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Generic and accurate prediction of
retention times in liquid chromatography
by post–projection calibration

Check for updates

Yan Zhang1,2,3, Fei Liu 1 , Xiu Qin Li2,3, Yan Gao2,3, Kang Cong Li2,3 & Qing He Zhang 2,3

Retention time predictions from molecule structures in liquid chromatography (LC) are increasingly
used inMS–based targeted and untargeted analyses, providing supplementary evidence formolecule
annotation and reducing experimental measurements. Nevertheless, different LC setups (e.g.,
differences ingradient, column, and/ormobile phase) give rise tomanypredictionmodels that canonly
accurately predict retention times for a specific chromatographic method (CM). Here, a generic and
accuratemethod ispresent topredict retention timesacrossdifferentCMs, by introducing the concept
of post–projection calibration. This concept builds on the direct projections of retention timesbetween
different CMs and uses 35 external calibrants to eliminate the impact of LC setups on projection
accuracy. Results showed that post–projection calibration consistently achieved amedian projection
error below 3.2% of the elution time. The ranking results of putative candidates reached similar levels
among differentCMs. Thiswork opens up broad possibilities for coordinating retention timesbetween
different laboratories and developing extensive retention databases.

Prediction of retention time (RT) in liquid chromatography (LC) has
remained an active research field over the last decade1, to aid structural
identification of unknown molecule2–4, rapid chromatographic method
(CM) optimization5,6, and retention information transfer/harmonization
among different laboratories7–9. LC coupled to high–resolution mass spec-
trometry (HRMS) enables high–throughput screening of known and/or
unknownmolecules at low concentrations,widely applied in environmental
and food analysis and in metabolomics10–13. Identification workflows in
LC–HRMS–based untargeted analysis increasingly include RT prediction
steps, as it provides orthogonal evidence for mass spectra to distinguish
isobaric molecules14–16. By predicting the RTs of putative candidates and
comparing them with experimental RT, the number of false–positive can-
didates can be significantly minimized, thereby reducing experimental
measurements and economic costs.

The common strategy for RT prediction employs machine learning
algorithms to establish quantitative structure–retention relationships
(QSRR). These models rely on extensive RT data from diverse molecular
structures to characterize interpretable retention mechanisms and thus
make accurate predictions9,17. The METLIN database currently stands as
one of the largest repositories for such data; however, QSRR models are
often constrained by their specificity to particular LC setups due to RT

variability among different CMs18–21. To enhance the transferability of RT
data and predictive models between instruments and CMs—and thus
minimize the need for additional experimentalmeasurements—researchers
have developed approaches like MultiConditionRT22. This QSRR model
incorporates molecular descriptors along with CM–specific parameters
such as column type and mobile phase composition. Despite these
advancements, traditional calibrants may not fully capture complex reten-
tion behaviors across different CMs23–28. Aalizadeh et al. 9 proposed a novel
RI system that selects calibrants from a pool of emerging contaminants
based on overlapping RTs and chemical similarity indices. This approach
aims toprovide amore comprehensive elutionpattern representationacross
varying LC setups, achieving median prediction errors ranging from
1.9% to 13.3%.

A further approach for RT prediction is to project known RTs from
one CM onto another. The initial strategy involves building a library
based on the relationship between the isocratic retention factor (k) and
solvent composition (φ), thus estimating RTs for gradient CMs7,29.
However, this approach requires that the mobile phase, column, and
column temperature are the same as those used in the isocratic method,
thus limiting the applicability of this strategy. Stanstrup et al. 8 intro-
duced a direct RT projection approach that uses known RTs of
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overlapping molecules on both CMs to yield a non–linear function, i.e.,
an RT projection model. This model allows for RT transfer between the
two CMs, that is, by knowing the RT of a molecule on one CM, the RT of
that molecule on the other CM can be predicted. These predictions are
extremely accurate over alternative methods, with a median prediction
error of <3.7%. For the metabolomics community, such approaches had
been used to share the RTs observed in publicly available databases and
the RTs predicted by QSRR models with other CMs/laboratories8,18–21,30.
Predicted–experimental projections can predict the RT of known
structure on any CM, while larger prediction errors were expected in
contrast to traditional QSRR models and experimental–experimental
projections due to the propagation of projection error itself and the
inherent prediction error. The accuracy of projections also depended on
the overlapping molecules used for model training (i.e., training
points)20,31 and the similarity in molecule elution order between input
and output CMs8.

This work presents a strategy to accurately transfer experimental and
predictedRTs between differentCMsby introducing an external calibration
step intoprojections.Thirty–fivemoleculeswereusedas calibrants tobuild a
projection model and a reference–projection (ReProjection) model for a
given CM (i.e., output CM, OCM). The reference–projected RT (RePRT)
derived from the ReProjection model, enables propagating/calibrating the
projection error caused by specific LC setups.We focused on the projection
errors before and after calibration with different LC setups. The effect of
similarity in molecule elution order between input CM (ICM) and
reference–input CM (ReICM) and the effect of calibrants on
post–projection calibration was analyzed. Further, we tested the ability of
post–projection calibration in filtering/ranking putative candidates.

Results
Workflow overview
The objective is to make accurate RT predictions for a given CM using
publicly available datasets from other CMs and then use them to improve

the confidence of structural annotations. The post–projection calibration
method is developed to calibrate the effect of LC setups on RT, which
involves first projecting RT from ICM to OCM, and then using a ReICM
to externally calibrate the projected RT. The basis for calibrating pro-
jection RT is a set of molecules with known RT in ICM, ReICM, and
OCM, i.e., calibrants. The workflow is shown schematically in Fig. 1. First
of all, an appropriate set of calibrants must be determined to implement
RT projection and calibration. Therefore, we developed a multiple
CMs–based retention time (MCMRT) database. This database covers 30
CMs with different LC setups and contains >10,000 experimental RTs for
343 molecules with a high diversity of chemical structures. From the
database, 35 molecules were selected as calibrants using cluster analysis.

The post–projection calibration method involves three types of CM:
(i) CM used in a publicly available dataset, i.e., ICM, (ii) CM used in a
local laboratory, i.e., OCM, and (iii) the laboratory–developed CM, used
as ReICM, with a similar molecular elution order to the ICM. OCM and
ReICM are used for analyzing samples and calibrants. Therefore, in both
CMs, the experimental RTs of calibrants and the experimental RTs of
unknown identities observed in samples are available. To predict the RT
of putative candidates and calibrants not recorded in the public dataset,
molecules with known experimental RTs in the dataset are used to train a
QSRR model. The RTs of 35 calibrants in ICM and OCM are used to
train a main projection model, and the RTs of 35 calibrants in ReICM
and OCM are used to train a ReProjection model. The main model
projects the experimental/predicted RTs of putative candidates from
ICM to OCM, and the ReProjection model projects the experimental RTs
of unknown identities from ReICM to OCM. For some candidates,
however, there is a large difference between their projected RT and
experimental RT due to the differences in retention mechanisms, e.g.,
different columns, mobile phases, additives, etc. In common cases, they
will be filtered incorrectly. This method uses projected RT derived from
ReProjection model (i.e., RePRT) instead of experimental RT for
unknown identities, and compares it with the projected RT of their
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Fig. 1 | Overview of workflow to transfer experimental/predicted RT data from a publicly available dataset to a given CM. The post–projection calibration approach
enhances the accuracy of the transfer.
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putative candidates, which can reduce the number of correct candidates
being incorrectly filtered.

The MCMRT database
A total of 343 molecules were selected from various chemical classes and
their standard materials were obtained from suppliers. Their RT data was
acquired via RPLC/ESI–HRMS using 30 different CMs, respectively (see
“Methods” section for details). These molecules covered broad ranges of
octanol/water partition coefficient values (log Kow− 8.1 to 11.6) and
molecular weights (89–1449 Da), enabling to cover the entirety RT range
in RPLC and mass–related properties, e.g., including both positive and
negative modes and six representative adducts in ESI–MS (Fig. 2a). In
terms of chemical classes, they covered 11 ClassyFire’ groups (superclass
level)32, including benzenoids (27.7%), organic acids and derivatives
compounds (20.4%), organoheterocyclic compounds (18.7%), lipids and
lipid−like molecules (9.9%), phenylpropanoids and polyketides (7.6%),
organohalogen compounds (7.3%), organic oxygen compounds (3.5%),
organosulfur compounds (1.2%), organic nitrogen compounds (1.2%),
organophosphorus compounds (1.2%), and other compounds (1.5%).
Notably, the METLIN database (80,038 molecules) covered seven
superclasses, andMCMRT also included these classes, except nucleosides
and nucleotides18. Furthermore, the organohalogen compounds (e.g.,
perfluorinated and polyfluoroorganic compounds) and organosulfur
compounds contained in MCMRT were not observed in METLIN.
Diverse element compositions (C, H, O, N, P, S, Cl, Br, F, and I) indicated
that these molecules have a wide range of physiochemical properties

(Fig. 2b). These results demonstrated that the molecules in MCMRT are
highly diverse and representative of chemical structures. Detailed
information, including molecular formula, molecular weight, log Kow,
polarity response, chemical class, etc., can be found in Supplemen-
tary Data 1.

The 30 CMs inMCMRT are customized based on common LC setups
in untargeted analysis13,33–36, covering six C18 columns with different spe-
cifications (50–150 × 2.1–4.6 mm, 1.7–5 μm), six mobile phase composi-
tions with different buffers (acidic, ammonium, mixed, and semi–mixed),
nine running times (10–100min), seven gradient profiles (single ormultiple
gradients), five flow rates (constant or variable flow rate, 0.2–1mL/min),
and three column temperatures (30, 40, and 45 °C). Detailed information
about the instrumental and chromatographic conditions are described in
Table 1 and Supplementary Data 2.

As a result, a total of 10,073 experimental RT values from 30 CMs
were included in the MCMRT, of which 330 molecules had experimental
RT values on all CMs, i.e., they overlapped between these CMs. These
experimental RT values are available in Supplementary Data 3. It is
worthing noting that eight environmental estrogens were not detected in
CMs 01–24 containing acidic additives, and 5 other benzenoids and
lipid–like molecules were not detected in ammonium–freed CMs 20–24
due to the lack of their preferred adducts (i.e., [M+NH4]+). The
experimental RTs of all molecules in MCMRT were evenly distributed
within each CM running time, indicating that these molecules can
demonstrate the entirety RT range in LC and have no obvious preference
for specific RT ranges.
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Fig. 2 | Chemical diversity of molecules in MCMRT. aMolecular weight and log
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Retention behavior classification and calibrants selection
Thirty RT datasets in MCMRT were analyzed for 330 overlapping mole-
cules using self–organizing mapping (SOM) clustering algorithm37,38, to
characterize their retention behavior. These molecules were classified into
25 groups, each exhibited a specific RT distribution and similar retention
behavior with different LC setups (Fig. 3 and Supplementary Data 3).
Specifically, non–retained molecules fell into groups 1 and 2, with group 2
molecules showing enhanced retention in CMs lacking acidic additives
(CMs25–30).Meanwhile, groups3 to 5exhibitedweaker retentionacross all
CMs, in contrast to groups 12, 16, 21–24, which showed notably stronger
retention. Groups 7, 9, 11, and 14 demonstrated similar retention patterns,
representing a general variation in RT between different LC setups. Large
differences were observed in other groups, such as group 15 molecules
having longer RT in CM 24 than in CM 22, while group 18 showed the
opposite trend, and some groups exhibited almost identical RTs across
certain CMs. These results demonstrated that although in most casesmany
molecules exhibit consistent RT changes between two different CMs, there
can still be several outgeneral changes for a considerable number of
molecules.

Five different sets of calibrants (A–E) were selected from the 330
molecules. The aim was to select the most appropriate set of calibrants for
reliable post–projection calibrations. These sets ranged in size from 27 to 72
molecules and covered up to 25 retention behaviors (Supplementary
Data 4). Set Ewas specially customized to cover only 17 retention behaviors.
As the number of calibrants increased within a set, a broader spectrum of
general retention behaviors was encompassed. The correlation analysis
conducted between experimental RTs across different CMs, utilizing these
calibrant sets and the330molecules (Fig. S1 andSupplementaryData 5). For
sets A, B, C, and D, the r2 difference between calibrants and 330 molecules
was in all cases below 0.07, while for set E it can be as high as 0.16. In
addition, calibrants from sets A, B, C, and D not only covered the entire RT
range of each CM, but also exhibited RT profile highly similar to the 330
molecules (Figs. S2–5). Although calibrants in set E covered the entire RT
range, they exhibited limited representativeness for molecules with out-
general retention behavior (Fig. S6). Collectively, calibrant sets A, B, C, and
D can account for the effect of LC setups on molecular elution order and
demonstrate the overall elution pattern of a CM. For further details on this
section, refer to the Supplementary discussions.

Post–projection calibration and performance validation
We validated the performance of post–projection calibration using 30 dif-
ferent CMs in MCMRT. Specifically, all CMs were used as ICMs, and for
each ICM, an appropriate ReICMwas selected from the remaining 29CMs,
followed by using the remaining 28 CMs as their OCMs, respectively. To
select the most appropriate calibrants, we used five different calibrant sets
(A–E) to perform post–projection calibration, including projecting all
experimental RTs from ICM to OCM and calibrating all projected RTs in
each OCM (see “Methods” section for details). To investigate the impact of
CM similarity on post–projection calibration, we categorized all OCMs into
four groups based on the differences in LC setups: (1) OCMA, having the
samemobile phase composition as ICM; (2)OCMsB, having amobile phase
composition distinct but similar to ICM; (3) OCMsC, having a slightly
different mobile phase composition from ICM; and (4) OCMsD, having a
largely different mobile phase composition from ICM. See Supplementary
Data 6 for details on all OCM groupings. Illustrations of the relationships
between experimental RTs in the ICM and each group of OCMs—OCMsA
(Fig. 4a), OCMsB (Fig. 4b), OCMsC (Fig. 4c), and OCMsD (Fig. 4d)—are
provided. The r2 values between experimental RTs of all molecules were
0.892–0.998, 0.906–0.993, 0.798–0.947, and 0.698–0.860 for OCMsA,
OCMsB, OCMsC, and OCMsD, respectively (Fig. S7).

First, we compared the performance of experimental–experimental
projections using different ICM and OCM pairs. Since the relative pro-
jection error for non–retained and weakly retained molecules exceeded
500% in some cases, the error relative to elution time (ERet) was used for
comparison. Elution time refers to the maximum RT of calibrants inT
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OCM. Figure 5a and Supplementary Data 7 show the projection results
for each ICM and OCMpair using set B as calibrants. These errors varied
across different OCM groups. Taken projections of experimental RT
from ICM 25 to the remaining 29 OCMs as examples. The root mean
square error relative to elution time (RMSERet) was between 0.9 and
1.8% (0.2 and 0.4 min) in OCMsA and B, while that was between 5.4 and
9.9% (0.6 and 5.5 min) in OCMsC and D. Similar results were observed
for the remaining 29 ICMs. For all projection errors across the same
OCM group, the RMSERet values were 1.9, 2.8, 5.7, and 8.1% for
OCMsA, B, C, and D, respectively (Fig. 6a). In minutes, their RMSE was
0.4, 0.6, 1.7, and 1.9 min, respectively. These results demonstrated that
the CM similarity between ICM and OCM determines the projection
accuracy. Collectively, experimental–experimental projections between
two CMs with the same mobile phase composition allows the projection
of RTs with extremely high accuracy (RMSERet < 2.6%). However, large
differences in elution time (e.g., RMSERet = 4.3% between ICM 01 and
OCM 16), and LC column (e.g., RMSERet = 5.0% between ICM 24 and
OCM 23) increased projection errors. Yet, different mobile phase com-
positions further declined the accuracy of projections31, with RMSERet as
high as 10.3%. To the best of our knowledge, projection errors of this
magnitude are often neglected.

Next, we demonstrated that post–projection calibration method
minimized the effect of LC setups on projection accuracy. Examples were
given of a “good” model for projecting experimental RTs to OCMsA
(Fig. 4e), a model with a few outliers for projecting experimental RTs to
OCMsB (Fig. 4f), a model with several outliers for projecting experimental
RTs to OCMsC (Fig. 4g), and a model with many outliers for projecting
experimental RTs to OCMsD (Fig. 4h). The r2 between projected and
experimental RT values for these four models were 0.991, 0.979, 0.922, and
0.811, respectively. It can be seen that inOCMsB, C, andD, themolecules in
groups 17 and 19 had large projection errors. In particular, in OCMsD,
almost all molecules had larger projection errors except those molecules
with general retention behavior. Using RePRT instead of experimental RT,
these projections were well calibrated (Fig. 4i–l). In all cases, the r2 between

projected RT and RePRT was >0.993. Figure 5b and Supplementary Data 8
show the calibration results for each ICM andOCMpair. For all calibration
errors across the same OCM group, the RMSERet values were 1.7, 2.4, 2.0,
and 2.2% for CMsA, B, C, and D, respectively (Fig. 6a). Compared with the
results before calibration, theseRMSERet values decreasedby 10.2, 14.4, 64.4,
and 72.6%, respectively. Therefore, the results confirmed that
post–projection calibration method can accurately transfer RT across a
wider range of CMs.

We also demonstrated that the CM similarity between ICM and
ReICM determines the calibration accuracy. To validate this, CMs 04, 08,
09, 12, and 18 were used as ReICMs for ICM 10, respectively. The r2 (i.e.,
r2_c) between experimental RTs of calibrants in ICM and ReICM was
used to determine the CM similarity. Results from these calibrations are
shown in Fig. 6i and Supplementary Data 9. It can be seen that before
calibration, the RMSERet across all projections in an OCM ranged from
0.6% to 6.5%, whereas after calibration using ReICM 08 (r2_c = 0.999),
this RMSERet ranged from 0.5% to 1.1%. Yet, the RMSERet increased with
decreasing r2_c, e.g., changing ReICM 08 to ReICM 18 (r2_c = 0.969)
increased the RMSERet from below 1.1% to above 1.8%. Consistent
conclusions were also drawn from other ICMs that the calibration
accuracy decreased with decreasing CM similarity between ICM and
ReICM (Figs. 5b and 6d–h).

Finally, we compared the performance of post–projection calibration
using five different sets of calibrants. Results from these projections and
calibrations can be found in Supplementary Data 10–11. As the number of
calibrants increased from 27 (set A) to 72 (set D), there were no large
difference in RMSERet values (Fig. 6a), a slight decrease in mean error
relative to elution time (MERet) values (Fig. 6b), and a large decrease in
median error relative to elution time (MedERet) values (Fig. 6c). Although
set E contains 39 calibrants, it yielded the smallestMedERet values compared
to the other four sets, especially for projection errors in OCMsC and D.
Nevertheless, for calibration errors in an OCM, the minimum RMSERet,
MedERet andMERet values were often derived from set C or set D, while for
calibration errors inOCMsC andD, set E can yield themaximumRMSERet,
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MedERet and MERet values. Because the number of calibrants with general
retention behavior in set B was less than that in set C, the calibration
accuracy using set B was lower than that using set C. Fortunately, the
calibrations using sets B and C had consistent accuracy when r2_c higher
than 0.992. In addition, a larger number of calibrants with outgeneral
retention behavior in setDmay affect thefitting of projectionmodels. These
results demonstrated that the number of calibrants and the retention
behavior of calibrants both determines the accuracy of post–projection
calibration.

We also observed that for sets A, B, C, and D, the projection error
correlatedwith the r2 (r2_b) betweenexperimentalRTsof calibrants in ICM
andOCM.Specifically, the r2 betweenRMSERet and r2_b ranged from0.561
to 0.734, while for set E, it was only 0.199 (Fig. S8). Furthermore, when r2_c
washigher than0.992using setsB andC(Fig. 6e, f), theRMSERet valueswere
in all cases below 3.0%.However, these RMSERet valueswere as high as 5.5%
when using set E, even though r2_c was higher than 0.996 (Fig. 6h). These
results demonstrated that projection accuracy can be estimated from r2_b
and calibration accuracy can be estimated from r2_c using sets B and C.
Nevertheless, this estimation is no longer valid if set E is used. The main
reason is that the calibrants in set E had limited retention behaviors, which
cannot account for the effect ofLCsetupson theRTprofile of aCM. Inorder

to reduce experimental costs, 35 molecules in set B were finally accepted as
calibrants.

Application of post–projection calibration for predicted RT
To explore the scalability of post–projection calibration, we validated the
performance of projecting predicted RT onto different CMs and assessed
how well projected RT could annotate unknown identities. First, we
employed a robust QSRR model, constructed using a publicly accessible
dataset9 (seeMethods fordetails). Thedataset contains experimentalRTs for
1820 emerging contaminants, which were measured in a specific CM
(referred to as CM 03p). For model training, we randomly selected 75% of
themolecules fromCM03p—excluding 154 that overlappedwith our set of
343 molecules—to create a training set of 1,258 molecules. The remaining
molecules, including those overlapping, were allocated to the validation set
(N = 562). Next, we selected 112 molecules from MCMRT as unknown
identities, characterized by monoisotopic masses ranging from 119 to
1449 Da, log Kow values spanning from−8.1 to 10.4, and encompassing 20
distinct retention behaviors. Tomimic scenarios commonly encountered in
untargeted analysis—where a feature peak is detected after data processing
while its identity remains unknown—we compiled a list of 2935 putative
candidates (3–91 in each). This list included 1945 isomeric candidates
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sourced from the ChemSpider and PubChem websites and an additional
990 isobaric candidates (with a mass error tolerance of 10 ppm) derived
from theMETLINdatabase.We then employed theQSRRmodel to predict
RTs for both the non–overlapping set of 199molecules inMCMRT and the
entire pool of putative candidates. Next, the QSRR model was used to
predict RT for 199 non–overlapping molecules in MCMRT and 2935
putative candidates. These predictions were projected from CM 03p onto
our suite of 30 CMs using predicted–experimental projections—with the
exception of CM07whichwas used as the ReICM (seeMethods for details).

Prediction results of the QSRR model for the training and validation
sets are shown inFig. 7a–bandSupplementaryData 12.TheRMSERet values
were 4.9% and 7.3%, while r2 were 0.943 and 0.885, respectively. In parallel
studies utilizing the same dataset, Aalizadeh et al. 17 employed a support
vector machine approach for QSRR modeling and achieved comparable
results to our model, reporting RMSERet values of 5.4% for the training set
and 8.3% for the validation set. Fromall themolecules inMCMRT, 335with
known experimental RT in CM 03 were used as an external set to assess the
model’s generalization ability. We assessed the accuracy of our model by
comparingprojectedRTagainst experimentalRT for thesemolecules inCM
03, obtaining RMSERet and r2 values of 10.0% and 0.821, respectively, as

shown in Fig. 7c. Although ICM03p andOCM03were highly similar in LC
setups, these projection errors varied depending on themolecular structure.
Specifically,most antibiotics, pharmaceuticals and pesticides had projection
errors smaller than 1min, while perfluorinated compounds, organopho-
sphorus flame retardants and mycotoxins usually had projection errors
greater than 2min. This is due to the fact thatmolecules structurally similar
to the former were available in the public dataset, whereas that to the latter
cannot be found in this dataset. These results demonstrated the structural
similarity between the training dataset and the input chemical structure
affected the accuracy of predictedRT18, and thereby affecting the accuracy of
predicted–experimental projections.

Projection and calibration results for the external set are shown in
Fig. 7e–h and Supplementary Data 13. The molecules in the external set
were divided into four groups based on their projection error in CM 03.
Among them, group 1 contains 209 molecules with an error of less than
1min, group 2 contains 68molecules with an error of between 1 and 2min,
group 3 contains 44 molecules with an error of between 2 and 4min, and
group 4 contains 14molecules with an error of greater than 4min (Fig. 5d).
For all OCMs, the projection results of groups 1 and 2 (RMSERet < 11.0%)
were largely smaller than that of groups 3 and 4 (RMSERet > 14.6%). Similar
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results were also observed for their calibration errors; the mean absolute
error (MAE) spanned from0.7minand2.0min in groups1 and2 to4.2min
and 6.7min in groups 3 and 4, respectively. Furthermore, for the molecules
in groups 1 and 2, the MAE in OCMs 01–11, OCMs 12–18, OCMs 19–24
and OCMs 25–30 was reduced by 0.1%, -2.2%, 25.2% and 18.9% after
calibration. These results demonstrated that for molecules with small pre-
diction errors, the projection results after calibration were significantly
better than those before calibration in an OCM where the mobile phase
composition is different from ICM03p (T–test, P < 0.001, n< 1min = 1231
and n1-2min = 408 inOCMs 19–24, Fig. 7g; T–test, P < 0.001, n< 1min = 1254
and n1-2min = 408 in OCMs 25–30, Fig. 7h). Yet, no statistically significant
differences in accuracy (mean error) were generally observed for molecules
with large prediction errors (T–test,P > 0.05,n2-4min = 308 inOCMs12–18,
n2-4min = 264 in OCMs 19–24, n2-4min = 264 in OCMs 25–30, Fig. 7f–h).

Filtering and ranking results for the 2935 putative candidates are
shown in Fig. 8 and Supplementary Data 14. First, we used an RT error
threshold set at twice the RMSERet for the corresponding OCM to sift
through the candidate list (Fig. 8d). In eachOCM, candidateswith predicted
RT and experimental RT (before calibration) or RePRT (after calibration)
difference above this thresholdweredeemednegative,while thosewithin the
threshold were considered positive. Then, we determined the filtering
accuracy, true–positive rate (TPR), and true–negative rate (TNR) after
calculating the number of true positive (TP), false positive (FP), true
negative (TN)and false negative (FN)candidates (seeMethods fordetails on
these calculations). We demonstrated that for OCMs 19–30, the filtering
results after calibration (TNR= 57.3%–69.0%) were more accurate than
those before calibration (TNR = 35.0%–51.1%, Fig. 8e). These defined error
thresholds and quantitative filtering outcomes (Fig. 8d–f) underscore a
notable enhancement in filtering efficacy when using post–projection cali-
bration. The overall filtering accuracy was between 58.6% and 71.3%
(Fig. 8g). It is noteworthy that after calibration, about 29% to 43% of false
candidates in the OCM were accepted, and about 6% to 20% of true iden-
tities were incorrectly filtered for many reasons, including large prediction
errors from the QSRR model and small changes in RT for those isomeric
candidates using conventional LC methods.

Finally, we focused on the ability of post–projection calibration to rank
putative candidates, i.e., the ranking results before and after calibrationwere
compared. We demonstrated that about 57% of the correct identities
showed improved rankings after calibration. These improvements were

largely observed in OCMs that have a different mobile phase from the ICM
03p, especially for those identities with outgeneral retention behavior
(Fig. 8a, b). Yet, identities with general retention behavior showed little
improvement (Fig. 8c). Overall ranking results showed that the correct
identities in OCMs 01–18 ranked better than in OCMs 19–30 before cali-
bration (Fig. 8h), and that the correct identities ranked consistently across all
OCMs after calibration (Fig. 8i). Specifically, before calibration, the number
of true identities among the top 5 candidates (Ntop5) were ranged from 58
to 81 in OCMs 01–30 before calibration, while after calibration, it was in all
cases above 76 (67.9% of all identities). Figure 8j shows an example of
improved ranking with calibration in OCM 24. The correct identity, var-
denafil, was ranked 2nd among 32 putative candidates using RePRT
(15.8min) to compare with predicted RT (15.5 min), while it dropped to
25th using experimental RT (10.2min) for comparison.

Discussion
In this work, we developed a generic and accurate method, namely,
post–projection calibration, to support RT prediction in RPLC. This
method builds on the direct projection of RTs between two different CMs
and introduces RePRT instead of traditional experimental RT for com-
parison with projected RT. Although several methods have been devel-
oped to predict RT across different CMs, the post–projection calibration
reduces prediction errors introduced by inconsistencies in RT profile
between two CMs. That is, with RePRT, predictions with large errors in
such CMs are calibrated and accepted, whereas in general
experimental–experimental projections, e.g., PredRet8,30, they are usually
discarded due to having large prediction intervals. One possible concern
is the inconsistency in RT profile between ReICM and ICM. Our results
showed that using inappropriate ReICM, most molecules have < 1%
errors of elution time between RePRT and projected RT, but some
molecules showed larger errors up to 23.9%. Therefore, we developed a
RT database for heterogeneous molecules for a wide range of
reversed–phase liquid chromatographic methods (i.e., MCMRT), and
selected molecules with diverse retention behaviors as calibrants. These
calibrants enables to select the most appropriate ReICM based on their
RT profiles in ReICM and ICM. We are also working on collaborating
with other laboratories to determination the RTs for calibrants and other
small molecules in different CMs, to expand the MCMRT database and
further validate the method performance. We believe that with the
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widespread use of calibrants across laboratories, the availability of RT
datasets will largely improve.

The post–projection calibration approach enables the community to
utilize experimental RT values from publicly available datasets for model
training, and accurately share both experimental and predicted RT values
onto a given CM. The relative median error for predicted RTs was between
4.6% and 12.2%. Comparing the accuracy of this approach with other
published prediction methods is challenging, because molecules in the
validation set are often inconsistent and prediction errors with the same
statistics are not always reported. For similar published methods, e.g.,
CALLC31, MultiConditionRT22, RTI system9, and PredRet
(predicted–experimental projections)18–21, median prediction errors of
about 0.1–3minwere typically observed, corresponding to relative errors of
~6–20%. In that sense, our method for predicted RTs showed better per-
formance. However, some limitations in projecting predicted RTs are still
presented. For example,most ofmolecules can be accurately predicted from
their structure to their RT, but somemayhave larger error in their predicted
RT due to the absence of their similar structures in the training set. Cur-
rently, post–projection calibration can only calibrate the prediction error
caused by LC setups. The use of large retention database for structure–based
RT modeling may help to address this challenge. In addition, although
post–projection calibration has made effective improvements up to ~20%

filtering accuracy, the identification of isomers remains a challenge due to
the limit separation of LC methods.

Methods
RT acquisition for the MCMRT database
The pure standard materials for the 343 molecules were analyzed on a
Vanquish UHPLC System (Thermo Fisher Scientific, USA) coupled to an
Orbitrap Q–Exactive Plus mass spectrometer (Thermo Fisher Scientific,
USA) using 30 different CMs. Each CM–dependent dataset was acquired
within one day, with three repetitions. These CMs covered six C18 columns
with different manufacturers, column lengths (50–150mm), diameters
(2.1–4.6mm) and particle sizes (1.7–5 μm). The gradients consist of single
and multi–slopes with isocratic or gradient flow rates of 0.2 to 0.5 mL/min.
The total running times ranged from 10 to 100min. Among these CMs, 18
usedwater/methanol (90:10, v/v) asmobile phaseA, 12usedwater asmobile
phase A, 24 used methanol as mobile phase B, and 6 used acetonitrile as
mobile phase B. Different additives were considered in thesemobile phases,
such as 0.01% formic acid with 5mM ammonium formate (A1B1), 0.1%
formic acid with 4mM ammonium formate (A5B5), 0.1% formic acid
(A2B2), 5mM ammonium formate (A4B4), and 5mMammonium acetate
(A3B3). In addition, column temperatures ranging from30 °C to 45 °Cwere
included. A full description of LC setups for each CM can be found in
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Fig. 7 | QSRR model and predicted-experimental projection results before and
after calibration. a, b Correlations between experimental and predicted RTs for
molecules in training (a) and validation sets (b) for QSRR model. c Correlation
between experimental and projected RTs for molecules in MCMRT (external set).
d Projection error relative to elution time for molecules with different prediction
error. Panels e–h show the differences between predicted–experimental projection
results before and after calibration for OCMs 01–11 (e), OCMs 12–18 (f), OCMs
19–24 (g), and OCMs 25–30 (h), respectively. All projections and calibrations from

the 30 CMs (excluding ReICM 07) were used for calculation; the box plot represents
median value (line) and interquartile range (25–75% percentiles) excluding outliers;
the error bands represent 10–90% percentiles; P values obtained from t–tests are
provided (n< 1 min = 2090, n1-2 min = 680, n2-4 min = 440, n> 4 min = 140 in OCMs
01–11; n< 1 min = 1463, n1-2 min = 476, n2-4 min = 308, n> 4 min = 98 in OCMs 12–18;
n< 1min = 1231, n1-2 min = 408, n2-4 min = 264, n> 4 min = 84 in OCMs 19–24;
n< 1min = 1254, n1-2 min = 408, n2-4 min = 264, n> 4 min = 84 inOCMs 25–30) for a 95%
confidence interval.
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SupplementaryData 2. All analyseswere performed in positive andnegative
ionizationmode using a full mass scan. The parameters were as follows: two
scan ranges for 80–400 Da/350–1600Da; resolution = 70,000; AGC target =
1e6; maximum injection time = 100ms; sheath gas = 40; aux gas = 8; sweep
gas = 1; spray voltage = 2.5 kV; heater Temp=350 °C;Capillary Temp=250
°C; RF–Lens = 60.

QSRRmodel construction and parameters
The model construction and hyperparameter optimization was performed
in MATLAB R2021b. A set of 1820 chemicals of emerging contaminants
with known RT values on CM 03p was collected from the report by Aali-
zadeh et al. 9. From all the molecules in CM 03p (except for 154 that
overlapped with our 343 molecules), 75% of them (N = 1258) were ran-
domly selected and used as a training set, whereas the remaining molecules
including the overlapping molecules (N = 562) were used as validation set.
Theirmolecular structure data (with extension .mol)were collected from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/), and a total of
1444 2D–molecular descriptors were calculated for each compound using
PaDel-descriptor39. An artificial neural network (ANN) based onmultilayer
perceptronwas used to develop theQSRRmodel. The perceptron consisted
of 1444 artificial neurons in the input layer, 10 artificial neurons in the
hidden layer, and 1 neuron in the output layer. The Bayesian Regularization
Backpropagation method was used to train the network, and the learning
was completed in 58 epochs. ANN analysis was performed on the training
and validation sets by an iterative minimization program to optimize

parameters. This model was used to predict the RT of 343 molecules in the
MCMRTdatabase and 2935putative candidates for 112unknown identities
observed on 30 OCMs (see section “Retention time projection”). From the
343 molecules, 335 with observed experimental RT on CM 03 were used as
the external set to validate the generalization ability of the learned ANN via
predicted–experimental projection. The predicted RTs of these molecules
were projected onto CM 03 and compared with their experimental RTs.

Retention time projection
The projection of RT values from one CM onto another is performed in
pairs by MATLAB R2021b. For each pair of ICM (or ReICM) and OCM,
experimental RTs of calibrants are used to build a gaussian process (GP)
based nonlinear regression model between RTs in the two CMs. The basis
and kernel functions in GP were set as constant and rational quadratic,
respectively. The hyperparameters were optimized with the quasi–newton
method. This model allowed adjusting all the experimental and predicted
RTs via experimental/predicted–experimental projections to make them
comparable to the OCM.

Post–projection calibration for experimental RT
All 30 CMs in MCMRT were used as ICMs, and for each ICM, an appro-
priate ReICM was selected from the remaining 29 CMs, followed by using
the remaining 28 CMs as their OCMs, respectively. To select the most
appropriate calibrants, we used five different sets of calibrants to perform
post–projection calibration, including projecting all experimental RTs from

Fig. 8 | Post–projection calibration improves unknown identities annotation.
There are 2935 putative candidates for a total of 112 unknown identities and each
identity has more than 3 putative candidates. Panels a–j show the improvement of
ranking putative candidates. Panels d–g show the improvement of filtering putative
candidates. Examples are given of some molecules ranking relatively poorly in
OCMs 19–24 (a), somemolecules ranking relatively poorly in OCMs 25–30 (b), and
some molecules ranking almost uniformly across all OCMs (c) before calibration.
The ranking of these molecules reached similar levels among all OCMs after

calibration (a–c). Panelsh, i show the differences in the number of correct candidates
is exactly the Nth top candidate among 30 OCMs before (h) and after calibration (i).
An example is given of using post–projection calibration method to improve the
correct candidate ranking (j). Panel d shows the filtering error threshold for 30
OCMs. Panel e shows the true negative rate (TNR). Panel f shows the true positive
rate (TPR). Panel g shows the accuracy of filtering putative candidates by RT error
threshold.
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ICM to OCM and calibrating all projected RTs in each OCM. Specifically,
the experimental RTs of calibrants in each pair ICMandOCMwere used to
train a main projection model, to derive the projected RT in OCM for all
molecules in MCMRT. The projected and experimental RTs in each OCM
were compared to test the performance of experimental–experimental
projections. Then, the experimental RTs of calibrants in each pair of ReICM
and OCMwere used to train a ReProjection model, to derive the RePRT in
OCM for all molecules in MCMRT. The projected RT and RePRT in each
OCMwere compared to test the performance of post–projection calibration
for experimental RT.

Post–projection calibration for predicted RT
CM 03p and CM 07 were used as ICM and ReICM, respectively. The
remaining29CMs inMCMRTwereused asOCMs, respectively.Thirty-five
calibrants in Set Bwere used to train projection andReProjectionmodels, of
which 26 calibrants used experimental RT, while the remaining 9 calibrants
used predicted RT due to the lack of experimental RT on CM 03p. For
ReProjection models, the experimental RTs of the 33 calibrants were used.
The predicted RT for all the molecules in MCMRT and 2935 putative
candidates was projected from ICM 03p to 29 OCMs using projection
models, and the RePRT was derived from their experimental RT on CM 07
using ReProjection models.

Impact of prediction error on post–projection calibration
To assess whether the prediction error ofmolecules affects the performance
of post-projection calibration, we compared the predicted–experimental
projections before and after calibration in different OCMgroups within the
external set. Molecules in the validation set were divided into four groups
based on their projection error in CM 03. Among them, group 1 contains
209 molecules with an error of less than 1min, group 2 contains 68 mole-
cules with an error of between 1 and 2min, group 3 contains 44 molecules
with an error of between 2 and 4min, and group 4 contains 14 molecules
with anerrorof greater than4min.TheT-testwasused to evaluate statistical
significance,with a significance level set at 95%. Exact P-values are described
in the Results section.

Filtering-associated parameters
For each filtering threshold, the number of true negatives (TN), true
positives (TP), false negatives (FN) and false positives (FP) were calcu-
lated. TN was the number of false identities with an RT error above the
error threshold, TP was the number of true identities with an RT error
below the error threshold, FN was the number of true identities with an
RT error above the error threshold, and FP was the number of false
identities with an RT error below the error threshold. The true positive
rate (TPR) was calculated as TP/(TP+ FN), the false positive rate (FPR)
was calculated as FP/(FP+ TN), and the filtering accuracy was calculated
as (TP+ TN)/(TP+ FP+ TN+ FN).

Data availability
The MCMRT database, including chemical information, LC conditions,
and experimental RT data, is available in Supplementary Data 1–14. This
section also includes both the raw and statistical analyses of the
experimental–experimental and predicted–experimental projections
before and after calibration. Moreover, the numerical source data for
Figs. 2–8, which initially consisted of more than 10 Excel files, has been
consolidated into a single Excel file (as Supplementary Data 15), with
distinct tabs allocated for each specific dataset. The data can be freely
accessed on GitHub at https://github.com/Yanzi-Zhang-oss/Post-
projection-calibration-of-retention-time-across-liquid-chromatography-
setups. Any additional data can be obtained from the corresponding
author upon reasonable request.

Code availability
The source code of RT projection, QSRR modeling and SOM clustering
algorithm was provided in GitHub (https://github.com/Yanzi-Zhang-oss/

Post-projection-calibration-of-retention-time-across-liquid-
chromatography-setups).
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