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Graph Neural Networks (GNNs) excel in compound property and activity prediction, but the choice of
molecular graph representations significantly influences model learning and interpretation. While
atom-levelmolecular graphs resemble natural topology, they overlook key substructures or functional
groups and their interpretation partially aligns with chemical intuition. Recent research suggests
alternative representations using reduced molecular graphs to integrate higher-level chemical
information and leverages both representations for model. However, there is a lack of studies about
applicability and impact of different molecular graphs on model learning and interpretation. Here, we
introduce MMGX (Multiple Molecular Graph eXplainable discovery), investigating the effects of
multiple molecular graphs, including Atom, Pharmacophore, JunctionTree, and FunctionalGroup, on
model learning and interpretationwith various perspectives. Our findings indicate thatmultiple graphs
relatively improve model performance, but in varying degrees depending on datasets. Interpretation
from multiple graphs in different views provides more comprehensive features and potential
substructures consistent with background knowledge. These results help to understand model
decisions and offer valuable insights for subsequent tasks. The concept of multiple molecular graph
representations and diverse interpretation perspectives has broad applicability across tasks,
architectures, and explanation techniques, enhancing model learning and interpretation for relevant
applications in drug discovery.

Advanced artificial intelligence (AI) techniques have been integrated into
drug discovery to facilitate various tasks, particularly the prediction of
chemical properties and activities. These methods exhibit the capacity to
handle multidimensional data and complex chemical space using mathe-
matical techniques, thereby accelerate the researchprocess.The applications
of AI enable high-throughput results, cost reduction, time savings, and
minimization of unintentional human errors during biochemical
experiments1–3. Several deep learning techniques formolecular property and
activity prediction have been proposing using different kinds of molecular
featurizations, for instance, SMILES-based4, fingerprint-based5, knowledge-
based6, functional group-based7, or image-based8 methods. One of the
potentialAI techniques that has beenwidely used in thisfield is graphneural
network (GNN) which encodes the compounds with molecular graph

representation9. GNNs helps leveraging the relationships and aggregated
information between nodes and edges of the molecular graph and have
demonstrated remarkable performance across numerous tasks in property
and activity prediction10,11.When employingGNNs for compoundproperty
and activity prediction, careful consideration must be given to the way of
representing molecules in graph structures as it highly influences both
model learning and model interpretation.

Generally, the chemical compounds in GNNs are encoded in form of
atom-level molecular graph representation by transforming atoms into
nodes and bonds into edges, similar to natural form of molecules. This
representation has been utilized in many research areas, such as, molecular
property prediction and drug-target affinity prediction12,13. While the
common topology of compound can be captured by this representation, it
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overlooks higher-level information pertaining to chemical substructures,
such as functional groups, chemical fragments, or pharmacophoric features,
which are the relevant characteristics for identifying compound property
and interaction14. This limitation can impede model from effectively
recognizing information from molecular graphs. To address this, the
learning layer of GNNs should be increased to encompass larger sub-
structures. However, increasing number of layers can lead to other chal-
lenges like over-smoothing, neighbors-explosion, and over-squashing15,
while reducing number of layers may also cause under-reaching as well16.
Besides, because of the representation at atom-level, the interpretation are
sometimes scattered and inconsistent within the same functional groups or
substructures which may cause confusion17. Therefore, many current
researchers proposed alternative graph representations using reduction
techniques. These representations encode original atom-level molecular
graph with higher level of abstraction by simplifying subgraphs into single
nodes, while preserving topological properties through predefined rules, for
example, functional group, structure-based transformation, or pharmaco-
phoric features18,19. Several reduced molecular graphs have been purposed,
offering varying degrees of information, specificity and aggregation. Due to
the coarsening of features in reduced graph, some information is discarded,
and the resulted graph may be incomplete. Obviously, with different
advantages and drawbacks from both graphs, choosing the approach for
representing molecular structure is the essential task which affects model
learning and interpretation.

For the effects on model learning, because of pros and cons from both
graphs, many studies exploit the multiple molecular graph combination
model by using both atom-level and another reduced graph representations
in feature construction to support themodel training.This approach leads to
the improvement of the performance in many drug discovery tasks. For
example, some studies apply the integration of pharmacophore-related
graphs/features for molecular property prediction19,20 or ligand-based vir-
tual screening, utilizing graph edit distance (GED) as the molecular simi-
larity calculation21. Other examples involve employing junction tree graphs
to support the molecular generation process22 or enhancing property pre-
diction with a multi-level combination of message-passing neural
networks23. Additionally, functional group-based graphs have been also
integrated to improve molecular property learning16 as well as drug-drug
interaction prediction tasks15. Some methods develop motif-based sub-
structure extraction creating hierarchical topology representations for
property prediction24. However, different reduced molecular graphs may
not provide suitable applicability for all tasks as they give different level of
information. Furthermore, there is still a lack of research on the analysis and
comparison studies of different multiple molecular graph combination
models to support model learning, which limits the understanding of
the effectiveness of each graph combination and selection for model
implementation.

Another effect is on model interpretation. Interpretability is currently
crucial aspect of GNNs when designing prediction model. Due to their
inherent complexity, GNNs are often seen as black-boxmodels with limited
interpretability. This results in limitation of understanding the underlying
reasons behindpredictionswhich could be anobstacle formodel refinement
and acceptance in certain applications. To overcome this, interpretation
techniques have been introduced to help providing rationales behind pre-
dictions and raising model transparency for explanation25,26. Interpretation
in the context of drug discovery should provide chemically intuitive
explanation telling which parts of molecule the model focuses on. These
explanations should be evaluated and aligned with background knowledge.
On top of that, the interpretation should give some inspirations for further
related tasks. Integration of interpretation brings numerous advantages
including capturing essential chemical features and scientific insights, pre-
senting actionable guidance for the next optimization process, aiding in
debugging and mitigating bias when developing model, and fostering
confidence, safety, and trust25,27. Several publications have explored inter-
pretation forGNNs28,29, especially for attentionmechanism techniques27,30,31.
One of themajor factors that largely determine the interpretability ofGNNs

is the molecule representation. The level of molecular graph representation
could be a limiting factor formodel interpretation32. Interpretation solely on
atom-level molecular graph can be sparse and inconsistent within
substructures17. Moreover, the features of individual atoms and bonds only
partially align with the understanding of chemists, leading to incomplete
explanations. Thereby, integrating reduced molecular graph representa-
tions incorporating meaningful chemical features into nodes could provide
better and consistent interpretation on substructures, which are informative
and chemist-friendly32. Some studies working on multiple-graph combi-
nation models also justify their model decision-making with interpretation
modules19,30,33. However, despite the utilization of multiple graphs in these
studies, there is a dearth of research on the interpretation analysis of dif-
ferent molecular graph representations, leaving the influence of graph
combination on model interpretation still unclear. In addition, most
attention-based interpretations do not focus on cumulative explanations on
the whole dataset but provide the explanation only on a specific view of
single prediction which may not fully imply the overall learning of the
model. Additionally, there is still less analysis regarding the statistical eva-
luation of interpretation on real pharmaceutical endpoint datasets, and
some studies providing only interpretations without applying the results
further indrug design applications.All those issues limit the comprehension
and benefits of the model insights for further applications.

With aforementioned motivations and limitations, the objectives of
this study are to improve understanding and representation selection of
different multiple molecular graphs with GNNs for enhancing model
learning and interpretation for ligand property and activity prediction tasks,
and to elevate model explanations using diverse perspectives and evalua-
tions providing more chemically meaningful and useful insights from the
model that could facilitate drug discovery tasks. The overview of our pro-
posed method, named MMGX (Multiple Molecular Graph eXplainable
discovery), is depicted in Fig. 1. Three major contributions of this study
consist of:
• Introducing and comparing different molecular graph representations

includingAtom, Pharmacophore, JunctionTree, andFunctionalGroup
graph, considering information levels, features, and applications.

• Applying multiple molecular graph representations in GNNs and
conducting extensive experiments on real-world ligand property/
activity and synthetic datasets to validate the models, knowledge, and
explanations.

• Analyzing interpretation results fromattention-basedmechanismwith
different molecular graph representations in many perspectives which
are single prediction, node features and potential substructures view,
evaluating them with background knowledge and ground truths, and
suggesting suitable applications of interpretation to facilitate the
subsequent tasks in drug discovery.

Results and Discussion
Datasets
When executing the study about interpretation, three main verifications
should be considered, consisting ofmodel verification formeasuringmodel
performance, knowledge verification for comparing model learning with
background knowledge, and explanation verification for evaluating inter-
pretation statistically34. To achieve that, there are three groups of datasets
serving different goals of verification as followings.

1. General benchmark datasets from MoleculeNet35. This group of
datasets is widely utilized by advanced small molecule property pre-
diction models, so it is mainly tested for model verification. There are
five benchmark datasets in different categories for this study.

2. Pharmaceutical endpoint tasks with reported key structural pat-
terns. This dataset can be employed for knowledge verification because
there are various publications reviewing on key structural patterns,
structural alerts, or important regions in interaction maps for binding
affinity which can be used as background knowledge. This group of
datasets is obtained from various sources containing ten datasets.
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3. Synthetic binding logics with known ground truths. This group of
datasets are constructed based on predefined logics containing five
datasets, so the exact important substructures for each task are already
determined. Although these datasets are simple and synthetic, it is
useful for quantitative explanation verification and model under-
standing as it can be statistically evaluated by using known answers.

The dataset details and statistics are summarized inTable 1.Additional
information regarding the description of each dataset is provided in Sup-
plementary Table S1.

Molecular graph representations
Introduction to molecular graph. Molecules can be represented in
various graph topologies to describe chemical structures using relation-
ship and adjacency between nodes and edges. Different reduction tech-
niques can be utilized to provide abstract graph representations in which
the original subgraph from the atom-level graph is contracted to be a new
node that holds more interpretable higher-level information related to
graph theory and chemical concept. Four distinct molecular graph
representations are introduced for this study as shown in Fig. 2. The
characteristics and feature description are described below with the
summary shown Supplementary Table S2.

1. Atom graph (A) is the most general molecular representation illus-
trating the atoms and bonds as node and edge respectively. Node and
edge features are obtained from atom and bond properties. This graph
has been applied in many applications including molecular property
prediction and drug-target interaction13,36. Atom graph maintains all
topological information and substituent positions which is like the
natural chemical structure. In spite of that, some limitations exist, for
instance, lack of substructure information, problemswith graph-based
model learning and aggregationwhenadjusting inappropriate learning
depth, and inconsistent interpretation.

2. Pharmacophore graph (P) is the reduced graph constructed from
binding activity and pharmacophoric features using the extended

reduced graphs (ErG) algorithm37. The node features are embedded
with one-hot encoding of six pharmacophore properties which are
H-bond donor, H-bond acceptor, positive, negative, hydrophobic, and
aromatic. This graph demonstrates effectiveness in scaffold hopping
and protein-ligand interaction tasks19,38. Although this representation
provides low dimensional descriptor vector with generalization and
association of active compounds, the pharmacophore nodes are
limited to only six types and the interpretation of this graph is
challenging.

3. JunctionTree graph (J) is tree-based reduced graph generated by
converting bonds, rings, and junction atoms into nodes, so that the
final graph contains no loop structure. This kind of representation
shows great performance in molecule generation and molecular
property prediction tasks22,39. This tree-structure is beneficial in
preventing the dead-loop problem and repeated information issues
in message-passing process14,30. However, JunctionTree graph still has
drawbacks in lack of larger meaningful substructures like functional
groups and ring types, as well as difficulties when representing
complex rings.

4. FunctionalGroup graph (F) is another reduced graph representation
integrating functional group information. The original substructures
based on predefined functional groups, ring types, and atom pairs are
converted into a single node. There are several applications using
FunctionalGroup graph and showing good performance including
small molecule property prediction and molecular graph
generation15,40,41. The advantage of this graph is that the node features
are encoded with chemical background promoting higher-level
understanding. By the way, the graph construction is limited to only
predefined substructures since all chemical functional groups or
complicated rings are hard to be completely predefined.

Various graph reduction andnode labeling schemes can differ in terms
of specificity and discrimination levels18. To elucidate these differences, the
summary of differences between molecular graph representations is pro-
vided in Supplementary Table S3. It is evident that, despite offering
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subsequent tasks in drug discovery applications.
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complementary views, allmolecular graph representations contain different
sets of node and edge features, which would certainly affect model learning
and interpretation.

Molecular graph reduction analysis. To quantify the change of coar-
sened graphs when applying reduction techniques, the number of nodes
after reduction in each dataset are analyzed. As shown in Supplementary

Fig. S1, the average number of nodes from all molecules in different
molecular graphs from general benchmark datasets are compared. The
result shows that average number of nodes in reduced molecular graphs
are significantly shrunk from the Atom graph. The most reduced
molecular graph is FunctionalGroup graph as it obviously simplifies
larger substructure of atoms into one node. On the other hand, the least
reducedmolecular graph is Pharmacophore graph as it mainly converts a

Table 1 | Datasets details and statistics

Group Dataset Category Task #Compounds

General benchmark datasets from MoleculeNet BACE35 Biophysics Classification 1513

BBBP35 Physiology Classification 2050

FreeSolv35 Physical chemistry Regression 642

ESOL35 Physical chemistry Regression 1128

Lipo35 Physical chemistry Regression 4200

Pharmaceutical endpoint tasks with reported key structural patterns AmesMutag61 Physiology Classification 6512

hERG2062 Biophysics Classification 6548

CYP2C842 Biophysics Classification 553

CYP3A463 Biophysics Classification 9122

Hepatotoxicity64 Physiology Classification 1489

ROCKII65 Biophysics Classification 3953

HumanPPB27 Biophysics Regression 3921

AqSolDB49 Physical chemistry Regression 9982

HIV166 Biophysics Regression 2602

JAK167 Biophysics Regression 8011

Synthetic binding logics with known ground truths Logic61 57 Synthetic Classification 4326

Logic72 57 Synthetic Classification 8671

Logic93 57 Synthetic Classification 8687

Logic144 57 Synthetic Classification 16,598

3MR5 50 Synthetic Classification 2877
1Logics: [FX1] and [CX3]=O.
2Logics: [R0;D2,D1][R0;D2][R0;D2,D1] and [CX3]=O.
3Logics: [NX3;H2] and [OD2](C)C and [cX3]1[cX3H][cX3H][cX3H][cX3H][cX3H]1.
4Logics: ([OD2](C)C or no [OX2H]) and [CX3]=O and (no [CX2]#[CX2]).
5Logics: *1**1 (3-membered ring).
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single atom node to a corresponding pharmacophoric feature node,
except for ring system, while maintaining topological distance. This
indicates that the molecular graphs are reduced by aggregating atom or
node information to higher-level of abstraction.

Model performance
This section reports the model learning performance from different
experimental settings. There are four main experiments including 2-graph
combination models, multiple-graph combination model, different model
architectures, and comparisonwith othermodels. To present the concluded
results, the average ranking (AvgRank), measuring the rank of model per-
formance, and average z-score (AvgZScore), measuring how far of perfor-
mance improvement is relatively from the mean, are employed.

Model performance of 2-graph combination models. To compare the
effects on model learning performance of different graphs, the first experi-
ment is conducted on four schema which are Atom graph (A), the combi-
nation of 2-graph models including Atom with FunctionalGroup graph (A
+F),AtomwithPharmacophore graph (A+P), andAtomwith JunctionTree
graph (A+J). This research assumes that Atom graph should be the base
graph as it contains fundamental information and topology, and using
reduced graph alone is undesirable because some information is discarded
and insufficient. To better analyze the performance of each graph repre-
sentation for drug discovery task, the general benchmark andpharmaceutical
endpoint tasks datasets are arranged into three categories based on Mole-
culeNet includingphysical chemistry, biophysics, andphysiology as shown in
Table 1. The performance is presented in Table 2 and more details in Sup-
plementary Table S4-S6. Overall, the combination of Atom graph with
another reduced molecular graph models achieve moderately better perfor-
mance compared to using Atom graph alone due to the average ranking and
z-score. When analyzing for particular categories, model A+F seems to
outperform others in biophysics and physiology. For biophysics category,
binding activity tasks would get advantages from additional information of
resembling chemical structures like functional groups. For physiology cate-
gory, this kindof properties, e.g., toxicity, canbepartially implied fromspecial
functional group patterns, so FunctionalGroup graph would provide better
benefit for these tasks. In term of physical chemistry, model A+P dominates
in this category. This would be because of pharmacophoric features such
as H-donor/acceptor and positive/negative features which greatly support
these tasks.

To provide the overall conclusion, the average ranking and z-score
performance are calculated for overall tasks as illustrated in the Table 3 on
MMGX column. Upon analyzing all categories collectively, the A+Pmodel
appears to perform the best average rank 1.93, but A+Fmodel outperforms
in average z-score at 0.5064. Model A+P and A+F incorporates additional
meaningful information about pharmacophoric features, functional groups,
and aromatic rings, which may be challenging for the model to learn
independently. Therefore, this inclusion of handcrafted-information proves
beneficial for model learning.

Model performance of multiple-graph combination models. Next, to
test the effectiveness of multiple molecular graph representations model,

the reduced graph only models (F, J, P), the combination of 3-graph
models (A+F+J, A+F+P, A+J+P), and the combination of 4-graph
models (A+F+P+J) experiments are conducted and tested on general
benchmark datasets from MoleculeNet. The results are compared with
the previous results of the Atom graph model and the combination of
2-graph models and displayed in Supplementary Table S7. As a result,
while the integration of 3-graph and 4-graph models shows promising
performance, they do not significantly improve the performancewith this
proposed model based on average ranking and z-score. Additionally,
performance variations are observed across datasets. This variability may
occur when the model encounters complex and irrelevant information.
Therefore, it is crucial to consider appropriate feature selection andmore
suitable integration techniques. For this analysis, 2-graph models are
considered as sufficient scheme based on these results. On the other hand,
models based solely on reduced graphs exhibit poorer performance. This
implies that relying just coarsened information may lead to incomple-
teness, which is unfavorable for these tasks.

Model performance of different model architectures. Even though the
experiments are conducted in custom model architecture integrated with
attention mechanism, the concept of combination graph model are actually
applicable for any kind of graph-based models. To support this concept,
further experiments of multiple molecular graph representations are con-
ducted on simple GCN model and advanced AttentiveFP36 model with
general benchmark datasets from MoleculeNet. The model performance is
displayed in Supplementary Table S8-S10. In short, integrating multiple
graphs demonstrates generally goodperformance in all different architecture,
especially benefiting simple GCN model. Thus, the concept of multiple
graphs could help improve model performance positively.

To support the conclusion of the most promising and recommended
combination, experiments with different model architectures may help
emphasize our findings. Therefore, additional experiments of the 2-graph
combination model are conducted with GCN and AttentiveFP model
architectures across all datasets. The model performances for all other
datasets in pharmaceutical endpoint tasks, besides general benchmarks from
MoleculeNet, are recorded in Supplementary Table S11-S12. The average
ranking and z-score are calculated for summarization as shown in Table 3.
Interestingly, the A+F model appears to generally outperform other models
with the average rank1.89 andaverage z-score 0.606, followedbyA+Pmodel
as the favorable second-best model with the average rank 2.20 and average
z-score 0.2217. These kinds of graph including FunctionalGroup graph or
Pharmacophore graph, provide extra meaningful features which may be
difficult for the model to learn by itself. In contrast, the JunctionTree graph
contains simple structure-based features which may be moderately captured
during embedding process. Consequently, the integration of data-driven
ensembled information offers advantages for model learning. In conclusion,
based on statistical results, the recommended approach is to use a combi-
nation of atom-level graph and functional group-based graph, as it positively
enhances model learning performance across various tasks.

Comparison with other models. The proposed model architectures are
further performed additional experiments to demonstrate their competitive

Table 2 | Summary of model performance ranking of 2-graph models for physical chemistry, biophysics, physiology category
datasets with MMGX

Model Physical chemistry Biophysics Physiology

AvgRank AvgZScore AvgRank AvgZScore AvgRank AvgZScore

A 3.00 −0.6793 3.13 −0.4856 3.67 −0.8079

A+F 2.50 0.1644 2.25 0.4613 1.33 1.0827

A+P 2.00 0.3952 2.00 0.1481 1.67 0.6556

A+J 2.50 0.1197 2.63 −0.1238 3.33 −0.9304

Note: The underlined numbers are the best performance of each dataset.
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performance compared to other state-of-the-art methods. Five recent state-
of-the-art methods focusing on supervised learning models for molecular
property an activity prediction with alternative or multiple graph repre-
sentations are selected for comparison with proposed 2-graph combination
models. All fivemethods include PharmHGT (pharmacophoric-constrained
heterogeneous graph transformer)20, HimGNN (hierarchical molecular
graph neural networks)24, ML-MPNN (multi-level message passing neural
network)23, FunQG (novel graph coarsening framework utilizing functional
groupsbasedonaquotient graph)16, andRG-MPNN(pharmacophore-based
reduced-graph message-passing neural network)19. The method description
and results are listed in Supplementary Note 9. In summary, although our
proposedmodel architecturedoesnot consistently outperformother state-of-
the-art methods in every task, it demonstrates comparable and competitive
performance. This confirms the promising practicality and validity of our
proposed model architectures for further analysis and model interpretation.

Even though different graph representations and model schemes
demonstrate promising performance, they are inconsistent across each
dataset. Some combinations can positively improve model learning by
providing meaningful features. On the other hand, some combinations can
negatively reduce the performance by introducing irrelevant features, bias,
and complexity. Thus, selection of molecular graph combinations with
additional feature engineering and model architecture design should be
appropriately considered to get better performance for a specific task
depending on the nature of the datasets.

Interpretation results
To validate the interpretation, different views of interpretation from
attention weights are visualized and compared with chemical background
knowledge. Each view offers advantages for different applications in drug
discovery.

Single prediction view. Firstly, the comparison of the attention weights
with ligand interaction map is analyzed. The first example is from
CYP2C8 dataset. The troglitazone molecule has been reported as a
potential inhibitor for the CYP2C8 target42. The interpretation results
using average attention weights from 5-fold model compared with the
interaction map of the complex PDB:2VN0 are shown in Fig. 3. All
models can positively identify the thiazolidinedione fragment, which
contains ketone oxygen that can form a hydrogen bond with target
residues corresponding with the report in42. However, most models are
not able to give high focus to the part of ether oxygen in the middle of the
molecule, which can form a hydrogen bond with the residues using
nearby water molecules reported in42 as well. Despite that, the model
interpretations can relatively capture the important parts consistent with
the interaction region reported in the literature.

Another example is from BACE dataset. Umibecestat or CNP520 was
discovered as a potent small molecule for BACE-1 inhibitor43. The inter-
pretation using average attention weights from 5-fold model are compared
with the interaction map from PDB:6EQM, as shown in Supplementary
Fig. S4. Even if most models cannot obviously recognize the part of the
oxazine nitrogen that forms interactionswith target residues,modelA,A+F
andA+J still greatly emphasize on the portion of oxazine that contributes to
the binding site, as well as putting high attention weight to oxazine oxygen

that acceptsH-bonds fromwatermolecules, as discussed in44. This indicates
that important binding regions for ligand activity are well captured by the
model interpretation providing understanding of ligand-target interaction.

These kinds of results can be utilized to understand the binding activity
and binding region of ligands. In addition, they can be applied formolecular
optimization or simplification task for generating better optimal ligands
while maintaining the affinity property.

The next analysis is the quantitative interpretation performance using
synthetic binding logics with known ground truths. To better compare
interpretation performance of differentmodels, the statistical measurement
should be analyzed. However, it is difficult to quantitatively assess the
interpretation performance from the real-world dataset because of the
complexity and no defined ground truth. Therefore, the synthetic binding
logics datasets are exploited as the ground truths are completely predefined.
The task is to evaluate the interpretation performance of themodel whether
it correctly assigns high attention weights to the relevant substructure(s)
corresponding to the binding logics or not. This task is similar to classifi-
cation task of node importance using attention weights; therefore, the
performances are measured in Attention AUROC (AttAUROC) and
Attention Accuracy (AttACC) metrics. See Materials and Methods section
for the definition and calculation of these two metrics. The results from
5-fold model only true positive prediction are summarized in Table 4.
According to the results, model A+J performs best in average performance
and ranking. Thiswould be because JunctionTree graph basically focuses on
simple structural features that are enough for these logics. However, Atom
graph performs best in Logic14 dataset which seems to be little more
complex. This maybe because it gives attention to only few features that are
enough for specific task.

To examine the results, some examples are investigated to see how
model gives attention to the molecules. All of the following results are
obtained from the models with the best performance on validation set. The
first example is fromLogic7 (unbranched alkane AND carbonyl) dataset, as
shown in Fig. 4. Although the ground truths contain multiple important
substructures, model A gives high attention to only one substructure. In
contrast, the combination graph models precisely capture multiple impor-
tant substructures aligning with the corresponding ground truths. Addi-
tional example of 3MR (3-membered ring) with the same analysis are
reported in Supplementary Fig. S5. Nevertheless, when analyzing Logic14
datasets which is a little complex, from Supplementary Fig. S6, model A
demonstrates best in this dataset as it can capture important substructure
that is enough for prediction correctly. While model A+J and A+P do not
only assign attention weights to the important substructure but also other
irrelevant features as well. In summary, the combination graph models can
still give attention to themost important substructure, but theymayalsofind
other hidden yet unrelated features which must be taken into concern
during analysis. To address this issue, some research suggests ways to
enhance attention efficiency, including information theory analysis with
additional model elements45, efficient attention46, norm-based analysis
attentionweights47, or focused attentionwith transformer-basedmodels48. It
is important tonote that this framework is applicable to other explainableAI
techniques besides attention as well.

To elaborate the exploration of information interactions among the
diverse views, additional analysis to examine the correlation between

Table 3 | Summary of model performance ranking of 2-graph models for all datasets with all architectures

Model MMGX GCN AttentiveFP AvgRank AvgZScore

AvgRank AvgZScore AvgRank AvgZScore AvgRank AvgZScore

A 3.20 −0.6017 3.67 −1.2060 2.87 −0.4017 3.24 −0.7364

A+F 2.13 0.5064 1.60 0.8176 1.93 0.4778 1.89 0.6006

A+P 1.93 0.3155 2.33 0.1643 2.33 0.1853 2.20 0.2217

A+J 2.73 −0.2202 2.40 0.2240 2.87 −0.2615 2.67 −0.0859

Note: The underlined numbers are the best performance of each dataset.
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attention frommultiple graph combinationmodels whether themodel pays
attention to correlated regions of two graphs or not are conducted. The
results are reported in Supplementary Fig. S7. Most of the models provide
weak or even no correlation between two sets of attention from two graphs.
These results indicate that models typically focus on different part of
molecules. This situation can be considered beneficial, as several important
regions in compound can be captured and emphasized via combining
process when integrating multiple graphs.

Node featuresview. Analysis of significant node features using attention
weights is examined. Taking AqSolDB dataset as an example, this dataset
is a regression task predicting the aqueous solubility property of com-
pounds. To demonstrate the important node features for a specific range
of predictions, the compounds predicted as soluble and highly soluble
(LogS >− 2) based on49 are chosen for this analysis. The average atten-
tionweights and number of node feature for all 5-foldmodel are collected
and plotted in the graph as shown in Fig. 5. The significant node features
are observed in the area of high average attention weights and high
number of feature nodes or on the top-right corner of the scatter plot.We
can see that the node features with oxygen and nitrogen obtain more
significance for soluble molecules. This is because they are likely to form
hydrogen bonds with solvents. Interestingly, the carbon atom and the
aromatic ring of carbon atomsmostly receive low attentionweights for all
models. Obviously, this perspective provides some useful trends to
comprehend the datasets in the defined range. Visualization in node
features view of combination graphs can clearly convey high-level
information that is more meaningful than atom graph without further

processing, particularly model A+F and A+J as they provide node fea-
tures in expressive functional groups and substructures. These results can
be adopted for applications of knowledge extraction and trend analysis
which would be useful for understanding particular property.

Potential substructures view. To understand the attention weights in
more intuitive and comprehensive way, the interpretation in potential
substructures view is introduced to suggest substructures highly influ-
encing the tasks using pharmaceutical endpoint tasks datasets. Starting
with potential substructures statistics, taking two classification datasets
including AmesMutag and CYP2C8 as examples, the results are analyzed
only the compounds predicted as positive class. After performing
potential substructures extraction with the threshold given for each
dataset, the number and instances of potential substructures for these two
datasets that are significant for prediction of positive class from themodel
with the best performance in validation set are recorded in Fig. 6 and
Supplementary Fig. S8. We can see that, different interesting potential
substructures can be extracted from the models, and each substructure
provides more comprehensive understanding with multiple atoms and
functional groups.

Next, the above results are further compared with the reported key
structural patterns from the literature to measure the capability of the model
in capturing the potential substructures matching with those reported one.
For AmesMutag datasets, many literatures studied about toxicity alerts50–52.
Thus, the potential substructures frompositive compounds should alignwith
those toxicity alerts. As well as CYP2C8, some studies reviewed about sig-
nificant fragments of ligands for this target27,42, therefore; the interpretation
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Ligand interaction diagram legend:

Fig. 3 | Interpretation on single prediction view of troglitazone and the inter-
action map with CYP2C8 complex (PDB:2VN0). All visualizations of model
attention follow the interpretation extraction procedures. For the 2-graph scheme,

themapping and combining processes are applied to visualize on original atom-level
graph. The ligand interaction diagram is calculated and generated by Maestro ver-
sion 12.4.072, Schrödinger software suite with the legend below.
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Table 4 | Interpretation performance of synthetic binding logics datasets in AttAUROC and AttACC

Metrics Model Logic6↑ Logic7↑ Logic9↑ Logic14↑ 3MR↑ Avg AvgRank

AttAUROC A 0.8535 (0.2102) 0.9777 (0.0482) 0.8722 (0.1202) 0.9975 (0.0015) 0.9964 (0.0017) 0.9395 2.20

A+F 0.9888 (0.0097) 0.8761 (0.0202) 0.9656 (0.0256) 0.9293 (0.0202) 0.9893 (0.0115) 0.9498 2.60

A+P 0.8869 (0.1545) 0.8902 (0.0614) 0.9477 (0.0479) 0.8984 (0.0292) 0.9554 (0.0745) 0.9157 3.20

A+J 0.9993 (0.0013) 0.9988 (0.0009) 0.8618 (0.1086) 0.9949 (0.0029) 0.9961 (0.0018) 0.9702 2.00

AttACC A 0.9084 (0.0008) 0.8301 (0.0008) 0.5824 (0.0015) 0.9791 (0.0095) 0.9676 (0.0444) 0.8535 2.80

A+F 0.9636 (0.0234) 0.8946 (0.0099) 0.8610 (0.0007) 0.8259 (0.1003) 0.9515 (0.0387) 0.8993 2.40

A+P 0.8215 (0.1592) 0.8612 (0.0086) 0.7229 (0.1259) 0.6348 (0.0565) 0.8602 (0.1441) 0.7801 3.60

A+J 0.9853 (0.0232) 0.8985 (0.0033) 0.8731 (0.0187) 0.9633 (0.0302) 0.9831 (0.0036) 0.9407 1.20

Note: AttAUROC (Attention AUROC) and AttACC (Attention Accuracy) calculation is described in the material andmethod section. The underlined numbers are the best performance of each dataset. The
numbers in parentheses are the standard deviations.
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Fig. 4 | Interpretation on single prediction view of sample molecule from Logic7 dataset with all possible ground truths.All visualizations of model attention follow the
interpretation extraction procedures. For the 2-graph scheme, the mapping and combining processes are applied to visualize on original atom-level graph.
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should also capture the relevant substructures that match with these frag-
ments as well. As a result, most models provide acceptable matching out-
comes for all datasets. According to Fig. 6 of AmesMutag dataset, fragments
of nitro, nitroso, three-membered heterocycle, and chlorine can be captured
by many models. Model A and A+J can recognize bromine (Br) atom
(indicated by red circle) which is an important alert reported in51, andmodel
A, A+F, and A+P can also recognize sulfonate-bonded carbon atom groups
(indicatedbyblue circle)whichare also important aswell.Another example is
from CYP2C8 dataset as reported in Supplementary Fig. S8.While model A
seems to perform best in this case, model A+F extracts larger potential
substructures than other models. In summary for this part, the results are
consistent with background knowledge and all potential substructures
enhance more understanding and can be used for structural modification,
task-specific molecule generation, and database creation. However, there are
some shortages that the new knowledge of potential substructures is less
captured as the extraction process is based on the frequency. Besides, the
combination models sometimes return small number of potential sub-
structures so extraction parameters should be studied and adjusted appro-
priately further.

Conclusion
We introduced several molecular graph representations through graph
reduction techniques aimed at generating higher-level molecular graph fea-
tures.These representationswere thoroughly evaluatedonvariousdatasets for
predicting molecular properties and activities. Our findings demonstrated
that different molecular graph representations offered varying levels of
information, influencing model learning and interpretation. Combination of
atom-level graph and other knowledge-based reduced graph such as func-
tional group or pharmacophore graph appears to be the good promising
combination across dataset categories and model architectures based on the
studies. While integrating multiple molecular graphs into the model led to
some moderate performance improvements, the extent of these enhance-
ments varied across datasets. Therefore, it became crucial to thoughtfully
select graph representations and conduct feature engineering when con-
structing prediction models. In addition to the aforementioned molecular
graph representations, there are other intriguing and plausible graph repre-
sentations thatmerit exploration in future research.These alternatives include
3D molecular graphs, fragment-based molecular graphs, and learned mole-
culargraphrepresentations, all ofwhichcontributevaluable chemical features.
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Fig. 5 | Interpretation on node features view of AqSolDB dataset. These graphs
plot the average attention weights of each node feature with the number of feature
nodes in the entire dataset. The orange dots represent the node features from the

Atom graph. The blue dots represent the node features from the reduced molecular
graph according to the scheme.
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Furthermore, integrating reduced molecular graph representation can
greatly leverage the interpretation of the models by providing chemically
meaningful node features for explanation aligning consistently with che-
mical knowledge. Atom with JunctionTree graph model performs the best

for synthetic datasets tasks with quantitative evaluation in single prediction
view. For node features view, combination models especially with Func-
tionalGroup or JunctionTree graph present more comprehensive features
which are ready to understand. In potential substructure view, all models

Model: A Model: A+F

Model: A+J Model: A+P

Reported key structural patterns from literatures

AmesMutag dataset

Potential substructures from models

Fig. 6 | Interpretation on potential substructures view of AmesMutag dataset.
Reported key structural patterns from the literature of AmesMutag dataset and
potential substructures extracted from the models. The red circles indicates the

bromine (Br) atom-related substructures and the blue circles indicates sulfonate-
bonded carbon atom groups-related fragments.
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provide reliable substructures consistent with background knowledge. On
top of that, employing attention-based explanation techniques with multi-
ple perspectives can enhance human comprehension of model predictions
as well. All perspectives suggest different purposes and produce interesting
findings and insights that could facilitate the subsequent processes, such as
molecular simplification, structural modification, and lead optimization.
The possible future direction would be the applications of interpretation
results as the actionable outcomes to support other processes in drug
discovery.

To summarize, the concept of utilizing multiple molecular graph
representations and diverse interpretable views can be universally extended
to various tasks, graph-based model architectures, and explanation tech-
niques to enhance model learning and interpretation.

Material and Methods
Molecular graph representation implementation
The molecular construction, graph representation, and visualization are
implemented by open-source package RDKit and NetworkX. Firstly, every
molecule is represented as standard SMILES notation and converted to
molecule object usingRDKit function.Moleculeswithnobond, single-atom
molecules, andmolecules that produce any errors during conversion are not
considered in this study. For a specific task, if there are the same molecules
with different target values, themolecules are considered as conflict andwill
be removed.

Initially, the molecules are defined as undirected atom-level mole-
cular graph G(V, E) where V is a set of atoms with index e.g. v1, v2, ..., vn
where n is number of atoms and E is a set of bonds containing pairs of
atoms with index e.g. (vi, vj) where i and j are atom index. To perform
graph conversion and reduction to different graph representation, the
function Rx is introduced to convert the atom-level molecular graph to
another new graph, where x is the type of molecule graph representation.
Hence,Rx(G) =Gx(Vx, Ex)whereGx is a newgraph representation inwhich
Vx is a set of nodes of substructure with index containing set of atomswith
index e.g, node vx1 contains (v1, v2, . . . , vn) atoms where n is number of
atoms in substructure vx1. E

x is set of edges containing pair of nodes with
index e.g. ðvxi ; vxj Þ where i and j are node index. Node and edge attributes
are represented as vectorwith different dimensiondependingon each type
of representation.

The full lists of each molecular graph representation features are
summarized in Supplementary Note 14.

Model architecture
Themodel structure, inspired by AttentiveFP36 and its variants12,53, contains
four main modules including node/edge encoding module, node embed-
ding module with GNN, molecule embedding module with attention
mechanism, and prediction module as shown in Supplementary Fig. S9. At
first, node/edge encoding module encodes molecular graph node and edge
features into initial fixed-size embedding using linear layer. Next, the node
embedding module learns initial node embedding features by aggregation
information from neighboring nodes using modified graph isomorphism
network (GIN), that takes edge features in neighboring aggregation54,
integrated with gate recurrent units (GRUs) resulting in final node
embedding. GIN seems to perform good at discriminative power and it has
connection with Weisfeiler-Lehman isomorphism test55. GRUs learn con-
trolling how much information to be aggregated or reserved during
neighborhood aggregation53. Thirdly, the molecule embedding module
utilizes the concept of virtual super nodewith virtual links that connect to all
nodes in the molecular graph. This virtual super node learns to readout the
embedding features from all nodes through virtual link using graph atten-
tion network (GAT) with GRUs as well resulting in final molecule
embedding. At this step, the attention weights are assigned to each node in
the graph during the readout process. These attention weights are assumed
tobe indicatinghow importance of eachnode for a particular prediction and
will be interpreted as model explanation. Lastly, the prediction module
combines all molecule embeddings from multiple graphs and executes

classification or regression task to generate prediction results using fully
connected layers.

Experimental design
The extensive experiments are conducted on several datasets with multiple
molecular graph representations.There are fourmain schemes for this study
which are Atom graph (A), the combinations of the atom graph with
another reducedmolecular graph, which are Pharmacophore graph (A+P),
FunctionalGroup graph (A+F), and JunctionTree graph (A+J). Apart from
those schemes, additional experiments are conducted on reduced graph
only (F, J, P), 3-graph (A+F+J, A+F+P, A+J+P), and 4-graph (A+F+P
+J) models as well. In the case of multiple graph combination model using
Atomgraphandone ormore reduced graphs, the initial poolingprocesswill
be performed to initiate reduced graph node features by integrating Atom
graph node features to reduced graph node features. Apart from the original
reduced graph node features, the reduced graph node features are extended
with the pooled node features from the corresponding nodes inAtomgraph
using sum-pooling as shown in Supplementary Fig. S9. This process could
help enriching the reduce graph node features so that the information of
original atom-level graph is not completely abandoned. In multiple graph
combinationmodel, each graph is learned independently through theGNN
backbone and attention mechanism. Subsequently, the molecule embed-
dings from all graphs are concatenated to generate the final ensemble
molecule embedding before being fed into the prediction module.

Implementation and hyperparameter tuning
The dataset management and model operation are manipulated by open-
source PyTorch and DeepChem libraries. The dataset splitting method is
suggested based on the original paper if specified; otherwise, random
splitting is used. Typically, the datasets are split into train with validation
and test sets with the ratio of 8:2 respectively. The train with validation sets
are split and trained using 5-fold cross-validation. The hyperparameter
tuning is performed usingOptuna library56. The full lists of hyperparameter
are recorded in Supplementary Table S14. The molecule embedding size is
fixed to 256 dimensions. The learning rate, weight decay, dropout rate and
batch normalization are set up appropriately according to each dataset. All
models are trained for 300 epochs, but training is stopped earlier when the
performance of the validation set is not improved for consecutive 30 epochs.
The average of AUROC and RMSE among 5-fold are reported as perfor-
mance for classification and regression tasks, respectively.

Interpretation extraction procedures
The interpretation of the model is derived during the molecule embedding
module with attention mechanism. The procedures of extracting attention
weights are displayed in Supplementary Fig. S10. For each graph, the
attentionweights at the links connecting to avirtual supernodeare extracted
and normalized with min-max algorithm, representing the node attention
as shown in Supplementary Fig. S10A. In cases involving reducedmolecular
graphs, the results can be interpreted either using the its node features
directly or through amapping process to visualize on the original atom-level
graph. When using the mapping process, the attention weights at the node
features are redistributed to the corresponding original atom-level graph
nodes as illustrated in Supplementary Fig. S10B. If multiple nodes of the
reduced graph correspond to the same node in the atom-level graph, the
summation of those nodes’ attention weights is used to build up the node
importance. Subsequently, all attention weights are normalized with min-
max algorithm as well. For combination schemes, the attention weights of
reduced graph must be mapped back to the original atom-level graph first.
Then, all mapped attention weights of corresponding nodes are combined
by choosing themaximumattentionweights among all graphs to emphasize
on the focused part of the molecule with greater priority. This attention
combining process is visually depicted in Supplementary Fig. S10C. These
procedures is consistently applied to all types of reduced graphs. The
extracted attention weights are visualized on the different perspectives to
provide intensive andalternative understandingof themodel interpretation.
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Interpretation views
There are three different interpretation views introduced in this study to
provide complete comprehensive insight with different perspectives. Each
view is evaluated based on different methods in qualitative or quantitative
ways. Moreover, each view offers various outcomes that are suitable for
certain applications as well.

Single prediction view. Single prediction view visualizes the inter-
pretation for a particular single prediction. The attention weights are
analyzed using interpretation extraction process to get the final atom-
level molecular graph interpretation. In this study, the intensity of the
green color is used to represent the level of importance for that particular
node/atom.

To qualitatively assess this view, the average interpretation results from
5-fold model are examined with background knowledge. For the ligand
binding activity, it is assumed that the interpretation should focus on the
relevant region of binding activity. Therefore, interpretation results are then
compared with the interaction map of complex structures between ligand
and target to observe how model learns to classify active ligand. For
quantitative evaluation, the synthetic binding logics with known ground
truth are employed followed the work from57. Given the synthetic datasets
which are created using exact logical operations of substructures including
AND, OR, and NOT, the interpretation performance can be statistically
evaluated through the classification of important nodes using attention
weightswhether themodel can correctly give dominant attentionweights to
the nodesmatching up with the logics ground truths or not. The evaluation
metrics are adapted from classification task which are Attention AUROC
(AttAUROC) and Attention Accuracy (AttACC).

Attention AUROC (AttAUROC) is defined as the area under the
receiver operating characteristic curve from the final node attentionweights
compared with the ground truth at varying threshold values.

Attention Accuracy (AttACC) is defined as the accuracy for the
important nodes from the attention mechanism (high attention weights)
compared with the ground truth labels. The formula is defined as

AttACC ¼ 1
N

XN

i¼1

Iðyi � �yiÞ ð1Þ

whereN is the number of nodes in a molecular graph and yi is the ground-
truth label forparticularnode i.�yi is thepredicted importanceof thatnode in
which if the attention weight is greater than or equal to 0.5, the node is
considered as important and predicted as 1, and the indicator function I(x)
returns 1 if x = 0, otherwise 0 is returned.

If the molecules have more than one possible ground truths, the
maximumof evaluationmetrics are recorded. The average of interpretation
performance from 5-fold model is used for comparison.

Single prediction view provides the specific important portions of a
single predicted molecule which are useful for guiding compound optimi-
zation and simplification task.

Node features view. Node features view visualizes interpretation in
collections of node features from the entire dataset. The average attention
weights for each node features and the number of each node features are
collected and plotted on the scatter plot. The significant node features can
be recognized on the region of high average attention weights and the
high number of feature nodes.

The evaluation can be analyzedwith chemical background knowledge.
For a particular range of prediction, it is assumed that themodel should give
high attention weights to the most relevant node features, and that node
features should have large enough amount to support the relevance and
reliability.

Node features viewgives a benefit for understandingof the collectionof
predictions in dataset used in knowledge extraction and analyzing for trend
analysis.

Potential substructures view. Potential substructures view analyzes the
interpretation of structural patterns as potential substructures to provide
higher-level chemical understanding. This view is done on the pharma-
ceutical endpoint tasks datasets as they have been studied and reported
several key structural patterns. The molecules are broken down into
smaller fragments. The fragments containing high attention weights and
passed all detection rules are gathered and defined as potential sub-
structures. The procedure to extract potential substructures consists of
three steps. Thefirst step is the identification of important fragments for a
single molecule. The compounds are fragmented using various frag-
mentation techniques, including BRICS58, RECAP59, and GRINDER27 to
get all possible and diverse fragments with 3–20 atoms without breaking
any rings. Then, the important fragments are detected using the rule that
if the fragment has a median of attention weights greater than Pf per-
centile ofmolecule attentionweights, it is labeled as important fragments.
The Pf value is given based on dataset, by default 75 is used. The second
step is the calculation of statistical values for each fragment. Three basic
statistical values are the number of compounds having that fragment, the
number of compounds having that fragment, which is labeled as
important, and the important fragment percentage between those above
two values. Next, the fragment importance score (Scorefrag ) from

60 is
computed to quantify the significance of the fragments as shown in this
formula.

Scorefrag ¼

PNfrag

n¼1
MfragðnÞ �MmolðnÞ

� �

Nfrag

ð2Þ

Given a particular type of fragment,n is an individual fragment,Mfrag

is the average attention weights of fragment, Mmol is the average
attention weights of the molecule, and Nfrag is the number of fragments.
The last step is the selection using conditions. The fragment is selected as a
potential substructure if it meets all conditions which are: 1) The
important fragment percentage is greater than or equal to 50%. 2) The
number of compoundshaving that fragmentwhich is labeled as important
is large enough for each dataset. That number should be greater than or
equal to Ps percentile among all fragments. The Ps value is depended
on statistical results as well, by default 70 is used. 3) Scorefrag is greater
than zero ensuring great significance. After that, the redundancies of
substructures are removed, and the results are the final potential
substructures.

To evaluate this, the chemical characteristics of potential substructures
are analyzed and evaluated between each model with the reported key
structural patterns. The study measures the performance of interpretation
by observing the substructural matching between potential substructures
from models and the key structural patterns reported from literatures.

Potential substructures view provides inspiration as a guideline for
interesting and feasible structural modification, molecule generation, frag-
ment collection creations, and ensuing optimization processes.

Data availability
All datasets are publicly available in the original mentioned paper.

Code availability
Codes are publicly available on GitHub https://github.com/
ohuelab/MMGX.
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