.1038/s42004-024-01169-4

Fast and effective molecular property
prediction with transferability map

Check for updates

Shaolun Yao1,2,3, Jie Song3,4, Lingxiang Jia2, Lechao Cheng5, Zipeng Zhong2, Mingli Song2,3 &
Zunlei Feng 3,4

Effective transfer learning for molecular property prediction has shown considerable strength in
addressing insufficient labeled molecules. Many existing methods either disregard the quantitative
relationship between source and target properties, risking negative transfer, or require intensive
training on target tasks. To quantify transferability concerning task-relatedness, we propose Principal
Gradient-based Measurement (PGM) for transferring molecular property prediction ability. First, we
design an optimization-free scheme to calculate a principal gradient for approximating the direction of
model optimization on a molecular property prediction dataset. We have analyzed the close
connection between the principal gradient andmodel optimization throughmathematical proof. PGM
measures the transferability as the distance between the principal gradient obtained from the source
dataset and that derived from the target dataset. Then,weperformPGMonvariousmolecular property
prediction datasets to build a quantitative transferability map for source dataset selection. Finally, we
evaluate PGM on multiple combinations of transfer learning tasks across 12 benchmark molecular
property prediction datasets and demonstrate that it can serve as fast and effective guidance to
improve the performance of a target task. This work contributes to more efficient discovery of drugs,
materials, and catalysts by offering a task-relatedness quantification prior to transfer learning and
understanding the relationship between chemical properties.

Molecular property prediction, which involves identifying molecules with
desired properties1,2, poses a critical challenge prevalent across various sci-
entific fields. It holds particular significance in chemistry for designing
drugs, catalysts, and materials. In recent years, artificial intelligence (AI)
technologies have come mainstream in this area, and AI-guided chemical
design can efficiently explore chemical space while improving performance
based on experimental feedback, showing promise from laboratory research
to real-world industry applications3. However, it is common that the
experimental data size is small as producing labeled data requires time-
consuming and expensive experiments4,5. In contrast, transfer learning6 has
become a powerful paradigm for addressing data scarcity problem by
exploiting the knowledge from related datasets across fields such as natural
language processing7,8, computer vision9,10, and biomedcine11,12. In chem-
istry, transfer learning leverages pre-trained models on extensive or related
datasets to facilitate efficient exploration of vast chemical space13,14 for

various downstream tasks. It has been used to predict properties15,16, plan
synthesis17,18, and explore the space of chemical reactions19–22.

Transfer learning can enhance molecular property prediction in lim-
ited data sets by borrowing knowledge from sufficient source data sets, thus
improving both model accuracy and computation efficiency. Although
several previous works have explored the power of transfer learning to
enhance molecular property prediction11,12,23–25, challenges remain. One
major challenge is negative transfer, which occurs when the performance
after transfer learning is adversely affected due to minimal similarity
between the source and target tasks26,27. For example, Hu et al.23 observed
that pretrained GNN (at both node-level and graph-level) performed well
but yielded negative transfer when pretrained at the level of either entire
graphs or individual nodes. Additionally, some supervised pre-training
tasks unrelated to the downstream task of interest can even degrade the
downstream performance23,28.
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Negative transfer primarily stems from suboptimal model and layer
choices, as well as insufficient task relatedness, highlighting the need to
evaluate transferability prior to applying transfer learning. In computer
vision, some researchers have recently focused on selecting the best model
froma pool of options by estimating the transferability of eachmodel29–32. In
molecular property prediction, recent efforts involve investigating the
relatedness of the source task to the target task. To maximize the perfor-
mance on a target task and prevent negative transfer, existing methods
mainly rely on a molecular distance metric to measure the similarity of
molecules, such as Tanimoto coefficient (based on molecular
fingerprint)33,34 and a chemical distance measure (based on fingerprint and
subgraph)35. Moreover, inspired by the seminal work of Taskonomy36 and
subsequent works such as RSA37, an emerging approach in modeling the
similarity between computer vision tasks, there have been some recent
attempts towards developing representation similarity measurement to
quantify similarity between biological compounds, such as molecules38,39,
proteins40, and macromolecules41. These techniques leverage pre-trained
model representations to assess biological compound similarity across dif-
ferent tasks. As they stand in need ofmodel optimization across all datasets,
and their computational costs that are as high as fine-tuning with target
tasks exclude their applications in quantifying transferability prior to fine-
tuning. In addition, there is still no metric for quantifying how suitable the
source property is for the target property prior to training on the target task
in a computation-efficient manner.

To this end, we put forward a simple, fast, and effective Principal
Gradient-based Measurement (PGM) to quantify the transferability from
the source property to the target property (Fig. 1). First, to approximate the
direction ofmodel optimization on amolecular property prediction dataset,
we design a restart scheme to calculate a principal gradient in an
optimization-free manner. The distance between the principal gradient
obtained from model training on the source dataset and that derived from
the target dataset indicates transferability. Second, we build a quantitative
transferability map by performing PGM on various molecular property
predictiondatasets to show the inter-property correlations inproperty space
distribution. Third, through the map, we can capture and transfer the most
desirable source dataset for the given target dataset, so as to promote per-
formance on the target task and avoid negative transfer. To verify the
effectiveness of the proposed PGM, we evaluated PGM thoroughly on 12
benchmark datasets from MoleculeNet42 with various molecular property
prediction tasks. Comprehensive experiments on multiple combinations of
transfer learning tasks demonstrate that the quantitative transferability
derived from PGM is strongly related to the transfer learning performance.
The proposed approach can serve as fast and effective guidance to enhance

the transfer performance of molecular property prediction. Our contribu-
tions can be summarized as follows:
• We propose a molecular property transferability measurement tech-

nique, termed as PGM, which can rapidly and effectively measure the
transferability between the source and target molecular property pre-
diction datatsets.

• Furthermore, we perform PGM on molecular benchmarks to build a
transferability map that quantifies inter-property correlations. The
map is extensible and can be a reference standard for transfer learning
in molecular property prediction, even when applied to a few target
samples.

• We empirically demonstrate that the transferability measured by the
proposed technique has a strong correlation with the transfer learning
performance of molecular property prediction tasks in reality.
Significantly, the proposed PGM has another two advantages: (1) it is

computation-efficient, free of either calculating by brute force or model
optimization. (2) it includes model-agnostic molecular encoder and pre-
dictor, thereby applied to various machine learning model frameworks.

Results
Overview of PGM guided transfer learning
In this paper, we introduce Principal Gradient-basedMeasurement (PGM)
to quantify transferability between the source and target molecular prop-
erties. The framework of PGM guided transfer learning comprises three
components as illustrated in Fig. 1: (1) PGM, (2) transferability map
building, and (3) application of transfer learning.

PGM. The model optimization process aims to move from the initial
point towards the optimal convergence point (Fig. 1a), where themodel’s
parameters minimize the loss function and the model achieves peak
performance. This optimization process involves iteratively updating the
model parameters to reduce the loss function, commonly employing
gradient descent as the preferred method. Building upon this con-
ceptualization, the model is initialized from the same initial point and
subsequently optimized on both source and target molecular property
prediction datasets. The distance between the optimal convergence point
of the source task and that of the target task refers to transferability. A
smaller distance (between source property A and the target property,
colored in orange and red, respectively) suggests a higher level of task
similarity. Based on the invisible optimal convergence point, computing
the transferability by optimizing models is as prohibitively expensive as
training models on the given target dataset and all alternative source
datasets, while the transferability offers benefits only when it can be
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Fig. 1 | Illustration of PrincipalGradient-basedMeasurement (PGM) for guiding
transfer learning in molecular property prediction. a Firstly, we design an
optimization-free scheme to calculate a principal gradient for approximating the
direction of model optimization on a molecular property prediction dataset. PGM
measures the transferability as the distance between the principal gradient obtained

from the source dataset and that derived from the target dataset. bThen, we perform
PGM on various molecular property prediction datasets to build a quantitative
transferability map indicating inter-property correlations. c Finally, through the
map, we can effectively choose a source dataset with higher similarity to the given
target dataset in transfer learning.
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calculated as a prior. Thus, we are motivated to pursue a computation-
efficient transferability measurement.

Gradients can capture intrinsic task-related characteristics, playing a
strong predictive role in model optimization on a dataset, as evidenced by
recent studies43–46. Grad2Task43 posits that gradients can be used as features
to capture task nature and distinguish between tasks under a meta-learning
framework. Numerous gradient surgery techniques44,45 have been proposed
to address gradient conflict inmultitask learning. In light of gradients being
explored in the context of task-relatedness, we derive PGM, a simple
measure based on gradients, to quantify the transferability concerning task-
relatedness. Specifically, the proposed principal gradient, obtained through
model re-initialization and gradient expectation calculation, approximately
indicates the direction for model optimization on a dataset. Afterwards,
PGM measures the transferability as the distance between the principal
gradient obtained from model training on the source dataset and that
derived from the target dataset.

Transferability map building. To visualize the task-relatedness between
the source and target molecular property prediction datasets, we create a
quantitative transferability map based on the distances between the
principal gradients obtained from these datasets, shown in Fig. 1b.When
assessing the transferability from potential source datasets to a given
target dataset, the distance between source and target datasets serves as an
indicator of their knowledge transfer ability.We utilize the PGMdistance
as the distance metric, which is measured by the difference between the
principal gradients of model training on each pair of the datasets.

Application of transfer learning. To validate the effectiveness of the
transferability map, we further explore transfer learning experiments in
Fig. 1c. Given a target dataset, we select themost similar source dataset for
pre-training. During the fine-tuning phase, we fix the feature extractor
initialized from the pre-trained model, while train the predictor from
scratch on the target task.

The proposed methodology is tested on multiple molecular bench-
marks, and the results are described in the following sections.

Transferability map built by PGM
Molecular properties of interest can vary widely in scale, ranging from
macroscopic influences on the human body to microscopic electronic
properties, such as toxicity to humans47, the ability of drugs to permeate the
brain48, and hydration free energy49. We evaluate the task-relatedness of 12
benchmark datasets from MoleculeNet42 in three categories: biophysics,
physiology, and physical chemistry.

We build a quantitative transferability map to intuitively observe the
task-relatedness between these molecular property prediction datasets,
shown in Fig. 2. We perform PGM on each dataset to obtain its principal
gradient. The pairwise PGM distances between the obtained principal
gradients are used to compute the 12 × 12 transferability map, showing the
transferability of these datasets in property space distributions.

Transferability map-guided transfer learning improves
performance
To investigate the effectiveness of the transferability map in measuring task-
relatedness, we design a transferability map-guided cross-task transfer
learning strategy. Specifically, each of the 12 datasets is used as the target
dataset, while the remaining 11 datasets are employed as source datasets, as
described below. Initially, the model is trained on each source dataset to
obtain pre-trained models. Subsequently, each of these pre-trained models is
fine-tuned on the target dataset, with learning curves shown in Fig. S1
of Supplementary Results. We refer to this experiment as the main experi-
ment below. Due to page limit, the wall-clock time comparison between
PGM and fine-tuning is available in Table S2 of Supplementary Results.

As depicted in Fig. 3, a significant correlation between the predicted
transferability and the transfer learning performance across various tasks
can be observed. As anticipated, when arranging the PGM distance in

ascending order, the corresponding transfer performance overall exhibits a
gradual decrease for the initial 9 classification tasks (ROC-AUC, higher is
better) and a gradual increase for thefinal 3 regression tasks (RMSE, lower is
better). Meanwhile, as the PGM distance increases, there is a decline in
transfer performance observed in all 11 scenarios for BACE50 andmore than
8 scenarios for the other classificationdatasets. For theTox21 sourcedataset,
the knowledge transfer fromToxCast achievesmore improvement in ROC-
AUC than any other source dataset. Similarly, for the ToxCast source
dataset, Tox21 outperforms 8 out of 10 source datasets in terms of
improvement. This is expected because both Tox21 and ToxCast focus on
exploring the toxicity of compounds tohumans.Another interestingfinding
is that, among all source datasets, PCBA is a top-three performer in boosting
the performance of almost all target datasets in classification scenarios, due
to its diverse structure or useful out-of-distribution information. Addi-
tionally, despite belonging to distinct domains, some datasets exhibit higher
task similarity, such as HIV, MUV, PCBA, Tox21, ToxCast, and SIDER.
Collectively, these findings corroborate the utility of the transferability map
and suggest that it can effectively assist in selecting the most similar source
dataset for the given target dataset, thereby improving the transfer
performance.

Transferability map generalizable across subtasks
Considering that the above results verify the effectiveness of the transfer-
ability map in measuring similarity across various properties, we next
sought to explore whether the transferability map is generalizable across
subtasks within these properties. Among the aforementioned three cate-
gories of properties, physiology focuses on macroscopic life systems, bio-
physics uses physical methods to study biological phenomena, while
physical chemistry analyzes the principles of the chemical behavior of
material systems. Here, we consider knowledge transfer across (1) two
different physiology multitask datasets: from Tox2147 to SIDER51, and vice
versa; (2) one biophysics and one physiology multitask datasets: from
MUV52 toTox21.Eachdataset is associatedwith several binary classification
tasks.We treat each subtask within the target dataset as an individual target
dataset and consider the source dataset as a multisource dataset. The pre-
training and fine-tuning strategy remains consistent with the main
experiment.

The transferabilitymaps betweenTox21 andSIDER, aswell as between
MUVandTox21, are depicted in Fig. S2 of Supplementary Results. Figure 4
shows the relationship between the PGM distance and the transfer per-
formance in various settings. Specifically, we select three subtasks at regular
intervals within each multitask target dataset for analysis. The transfer
performance is expected to decrease as the PGM distance increases in all
settings. In addition, transferring knowledge within physiology datasets,
including Tox21→ SIDER and SIDER→Tox21, consistently shows this
trend in over 80% of the target subtasks. Similarly, MUV→Tox21 exhibits
the same trend in over 70%of the target subtasks. This observation confirms
that knowledge transfer within the same category outperforms transfer
between different categories. Overall, it shows that in these cases, the
transferability map can be well generalized across the subtasks within the
multitask properties.

Ablation study
To gain deeper insights into the effectiveness of each module in PGM, we
conduct ablation studies for subsequent analysis: (1) Whether PGM is in a
computation-efficient manner? (2) Does the effectiveness of PGM depend
on the target dataset size? (3) Does PGM exhibit any relationship with the
differences in dataset sizes across diverse tasks? Accordingly, we carry out
three experimental groups: (1) Impact of training epochs of PGM, (2)
Impact of target dataset size, (3) Fairness comparison on dataset sizes.

Impact of training epochs of PGM. To investigate the impact of the
number of reiterative training epochs for computing PGM, we conduct
PGM experiments with varying epochs. As shown in Fig. 5, the absolute
PGMdistance values decrease as the number of training epochs increases
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from 1 to 10 and then to 20. Despite this decrease, the trends regarding
task similarity remain consistent across the three maps. PGM perfectly
satisfies our need for computation efficiency, as even one epoch of
principle gradient suffices. Based on this observation, we empirically
recommend applying PGM on these datasets with a few reiterative
training epochs (e.g., around 10) to alleviate the abnormal gradients. Due
to page limit, we depicte more representative transferability maps at
several key epochs and difference heatmaps in Fig. S3 of Supplementary
Results.

Impact of target dataset size. To study the impact of target dataset size,
we evaluate the correlation between the PGM distance and the transfer
performance with different target dataset sizes. We employ Kendall’s τ 53

to assess the correlation between two rankings ordered by transfer per-
formance and PGM distances. The target datasets are generated by
randomly sampling subsets from a original target dataset with varying
percentages, while the remaining 11 datasets consisting the complete
dataset are used as source datasets. Figure 6 shows that the PGMdistance
generally has a significant linear correlation with the transfer perfor-
mance, particularly when the target subset size exceeds 40% of the target
dataset. The absolute values of Kendall’s τ drop less significantly in
classification target tasks compared to regression target tasks when the
target sample size decreases. This can be attributed to the larger sizes of
the classification datasets overall. These findings demonstrate the
superior and extensible performance of PGM, serving as a reference
standard for transfer learning in molecular property prediction, even
with limited target samples.

Fairness comparison on dataset sizes. As for the problem that data-
sets on different properties vary in dataset sizes, we conduct fairness
comparison experiments. Considering the availability of dataset sizes
(Table S1 in Supplementary Note 2), we randomly select 8000 molecules
from each of the source datasets, namely HIV54, MUV52, Tox21 (all 7831
molecules included)47, and ToxCast55. We randomly select 1000 mole-
cules from each of the target datasets, including BACE50, BBBP48,
ClinTox56, and SIDER51.

Similarly, in Fig. 7, the PGM distance generally exhibits a significant
linear correlation with the transfer performance, consistent with the main
experimental finding. This demonstrates the robustness of PGM, as the

correlation between the PGM distance and the transfer performance
remains unaffected by variations in data volume across different datasets.

Conclusion
In this study, we propose Principal Gradient-basedMeasurement (PGM) to
support transferability quantification for molecular property prediction
datasets. Specifically, we design a principal gradient to approximate model
optimization, which performs on source and target datasets to realize
transferability mesaure between datasets. Furthermore, we build a trans-
ferability map based on PGM to access task-relatedness prior to applying
transfer learning. Both theoretical and empirical studies demonstrate that
PGM strongly correlates with the transfer performance of molecular
property prediction, making it a quantified transferability measure for
source dataset selection.

The superiority in predicting the transferability between molecular
property prediction datasets reflects the potential of our PGM framework,
and there are interesting and promising future works based on PGM. (1)
Extending the one-to-one transfer manner to simultaneously selecting the
top-n similar sourcemolecular property prediction datasets during the pre-
training phase. (2) Improving the transferability metric to guide the design
of neural networks and training objectives for molecule generation and
optimization tasks.

Methods
Principal Gradient-based Measurement (PGM) for quantifying
transferability
Notation and problem definition. Given a target task Tt and a predefined
set of source tasks fðTsðnÞgNn¼1

, the goal of this work is to select the most
similar source task for the target task via quantifying their transferability. The
corresponding target dataset and source datasets are representated byDt and
fðDsðnÞgNn¼1

. The model, denoted by F = g ⋅w, comprises a feature extractor g
and a predictorw. Prior research has demonstrated that higher layers encode
more semantic patterns specific to source tasks, while lower-layer features
are more generic and related to transferability57. Especially when a pair of
tasks lack sufficient similarity, transferring higher layers may hurt the per-
formance of a target task. In other words, the transferability is more related
to the feature extractor. Thus, we consider the transferability solely focusing
on the feature extractor g. We denote the model optimization procedure
from the initial point to the optimal convergence point in the parameter
space, where the optimal feature extractor g* is initialized from g0. Building
on the feature extractor, we define the transferability as the distance between
the optimal feature extractor for the source task and that for the target task
with the metric function d( ⋅ ):

Definition 1. Transferability. The transferability of a feature extractor g
from the source task Ts to the target task Tt, denoted by PGMTs!Tt

ð gÞ, is
measured by the distance between the optimal feature extractor for the
source task g�Ts

and that for the target task g�Tt
:PGMTs!Tt

ð gÞ = dð g�Ts
; g�Tt

Þ.
This definition of transferability can be used for selecting a source

dataset among fDsðnÞgNn¼1
for a given target dataset Dt in transfer learning.

PGM. Based on the feature extractor, the loss function value at the initialized
point g0 and the optimal convergence point g* are denoted by Lðg0Þ and
Lðg�Þ, respectively. We first initialize the model with randomweight (g0,w0)
and make a single forward pass of model training on a dataset to compute
the gradient of feature extractor parameters, denoted by ∇Lðg0Þ. Second,
instead of updating model parameters, we reinitialize the model weights to
the same starting point and still perform a single forward pass to collect
∇Lðg0Þ. We repeat this process multiple times and then compute the
expectation of all the collected gradients, so as to mitigate the potential
impact of abnormal gradients and ensure robustness. Finally, we name the
expectation of the gradients as the principal gradient, defined by

PGMðg0Þ ¼ Eg0
½∇Lðg0Þ�; ð1Þ

Fig. 2 | Transferability map illustrating the task-relatedness between the 12
benchmark molecular property prediction datasets. Red cells with smaller values
indicate higher task similarity, while blue ones with larger values indicate lower task
similarity.
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Transferability quantification by PGM. Model optimization is aptly
characterized as a gradient descent procedure, where the model para-
meters are iteratively adjusted tominimize the loss function. This process
can bemathematically formulated utilizing Taylor’s formula58. To strike a
balance between efficiency and effectiveness, we only employ the first-
order gradient. Concretely,

Lðg�Þ ¼ Lðg0Þ þ∇Lðg0Þðg� � g0Þ þ α; ð2Þ

where α represents the remainder beyond the first-order approximation.
From (2), we derive

ðg� � g0Þ þ
α

∇Lðg0Þ
¼ Lðg�Þ � Lðg0Þ

∇Lðg0Þ
; ð3Þ

where (g*− g0) denotes the optimization distance between the initial point
and the optimal convergence point. However, since the optimal feature
extractor g* is inaccessible without optimization, we need amore simplified
and accessible characterization for the distance. As α contains high-order
terms, indicating the complexity of the optimization process, we reasonably
assume that (g*− g0) and α

∇Lðg0Þ jointly reflect theoptimizationdifficulty of g,

which is proportional to 1
∇Lðg0Þ. Therefore, we define

1
∇Lðg0Þ as a distance

metric to measure the distance from g0 to g
* as follows:

dðg0; g�Þ ¼
1

∇Lðg0Þ
; ð4Þ

Next we consider the distance metric on source and target task as

dTs
ðg0; g�Þ ¼ 1

∇LTs
ðg0Þ ;

dTt
ðg0; g�Þ ¼ 1

∇LTt
ðg0Þ :

ð5Þ

We define the distance between the optimal feature extractor for the source
task g�Ts

and that for the target task g�Tt
by parameter matrix subtraction as

dðg�Ts
; g�Tt

Þ ¼k dTs
ðg0; g�Þ � dTt

ðg0; g�Þk2
¼k 1

∇LTs
ðg0Þ

� 1
∇LTt

ðg0Þ
k2

¼ k ∇LTt
ðg0Þ � ∇LTs

ðg0Þk2
k ∇LTs

ðg0Þ∇LTt
ðg0Þk2

≥
k ∇LTt

ðg0Þ �∇LTs
ðg0Þk2

k ∇LTs
ðg0Þk2 k ∇LTt

ðg0Þk2
;

ð6Þ

Fig. 3 | Comparison of the PGM distance and the transfer performance on the 12 target datasets. The 12 targets include 9 classification datasets (a–i) and 3 regression
datasets (j–l). For transfer learning experiments, the mean and standard deviation values for five experimental runs are reported.
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where the inequality is derived from Cauchy-Schwarz inequality59.
As calculating the gradient only once may lead to abnormal value, we

apply PGM by computing the expectation of gradients in (6):

PGMTs!Tt
ðgÞ ¼ dðg�Ts

; g�Tt
Þ

¼ kEg0 ½∇LTt
ðg0Þ��Eg0

½∇LTs
ðg0Þ�k2

kEg0 ½∇LTs
ðg0Þ�k2 kEg0

½∇LTt
ðg0Þ�k2 ;

ð7Þ

The distance metric measures the gap between g�Ts
and g�Tt

. Finally, we use
dðg�Ts

; g�Tt
Þ named PGM distance to denote the transferability from the

source task to the target task. The above process of quantifying transfer-
abilitywith PGM is efficient, as the only computation is repeatedlymaking a
single forward pass of model training on datasets without optimization.
Further algorithm details are in Supplementary Note 1.

Transferability map-guided transfer learning
Based on PGM, we develop a quantitative transferability map to provide a
panoramic viewof task-relatedness between the source and targetmolecular
property prediction datasets. Specifically, we employ the pairwise PGM
distances as the transferability metric between these datasets. In the main

experiment conducted on 12 benchmark datasets from MoleculeNet42, we
utilize the 12 datasets to build the transferability map. In the experiment
generalizable across subtasks, we use all the subtasks within corresponding
molecular property prediction datasets to build the transferability maps.
With the guidance of the transferability maps, we perform transfer learning
in various settings and for different tasks, which can be found in Results.
Finally,We evaluate the correlation between the predicted transferability by
PGM and the transfer performance.

Experimental setup
Datasets. We use 12 benchmark datasets fromMoleculeNet42, including
9 binary classification tasks and 3 regression tasks. The datasets cover
molecular data from awide range of domains, such as physical chemistry,
biophysics, and physiology. In PGM, We conduct experiments on all
datasets using the complete dataset. In pre-training and fine-tuning, we
perform five independent runs on five random-seeded scaffold splitting
for all datasets with a train/validation/test ratio of 8:1:1, as suggested by
the MoleculeNet42. Scaffold splitting60 splits molecules based on their
scaffolds (molecular substructures), which can better evaluate the gen-
eralization ability of the models on out-of-distribution data samples.

Fig. 4 | Comparison of the PGM distance and the transfer performance across
subtasks within different molecular property prediction datasets. The compar-
ison performance on (1) two different physiology multitask datasets: from Tox21 to
SIDER (a, b, c), and vice versa (d, e, f); (2) one biophysics and one physiology

multitask datasets: from MUV to Tox21 (g, h, i). For each multitask target dataset,
we select three subtasks at regular intervals within the dataset as individual target
datasets. For transfer learning experiments, the mean and standard deviation values
for five experimental runs are reported.
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Fig. 5 | Impact of training epochs of PGM. Transferability maps of performing PGM with (a) 1, (b) 10, and (c) 20 epochs to explore the minimum number of epochs
required for training. Red cells with smaller values indicate higher task similarity, while blue ones with larger values indicate lower task similarity.
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Fig. 6 | Impact of target dataset size. Impact of the sampling ratio of target datasets to the performance of PGM, when transferring the remaining 11 source datasets to each
target dataset in both a classification and b regression tasks.

Fig. 7 | Impact of source and target dataset size to the performance of PGM.
Impact evaluated by comparing the PGM distance and the transfer performance on
transferring the four source datasets (HIV, MUV, Tox21, and ToxCast), each

containing 8000 molecules, to each of the target datasets (a BACE, b BBBP, c ClinTox,
and d SIDER), each consisting of 1000 molecules. For transfer learning experiments,
the mean and standard deviation values for five experimental runs are reported.
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Table S1 in Supplementary Note 2 contains more details about the
datasets.

Implementation details. We use the open-source chemical analysis tool
RDKit61 to convert raw SMILES into 2D molecular graphs and extract
atom features (atom number and chirality tag) and bond features (bond
type and bond direction).We adopt graph isomorphismnetwork (GIN)62

based on DGL-LifeSci package63 to extract the molecular graph repre-
sentation in both PGM and transfer learning experiments. GIN is sen-
sitive to the number of layers, and we employ a widely used 3-layer
setting. We also use the average pooling as the READOUT function to
obtain the graph representation. We adopt a single-layer MLP as the
property prediction network.

In PGM, we empirically perform model training for 10 epochs on
various datasets. To build the transferability map, we compute pairwise
PGM distances between the principal gradient matrices of these datasets.
Specifically, we extract the weight parameters from these gradient matrices
and concatenate them into a single tensor. Subsequently, we calculate the
pairwise PGM distances between these concatenated tensors.

In the transfer learning experiments, during pre-training, we use
the Adam optimizer with a learning rate of 1 × 10−3, optimizing BCE-
WithLogitsLoss for classification and SmoothL1Loss for regression
tasks. We train pre-trained models on each dataset with a batch size of
32 and 200 epochs, and select the one with the best performance on the
validationmetric. This ensures our pre-trained models are well-trained
and generalize effectively to new data. In fine-tuning, we initialize the
feature extractor from the pre-trained model and train the predictor
from scratch on the target task.We fine-tune five times with a batch size
of 32 to report the average and standard deviation of performance on
the testing set, using ROC-AUC for classification and RMSE for
regression tasks.

PGM is implemented utilizing Pytorch and runs on an Ubuntu Server
with NVIDIA GeForce RTX 3090Ti graphics processing units.

Evaluation metrics. As suggested by the MoleculeNet42, we use ROC-
AUC as the evaluation metric for the binary classification datasets, for
which higher is better. With respect to regression datasets, we use RMSE,
for which lower is better. We perform five independent runs with five
random seeds for each method and report the mean and the standard
deviation of the metrics.

In the ablation study, we measure the similarity between two rankings
ordered by transfer performance and PGM distances using Kendall’s τ53,
also known as Kendall rank correlation coefficient. Kendall’s τ value ranges
from -1 to 1, with higher values indicating consistent rankings, lower values
implying reversed rankings, and 0 suggesting unrelated rankings.

Data availability
The datasets used in our paper are publicly available on the MoleculeNet
website https://moleculenet.org/datasets-1.

Code availability
Codes for training the source data and analyzing the results are available on
the Zenodo at https://doi.org/10.5281/zenodo.10071500.
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