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Retrosynthetic planning, which aims to identify synthetic pathways for target molecules from starting
materials, is a fundamental problem in synthetic chemistry. Computer-aided retrosynthesis hasmade
significant progress, in which heuristic search algorithms, including Monte Carlo Tree Search (MCTS)
and A* search, have played a crucial role. However, unreliable guiding heuristics often cause search
failure due to insufficient exploration. Conversely, excessive exploration also prevents the search from
reaching the optimal solution. In this paper, MCTS exploration enhanced A* (MEEA*) search is
proposed to incorporate the exploratory behavior of MCTS into A* by providing a look-ahead search.
Path consistency is adopted as a regularization to improve the generalization performance of
heuristics. Extensive experimental results on 10 molecule datasets demonstrate the effectiveness of
MEEA*. Especially, on the widely used United States Patent and Trademark Office (USPTO)
benchmark, MEEA* achieves a 100.0% success rate. Moreover, for natural products, MEEA*

successfully identifies bio-retrosynthetic pathways for 97.68% test compounds.

For a given target molecule, retrosynthetic planning aims to identify a fea-
sible and cost-effective synthetic route from the enormous chemical reaction
space, usingknownor commercially available buildingblockmolecules1. It is
one of the fundamental problems in synthetic chemistry and plays a critical
role in a wide range of applications, such as drug design2,3 and material
science4. The expenditure required to bring a single drug tomarket exceeds 2
to 3 billion dollars, which is primarily allocated toward the preceding dis-
covery phase and clinical trials5. Using the data-driven retrosynthetic tools
during the discovery phase to accelerate and reduce failures in the synthesis
of new drug molecules has attracted significant interest in recent years6.

Considering that the synthesis of most molecules typically requires
multiple chemical reactions and the number of possible chemical transfor-
mations is vast, retrosynthesis planning is a challenging task even for
experienced chemists. The difficulty of synthesizing a molecule is highly
influenced by its structure complexity and available building blocks. In some
cases, the identificationof a viable syntheticpathwayrequiresweeksof intense
effort by human experts. Computer-assisted synthesis planning could assist
chemists in expediting the identification of high-quality synthetic pathways7,
which commonly employs a search algorithm guided by a single-step ret-
rosyntheticmodel.With thedevelopment of artificial intelligence technology,
machine learning-based algorithms have demonstrated remarkable perfor-
mance, learning to generate recommendations automatically. These algo-
rithms usually perform the single-step retrosynthesis as a classification task
based on reaction templates8–11. Another alternative approach is to leverage

sequence-to-sequence models in natural language processing, treating the
one-step retrosynthetic task as a translation problem between products and
reactants12–17. Recently, semi-template-based methods are proposed to pre-
dict the reaction center dictating a reaction firstly via graph neural networks,
and then translate the resulting intermediate synthons into reactants via
translation models18–20. Single-step models predict the most promising che-
mical reactions that can directly synthesize the target molecule. Although a
greedy strategy or other simple exploration strategies can be employed to
generate a complete synthetic route21–23, search algorithms are usually
employed to extent the single-step model to full route design, providing
higher-quality solutionswith improved efficiency.Due to the largenumber of
possible precursors at each step, the single-step model serves as a guiding
search strategy to prevent combinatorial explosion. Figure 1 illustrates how
the traditional chemical synthetic pathway is transformed into the search tree.
The nodes in the search tree represent the synthetic position, containing all
molecules required to synthesize the target molecule in the root state. The
target molecule can be synthesized if all molecules within a state are available
buildingblocks.The edges in the search tree correspond to chemical reactions
that induce state transitions between the two connected nodes.

An excellent searching strategy can reveal meaningful retrosynthesis
efficiently from the large chemical space. Traditional heuristic methods,
suchasdepth-first, havepoorperformance and thequality of their suggested
pathway is not guaranteed. Inspired by the excellent performance of deep
reinforcement learning in mastering combinatorial games24, Segler et al.25
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proposed employing neural network-guided MCTS to do retrosynthetic
planning, which almost reached the level of the literature routes in a double-
blind AB test. There exists a trade-off between exploitation and exploration
in MCTS due to the traversing tree policy24. The selected leaf node is eval-
uated for its expected subsequent cost, which is propagated back to all nodes
on the traversed path to influence the subsequent search process. EG-
MCTS26 and GRASP27 are also built on MCTS. Depth-first proof-number
search (DFPN) has been utilized to address retrosynthetic planning28,29.
Besides, A*-like search algorithms, including Retro*30, Retro*+31,
GNNRetro32, RetroGraph33 and PDVN34, have demonstrated promising
results.Several widely used retrosynthetic planning software tools are pub-
licly available, such asAiZynthFinder35 and SynRoute36.DFPN is considered
inferior to the other two search algorithms. MCTS and Retro* have
demonstrated comparable search speeds and capabilities in route discovery.
When comes to the route quality and diversity, MCTS outperforms Retro*

in the 10,000 test molecules in PaRoutes37,38. However, the routes with a
depth of more than 10 reactions have been excluded in PaRoutes37, and

MCTS exhibits poor performance on these discardedmolecules with longer
paths, as will be discussed later. This selection process may introduce a bias
in favor of theMCTS search.Actually, 15.3%of the routes in theUSPTOtest
benchmark30 exceed a length of 10.Despite the optimality ofA* searchbeing
theoretically guaranteed39, obtaining an optimal solution more efficiently
remains a challenging problem in practice. Compared toMCTS, the search
process of A* lacks exploratory behavior, and the estimated values are not
updated once determined as more information is available40.

Both A* search and MCTS used in retrosynthetic planning algorithms
are heavily dependent on the quality of the heuristic guiding functions,
including the single-step expansion policy and the cost estimator. Guided by
biased heuristic functions, A* search may spend a considerable amount of
effort expanding states on a non-optimal branch due to the lack of
exploration, which significantly reduces the efficiency of the search process,
as displayed in Fig. 2a. The search process of MCTS relies on a balance
between exploitation and exploration. Insufficient exploration may lead
MCTS to exhibit behavior similar to that of A* search. If exploration is over-

Fig. 1 | Translation of the chemical retrosynthetic route representation to the
search tree representation. a Is the chemical representation of the synthesis plan,
and b is the search tree representation. In the search tree, the states of the nodes

encompass a set of molecules essential for the synthesis of the target molecule,
including all unsynthesized intermediate molecules as well as the building blocks.
The edges represent chemical reactions applied to the parent node.
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emphasized, a significant amount of effort will be spent to explore unne-
cessary branches compulsively. Pruning can be employed during the search
process to reduce thosemeaningless explorations, but it may also result in the
exclusion of the optimal solution due to insufficient simulations in the early
search stages. Taking retrosynthetic planning results of the USPTO test set as
an example, feasible synthetic pathways are provided alongside the target
molecules30, which are obtained by exhaustive search with reactions in the
USPTO database. As shown in Fig. 2c, considering the failed molecules by
Retro*+31, which is an A*-like search algorithm, 78.95% of them can be
synthesized within 7 steps in the USPTO benchmark, and 89.47% can be
synthesized within 9 steps. This observation suggests that A* search may
delve too deeply into unproductive branches, and fail to find the solution
under a limited search time. In contrast, 45.0% failure cases of MCTS require
at least 8 steps, and the failure rate of MCTS for molecules that require more
than 8 synthetic steps by exhaustive search is 84.8%. The compulsive
exploration ofMCTS prevents it from proceeding deeper toward the optimal
solution. Compared to the A* search, MCTS encounters difficulties in syn-
thesizing complex molecules with longer routes within the same search time.

In general, A* search is guaranteed to find the optimal solution, but the
efficiency of A* in problem-solving is compromised due to the deficiency in
exploratory. Although MCTS is capable of exploration, compulsive
exploration of meaningless states also decreases the efficiency of the search
process. To address the aforementioned limitations, the MCTS exploration
enhanced A* search algorithm (MEEA*) is proposed to incorporate the

exploration capacity ofMCTS intoA* search. Experiments are conducted on
ten organic molecule datasets, including the widely used USPTO
benchmark30. To the best of our knowledge, MEEA* achieves a 100.0%
success rate on the USPTO benchmark for the first time, and improves the
success rate on all 11,310 test molecules of the ten datasets from 60.50% to
65.14%, demonstrating the effectiveness of the proposed search algorithm.
What’s more, path consistency (PC) constraint is considered to improve the
generalization ability of the cost estimator. The PC-enhanced version of
MEEA* significantly improves theoverall synthesis success rate to76.27%.As
is known,biosyntheticnatural products (NPs) and theaforementioned tested
organic molecules are derived from two distinct structural spaces, and thus
the NP synthesis may be beyond the capabilities of the existing methods for
the above organicmolecule benchmarks25,41. Here,MEEA* is easily extended
to work on NP synthesis by adopting the single-step expansion policy from
BioNavi-NP41 and obtains the NP synthesis success rate at 97.68%, which is
much higher than 90.2% by the state-of-the-art BioNavi-NP.

Results
MEEA* search algorithm
MCTS comprises two crucial operations: the pUCT tree policy42 for
selecting the expanded leaf node, which enables a balance between
exploration and exploitation, and the revision of state values during the
search process, which influences the selection of nodes to be expanded in
subsequent iterations.Correspondingly, the nodewith the smallest f-value is

Fig. 2 | Demonstration of the results by methods of insufficient or excessive
exploration under the limited search time. aThe first failure case expands states on
a non-optimal branch due to the lack of exploration; b The second failure case
compulsively explores unnecessary branches and is unable to delve deeper toward
the optimal solution; c The cumulative proportions of lengths of synthetic routes

required by the exhaustive search for molecules that are failed to be synthesized by
the search algorithm; d The failure rates of molecules with different path lengths to
be synthesized by the exhaustive search (The source data for c and d is provided in
Supplementary Data 1 and 2). Retro*+ and MCTS employ the same expansion
function and value estimator. (MCTS does not utilize the pruning technique).
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expanded in the A* search algorithm, in which f value is the summation of g
value, the accumulated cost from the initial state s0 to st, and h value, the
expected cost from st to the preferred goal sG,

f ðstÞ ¼ gðstÞ þ hðstÞ: ð1Þ

MEEA* search algorithm is proposed by integrating the MCTS with A*

search. As depicted in Fig. 3a, the search process of our MEEA* consists of
three steps:
• Simulation: A set of candidate nodes is collected by performingKMCTS

MCTS simulations without node expansion. The pUCT tree policy is
employed to traverse to leaf nodes, thereby introducing exploratory

Fig. 3 | The overall framework of MEEA* retrosynthetic planning search algo-
rithm. a The search process of our MEEA* algorithm includes three steps. (1)
Simulation: conductKMCTS iterations to generate the candidate set from the open set;
(2) Selection: select the state with the minimum f value from the candidate set; (3)
Expansion: expand the selected state using the single-step retrosynthetic model B.
b Evaluation of states during the Simulation step ofMEEA*. g(s) is the summation of

reaction costs along the traversal path, and h(s) is estimated by the value network,
considering all molecules in the state. c Single-step retrosynthetic model B used in
the Expansion step. The first non-building block molecule is selected for expansion.
The top k best reaction templates are obtained based on the priors provided by the
policy network, which are applied to the expanded molecule to generate its possible
precursors.
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information into the candidate set. f values of the traversed nodes are
estimated using the cost estimator. The evaluation of the leaf node is
updated to all nodes in the path from the root sr to the leaf sl in a
backward pass.

• Selection: The node s with the smallest f value in the candidate set is
identified as the next node in the search tree to be expanded.

• Expansion: Integrate the children of s into the search tree provided by
the single-step retrosynthetic model.
MEEA* is a heuristic search algorithm. As displayed in Fig. 3b, c, a

single-step retrosynthetic model is employed to provide possible syn-
thetic reactions. The policy network takes as input the Morgan

fingerprint of the first non-building block molecule in the expanded
state. The top k reaction templates are utilized to produce potential
precursors of the targetmolecule. According to Eq. (1), the f value of state
s is evaluated by calculating g(s) based on the traversal path and using a
value neural network as a cost estimator to predict h(s). The details of
MEEA* are presented in theMethod section. Compared to the A* search,
the existence of a candidate set injects the exploratory capability of
MCTS into MEEA*. The simulation times KMCTS is a hyperparameter
balancing the influence of A* search and MCTS on MEEA*. Besides,
MEEA* also preserves the optimality of A* search, because all nodes
expanded by A* search are also expanded by MEEA* under the

Success rate on USPTO benchmark. Success rate on Nature Products.a Learning curve of cost estimator in Retro∗.

Synthetic route 

(Exhaustive search).

Synthetic route 

(MEEA
∗ and MCTS).

Synthetic route (Exhaustive search). Synthetic route (Retro∗ +). Synthetic route (MEEA
∗).

Fig. 4 | MEEA* achieves superior performance compared with A* search
and MCTS. a The learning curve of the cost estimator in Retro* illustrates the
overfitting problem; b Success rate on USPTO benchmark with different iterations.
Guided by the same heuristic function, Retro*+ also achieves 100% success rate after
enough iterations, but MEEA* is much more efficient; c Success rate on Natural
Products (The source data for a–c is provided in Supplementary Data 3–5);
d, e Synthetic route for molecule COc1ccc2nccc(C(N)CC[C@@H]
3CCN(CCSc4cccs4)C[C@@H]3C(=O)O)c2c1. MEEA* provides a shorter reaction
pathway than the exhaustive search. Retro*+ fails to provide a solution, although the

target can be synthesized in three steps.MCTS yields the same solutionwithMEEA*,
but MCTS requires 35 expansions while MEEA* only requires 11 expansions.
f–h Synthetic route for molecule COCCCc1cc(CN(C(=O)[C@H]2CN(C(=O)
OC(C)(C)C)CC[C@@H]2c2ccc(OCCOc3c(Cl) cc(C)cc3Cl)cc2)C2CC2)
cc(OC[C@@H]2C[C@H]2C(=O)OCC(=O)N(C)C)c1. Reaction pathways provided
by the exhaustive search, Retro*+, and MEEA* with lengths of 16, 12, and 11
respectively. MCTS fails to provide a solution. (MEEA*, MCTS, and Retro*+ are
guided with the same single-step expansion policy and cost estimator).
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consistency assumption of the heuristic value h predicted by the neural
network39. The detailed proof is provided in Supplementary Note 1.

Path consistency enhanced cost estimator
Reliable guiding functions benefit the search process of MEEA* greatly.
From a chemical perspective, the synthetic difficulty of a molecule is related
to its structural complexity. The high structural diversity and sparse training
data present a challenge in accurately estimating their synthetic cost.What’s
more, the synthetic cost is also influenced by the available building blocks.
Complex molecules can be synthesized expeditiously in a few steps if pre-
cursors are readily available25. The synthetic cost of molecules with similar
structures can vary considerably, due todifferences in the availability of their
precursors. Therefore, the generalization ability of the cost estimator is
critical to the success of the retrosynthesis. As shown in Fig. 4a, Retro*30

exhibits a substantial gap between its testing and training error of their cost
estimator, indicating a severe overfitting problem.

In this paper, MEEA*-PC is proposed to alleviate this problem. Path
consistency (PC), which is f values on one optimal path should be identical,
is suggested to be used as a constraint to improve the learning efficiency40.
PCZero43 incorporated PC into MCTS, and experiment results imply that
PC sacrifices accuracy on the training set slightly to improve the general-
ization ability on the testing set greatly. In this paper, PC is utilized to train a
more reliable cost estimator to assist MEEA* search by considering PC as a
regularization term LPC of the regular loss function LRL, i.e.,

LðθÞ ¼ LRLðθÞ þ λLPCðθÞ; ð2Þ

where λ is a hyperparameter. PC is realized by minimizing the deviation of
the estimated f values to the mean f value of all nodes in the synthetic route.
To train the PC-enhanced cost estimator via reinforcement learning, we
construct a training set that consists of the synthesis pathways of molecules
in theUSPTO training set. The synthesisways are identified byMEEA*with
the heuristic functions provided in Retro*+31.

Retrosynthetic evaluation of MEEA* search algorithm
Experiments are conducted to validate the effectiveness of our MEEA*

search algorithm. Following the literature26,27,30,31,33, commercially available
molecules in eMolecules are used as the building block set. Firstly, experi-
ments are conducted on the widely used USPTO benchmark, containing
190molecules. Following previousworks26,27,30,31,33, all algorithms are limited
to amaximumof 500 single-stepmodel calls, or 10min of real-time.Details
of benchmark algorithms are provided in Supplementary Note 2 and
Supplementary Table 1. It needs to be noted that althoughMEEA* employs

MCTS to conduct lookahead search, MCTS simulation inMEEA* does not
call single-stepmodels. The invocation of the one-step retrosyntheticmodel
accounts for themajority of the runtime.Average times are evaluated by the
number of calls to the single-step expansion policy tomeasure the efficiency
of algorithms. For molecules that appeared in the USPTO dataset, an
exhaustive search is employed to collect all possible pathways for synthe-
sizing the target molecule utilizing chemical reactions from the USPTO
dataset, and the shortest route is selected as the reference synthetic route.
The performance of an exhaustive search is used as a benchmark for eva-
luation. As presented in Table 1, MEEA* achieves a remarkable 100.0%
success rate, outperforming the existing A*-based and MCTS-based algo-
rithms. Additionally, the synthesized routes demonstrate superior quality
compared to the existing algorithms, in terms of both route length and
synthesis cost. The substantial performance improvement highlights the
effectiveness of ourMEEA*. AlthoughMEEA* requires theuse ofMCTSas a
pre-search to determine the candidate set, the execution time spent for each
expansion slightly increases. However, because of MEEA*’s ability to find
solutions with fewer expansions, the overall runtime is actually shorter.
Taking the USPTO test benchmark as an example, Retro*+ spends 6578 s
whileMEEA* only spends 3416 s. RetroGraph33 achieves the shortest search
time by adopting batch processing, which enables the expansion of nodes to
be shared during the synthesis ofmultiplemolecules. Theoretically, Retro*+
can also identify synthesis pathways for all molecules in the USPTO
benchmark since it is guaranteed to find the optimal solution if the search
resource is unlimited. As shown in Fig. 4b, the success rate of Retro*+
achieves 100.0%when the number of one-stepmodel calls is 2800, which is
more than five times the number by MEEA*. There is a significant
improvement in search efficiency achieved by MEEA*. The success rate on
theUSPTObenchmarkwith different single-stepmodel calls is displayed in
Supplementary Note 5 and Supplementary Table 3.

The USPTO benchmark is widely utilized to evaluate retrosynthetic
planning algorithms. However, molecules in the test benchmark need to
satisfy two conditions. A synthetic route with reactions in the USPTO
database is available, and each reaction in the synthetic route must rank
within the top 50 predictions of the single-step expansionmodel of Retro*30.
These two screening criteria have intentionally reduced the difficulty of this
benchmark. The post-filtered test dataset exhibits inherent biases, thereby
inadequately representing the real distribution ofmolecules. Therefore, nine
additional datasets are included to ensure the authenticity of the evaluations,
which also have strong practical significance. The distribution of molecules
in the USPTO benchmark and the other nine molecules is presented in
Supplementary Note 10 and Supplementary Fig. 3. More detailed infor-
mation is listed in the Method. The USPTO benchmark requires that each
molecule in the test set possesses at least one synthetic pathway, and the

Table 1 | Performance summary on USPTO benchmark with a
hard time limit of 500 single-step model calls, or 10min

Algorithm Success rate Avg length Avg cost Avg time

Exhaustive search 100.0% 6.67 10.66 −

Retro*30 86.84% 9.71 15.33 157.11

Retro*-030 79.47% 11.21 19.40 208.09

Retro*+31 91.05% 8.74 15.23 100.15

Retro*+-031 96.32% 7.69 11.66 96.22

RetroGraph33 99.47% 6.33 12.92 45.13

MCTSa25 33.68% >21.22 >44.91 370.51

MCTS+a25 35.79% >20.55 >43.48 365.21

GRASP27 98.94% 6.17 13.91 48.47

MEEA* 100.0% 6.11 9.88 55.72

Molecules that fail to synthesize are assigned a large synthetic length and cost. The minimum
average length and cost are calculated by setting the length and cost of successfully synthesized
molecules to 0.
Values marked with bold are the best performance under each metric.
aThe success rates of MCTS and MCTS+ are borrowed from30.

Table 2 | The success rate comparison tested in 10 datasets

Dataset Retro*30 Retro*+31 EG-
MCTS26

MEEA* MEEA*-
PC

USPTO30 86.84% 91.05% 96.84% 100.0% 94.74%

logS44 67.08% 69.29% 71.74% 73.22% 80.34%

BBBP48 47.87% 52.46% 54.92% 57.70% 66.88%

ClinTox52 38.69% 43.15% 45.54% 50.00% 60.51%

logP45 53.96% 61.14% 62.72% 65.24% 73.72%

DPP449 68.52% 78.59% 77.05% 83.63% 96.04%

BACE50 33.71% 38.35% 40.07% 40.15% 56.32%

Ames47 57.40% 63.51% 66.61% 68.29% 78.74%

Toxicity
LD5046

55.39% 59.98% 64.22% 66.28% 72.94%

SVS51 50.14% 55.93% 58.23% 60.19% 73.01%

Total 54.18% 60.50% 62.20% 65.14% 76.27%

Values marked with bold are the best performance under each metric.

https://doi.org/10.1038/s42004-024-01133-2 Article

Communications Chemistry |            (2024) 7:52 6



pathway is constructed by the reactions ranking within the top 50 predic-
tions of the single-step expansion model. The molecules in the nine addi-
tional datasets are not subject to these restrictions, andmaynot have feasible
synthesis routes among the top 50 chemical reactions, which renders them
more representative of real-world molecule distributions and raises higher
requirements for the single-step expansion policy. As shown in Table 2,
MEEA* outperformsRetro*+ andEG-MCTS in all ten datasetswith 65.14%
overall success rates. This clearly demonstrates the effectiveness of MEEA*

on a large-scale test set. The results of RetroGraph33 and GRASP27 are not
presented as their codes are not publicly available. On the other hand,
MEEA* focuses on improving the search algorithm. While Retro*+ and
MEEA* utilize the same heuristic function, the significant performance
improvement provides compelling evidence of the effectiveness of our
search algorithm. Investigation on the hyperparameter KMCTS is displayed
in Supplementary Note 8 and Supplementary Fig. 1.

Trade-off between quality and diversity
Existing works usually conducted experiments by limiting the number of
calls of the single-step model26,27,30,31,33. Varying the single-step model can
result in uneven resource allocation across different models, and limiting
searchwithwall-clock time is recommended37,38. Besides the success rate, the
diversity of the generated routes is highly recommended as a criterion37,38.
For a given molecule, multiple diverse synthetic pathways are desired to be
provided to human experts for further selection. The generated routes are
clustered into different groups and the number of clusters is regarded as a
metric of diversity37. Tree edit distance (TED) is calculated to measure the
similarity between the algorithm-generated synthetic pathway and the
referenced pathway, and the leaves overlap is computed as the average ratio
of the building blocks present in both the generated route and the reference
route. The synthetic routes provided in the USPTO benchmark are used as
the referenced routes to compute TED and the leaves overlap. During the
experiment, at most 25 synthetic routes are generated to compute the
number of clusters, considering the computational time.TheTEDvalue and
the leaves overlap are calculated basedon thefirst generated route. A* search
and MCTS are included for comparisons, and they are implemented by
setting KMCTS→∞ or KMCTS = 1 in MEEA*. Unsolved molecules are
excluded from the calculation of the evaluation metrics.

The results of the success rates and the first solution time are
reported in Table 3, where the first solution time means the time used to
find the first feasible solution. MCTS typically takes the longest time to
find the first feasible solution, due to its compulsory exploration to
unnecessary nodes. MEEA* not only solves all molecules with 100.0%
success rate, but also only requires 19.93 seconds on average, sig-
nificantly less than the 55.33s for MCTS and 22.99s for A*. The results
again demonstrate the high efficiency of the proposed MEEA*. It is
observed that the above results are basically consistent with the ones by
limiting the number of calls to the single-step retrosynthetic model. The
reasons are as follows. The invocation of the single-step retrosynthetic

model accounts for the majority of the runtime. When the single-step
model is kept fixed, capping the number ofmodel calls is a reliable setting
to evaluate the performances of retrosynthetic planning methods. Since
the neural network architecture of the expansion policy of MEEA*

remains the same as that of Retro* and Retro*+, the computational
resources consumed by each single-step model invocation are basically
identical. Moreover, considering the small variations in implementing
various search algorithms, there exist only small differences between the
runtime and the number of calls to the single-step retrosynthetic model.
The success rate with different real search time is displayed in Supple-
mentary Note 9, including both Supplementary Table 6 and Supple-
mentary Fig. 2.

According to results in Table 3, the routes provided by MCTS have
greater diversity with larger cluster numbers. Conversely, the routes gen-
erated by A* are more closely aligned with the routes of exhaustive search
with a smaller TED and a higher proportion of overlapping leaves. This
result implies a deficiency in exploratory because the routes of exhaustive
search are used to train the heuristic guidance.MEEA* is a hybrid algorithm
that combines the characteristics of A* and MCTS, and it achieves a good
balance between route quality and diversity.

Evaluation of path consistency enhanced MEEA*

As demonstrated in the previous sections, MEEA* borrows the single-step
expansion policy and cost estimator from Retro*+, and achieves better
performance than Retro*+. Here, the performance can be further improved
by considering a better policy or cost estimator as follows. On the one hand,
the cost estimator from Retro*+ predicts the synthetic cost of only one
molecule at a time and calculates the total cost of the current state as the
summation of predicted costs for all molecules related to the state. A cost
estimation network is proposed. It is capable of taking all molecules within
the current state jointly as input and computing the state cost in a direct and
more accuratemanner. The cost network is trainedbyminimizing themean
square error of cost prediction, and PC is employed to improve the gen-
eralization capability via Eq. (2). Expansion policy is also updated on the
newly generated data by MEEA*

With the guidance of the updated policy and the cost estimator trained
under the PC constraint, the overall success rate ofMEEA* has significantly
improved from65.14%to76.27%.Note that, only the success rate ofUSPTO
decreased, while the performance improved across all other nine datasets.
This observation is possibly due to the fact that there exists a distribution
bias in the USPTO test benchmark due to expansion policy-basedmolecule
filtering. MEEA* is a search algorithm, which can be combined with dif-
ferent single-step expansion models. Employing a better single-step
expansion model can also enhance the performance of MEEA*. More
experimental results are presented in Supplementary Note 7 and Supple-
mentary Table 5.

Synthesis of natural products
Natural products (NPs) play a significant role indrug discovery since 60%of
FDA-approved small molecule drugs are either NPs or their derivatives.
However, synthetic pathways of over 90% of NPs are unknown. Biosyn-
thetic NPs and the aforementioned tested organic molecules are derived
from two distinct structural spaces41. Most existing organic retrosynthesis
tools cannot be directly applied to the synthesis ofNPs25. Recently, BioNavi-
NP41 specifically built an expansion policy for natural products, which was
combined with Retro*30 to trace NPs back to biologically plausible building
blocks. When limiting the search algorithm to 100 single-step model calls
and 50 expansions, the success rate is improved from 88.66% to 97.68% by
replacing Retro*with ourMEEA*-PC. As shown in Fig. 4c, if increasing the
iterations to 2000, the success rate of Retro* stays at 93.04%, which remains
inferior to our MEEA*. The search space for both BioNavi-NP andMEEA*

is identical as the same expansion policy is employed. BioNavi-NP may be
trapped in the non-optimal branches due to the lack of enough exploration.
The number of search iterations required to overcome this limitation in
BioNavi-NP will significantly surpass that of MEEA*. Overall, MEEA* has

Table 3 | The results by imposing a time limits of 10min on
every run on USPTO benchmark

Retro*+ A*(KMCTS→∞) MCTS(KMCTS = 1) MEEA*

Success
rate

96.84% 99.47% 97.37% 100.0%

First solu-
tion time

43.67 s 22.99 s 55.33 s 19.93 s

Number of
clusters

/a 4.09 4.26 4.17

TED 11.10 10.15 11.27 10.94

Leaves
overlap

0.606 0.638 0.582 0.605

aRetro*+ is not designed to generate multiple synthetic pathways, and only the best route is pro-
vided. The number of clusters for Retro*+ is not presented in the table.
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achieved significant performance improvements in both general organic
molecules and natural molecules. An example of the synthesis of a natural
product is given in Supplementary Note 11 and Supplementary Fig. 4.

Case study
Figure 4d, e displays the synthetic pathway of a molecule that can be syn-
thesizedwith four chemical reactions by the exhaustive search. BothMEEA*

and MCTS have discovered the same synthetic pathway, which exhibits a
shorter route length. MCTS requires 35 single-step model calls while
MEEA* only requires 11 calls, indicating that the compulsory exploration of
MCTS results in lower efficiency compared toMEEA*. Guided by the same
heuristic functions, Retro*+ is trapped in the first failure case depicted in
Fig. 2a and fails to identify the synthetic route, although the target molecule
can be synthesized with four steps.

Figure 4f–h illustrates the synthesis planning of a complex molecule.
The exhaustive search, Retro*+, and MEEA* provide reaction pathways
with lengths of 16, 12, and 11, respectively. MCTS fails to find a solution
within the given time limit. The compulsory exploration inMCTS prevents
it from effectively delving into deeper regions in the search tree within the
given time limit. The search process is trapped in the second failure case
displayed in Fig. 2b. Furthermore, due to the exploratory property, MEEA*

requires a slightly higher number of single-step model calls for finding the
synthetic pathway than Retro*+, but it successfully identifies a shorter
synthetic route. The two retrosynthesis cases above have demonstrated the
superiority of MEEA* from different perspectives.

Besides, MEEA* is applied to complex drug molecules to illustrate its
practical significance, including Paxlovid, Fostemsavir, Enarodustat,
Pacritinib, and Oteseconazole. MEEA* has successfully identified the
synthesis pathway for the abovedrugs, and the synthetic plans are illustrated
in Supplementary Note 12 and Supplementary Fig. 5.

Discussion
In this paper, we proposed an efficient retrosynthetic planning algorithm
MEEA*, incorporating the exploratory behavior of MCTS into A* search
by providing a lookahead search. The quality of the guiding function is
crucial for the success of heuristic search. A* search is prone to being
misled into non-optimal branches due to the lack of exploration ability.
The compulsive exploration in MCTS limits the exploration depth
within a finite iteration, rendering it less effective than A* in synthesizing
complex molecules. Compared to A*, MEEA* escapes local optimal
branches by incorporating exploration. In contrast to MCTS, MEEA*

prevents exhaustive exploration of all branches by utilizing A*’s efficient
node expansion criteria. To the best of our knowledge, MEEA* achieves
100.0% success rate on the widely used USPTO benchmark for the first
time. Guided with the same heuristic functions with Retro*+, MEEA*

improves the success rate on all 11,310 molecules from 60.50% to
65.14%. Path consistency is considered to improve the generalization
capacity of the cost estimator and significantly improves the overall
synthesis success rate to 76.27%. Experiments on natural products are
conducted. Guided with the single-step expansion policy provided by
BioNavi-NP, the success rate of synthesizing NPs has been increased to
97.68% from BioNavi-NP’s 90.2%. In summary, MEEA* has achieved
significant performance improvements in both general organic mole-
cules and natural molecules. Besides, we have provided a theoretical
guarantee that MEEA* can definitely find the optimal solution.

There still remain certain challenges for the refinement of the MEEA*.
For example, the chemical reactions suggested by the single-step retro-
synthesis model may present significant barriers to implementation in
practice. Our work mainly focuses on the multi-step synthesis search
algorithm, and the single-stepmodel primarily draws from previous works.
It is recommended toutilize amore reliable single-step retrosynthesismodel
or to implement additional filtering of the generated potential chemical
reactions. Additionally, MEEA* integrates the exploratory nature of MCTS
with A* search. It is critical to strike a balance between the influence of
MCTS and A* by selecting an appropriate value forKMCTS. The necessity of

exploration in MEEA* is dependent upon the reliability of the heuristic
function. If the heuristic guidance is highly reliable, exploration will be
necessary because the optimal solution can be identified through a best-first
search directly. In such cases, MEEA* should use a larger value of KMCTS to
prioritize exploitation and move closer to A* search. When the heuristic
functions are unreliable, the importance of exploration becomes more
crucial,MEEA* should choose a smaller value ofKMCTS to better leverage the
power of MCTS. What’s more, molecules are represented by one-
dimensional vectors, which may not capture sufficient stereochemical
information. Graph neural networks offer a promising approach to lever-
aging more comprehensive molecular information.

Methods
Markov decision process for retrosynthesis planning
TheMarkov decision process (MDP) is a mathematical framework used
to model sequential decision-making problems for an agent operating
within an environment. It is describedwith state spaceS, action spaceA,
transition function T and cost C. The objective is to identify a pathway
for synthesizing the target moleculem0 using building blocks from I . In
this paper, we formulate a retrosynthesis planning problem as an MDP
as follows:
• State spaceS: A state s 2 S is defined as a set ofmolecules {mi,mj,⋯ }

required for the synthesis of the target molecule. The initial state is
s0 = {m0}, consisting only of the target molecule. The retrosynthesis of
m0 is considered successful if a state st � I is identified.Molecules in a
state are sorted based on their SMILES representation.

• Action space A: An action a 2 A represents a potential chemical
reaction that can be utilized to decompose a molecule into its con-
stituent reactants. The action space is vast due to the multitude of
chemical reactions available for synthesizing a molecule. The single-
step retrosynthetic model B selects the k most promising chemical
reactions as legal actions i.e., BðmÞ ¼ ai; πðaijmÞ

� �k
i¼1, where π(ai∣m)

is the associated probability of taking action ai for molecule m. The
remaining reactions are discarded to narrow down the width of the
search tree.

• Transition model T : When taking action at in state st, T ðst ; atÞ
determines the reaching state st+1. It replaces the product molecule
associated with action at in state st with its corresponding reactants,
yielding the subsequent state st+1. Actions are always applied to thefirst
molecule in the state. For example, suppose that the current state is
st = {m1,m2}, and the action at is the reaction m3+m4→m1. The
resulting state stþ1 ¼ T ðst ; atÞ ¼ fm2;m3;m4g.

• CostC: Reaction cost Cðs; a; s0Þ returns the costwhen transitioning to s0
via action a in state s. In practice, C is defined as� log prðajmÞ, where
pr(s∣m) is a predictive model trained on a real reaction dataset to
estimate the probability of selecting reaction a for molecule m in the
physical world.

MEEA* search
MEEA* search is a hybrid algorithm that introduces the exploration of
MCTS into A* search. MCTS follows iteratively four steps:
• Selection: Traverse from the root node to a leaf node with an

exploratory tree policy.
• Expansion: Incorporate promising children into the search tree based

on the single-step retrosynthetic expansion policy.
• Evaluation: Score the leaf by either fast rollout or heuristic value

models.
• Update: Back up the simulation results to all states on the

traversed path. A* search maintains two state sets: the OPEN set for
generated but unexplored nodes and the CLOSED set for explored
nodes. Initially, the CLOSED set is empty and the OPEN set contains
only the root state. The search process iteratively executes the follow-
ing steps:

• Selection: If the OPEN set is empty, terminate the search with failure.
Otherwise, identify the state swith the smallest f value in theOPENset.
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• Expansion:Generate the child states of sbased on the expansionpolicy.
If sG is generated, terminate with success. Otherwise, mark state s as
CLOSED and add generated child states to the OPEN set.Besides the
OPENset andCLOSEDset,MEEA*maintains an additional candidate
set, which is collected with the exploratory MCTS. Each edge in the
search tree stores the visit count N(s, a), the prior probability π(s∣a)
received from the expansion policy network, and the entire synthetic
cost Q(s, a). The transition function s0 ¼ T ðs; aÞ is deterministic. The
search process of our MEEA* consists of three steps: simulation,
selection, and expansion. In the first phase of MEEA*, simulations are
conducted for KMCTS iterations without node expansion to collect a
candidate set. Each simulation consists of three steps.

• Traverse from the root to a leaf node according to a treepolicy. In order
to further encourage exploration, a variant of pUCT is adopted, and a
uniformdistribution is employed as the prior policy. The next action is
selected via:

a� ¼ argmax
a2A

�Q s; að Þ þ cpuct
1
jAj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b2ANðs; bÞ

p
1þ Nðs; aÞ

( )
; ð3Þ

where cpuct is a hyperparameter to control the exploration level of the
simulation. The tree policy is applied until a leaf node sl is found.

• Put the leaf node sl into the candidate set and calculate the f value of sl,
which is the summation of g(sl) andh(sl) according toEq. (1). g(sl) is the
total cost of all reactions from s0 to sl, and the subsequent accumulated
cost h(sl) is predicted by the heuristic cost estimator.

• Update the stored statistics for nodes in the path from the root s0 to the
leaf sl.

Qðs; aÞ  Nðs; aÞ×Qðs; aÞ þ f ðslÞ
Nðs; aÞ þ 1

;Nðs; aÞ  Nðs; aÞ þ 1 ð4Þ

After KMCTS simulations, the candidate set with exploratory is deter-
mined. During the selection step, the candidate node with the lowest f value
is chosen from the candidate set to be expanded in the next step. Single-step
expansion model B provides top 50 successor states, which are directly
added to the search tree. If a newly added state contains exclusively building
blocks, the synthetic pathway for the target molecule is successfully iden-
tified. The above three steps are iteratively performed until the iteration step
budget has been exhausted. The simulation times KMCTS is a hyperpara-
meter balancing the influence of A* search and MCTS on MEEA*. When
KMCTS is relatively small, MEEA* approaches MCTS with increased
exploration and degenerates into pure MCTS whenKMCTS = 1. In this case,
only one candidate node is available for expansion, which is determined by
the exploratory tree policy of MCTS. When KMCTS grows, more leaf nodes
are included in the candidate set. If KMCTS is sufficiently large, all opening
nodeswill be chosen as candidate nodes because of the exploratory nature of
MCTS.Consequently,MEEA* is degraded toA* search,where thenodewith
the lowest f-value among all open nodes is selected for expansion. Single-
step model B and cost estimator are borrowed from Retro*+ to assist the
search process of our MEEA*. The parameter KMCTS and cpuct is set to 100
and 4.0 respectively. Experiments are conducted on Tesla V100 GPUs and
Intel(R) Xeon(R) Gold 6238R CPU with 512G memory. There is a wide
range for KMCTS to make MEEA* perform well.

Synthesis pathway preparation
MEEA* is a heuristic search algorithm that requires an expansionpolicy and
cost estimator to assist the search process. Although the guiding function
can be provided by previous works, it is still necessary to train our own
networks for better performance. The USPTO training set provided by
Retro*30 does not include synthetic pathways for molecules, so we are

required to generate these routes by ourselves. One choice is to employ an
exhaustive search to identify the shortest synthetic pathway of the given
molecule using the chemical reactions available in the USPTO dataset, the
same as Retro*30. This strategy is effective in training amodel with relatively
high performance from scratch, but limits the performance of the model,
making it challenging to surpass the capabilities represented by the training
set42. The other choice is to update the heuristic model with reinforcement
learning, collecting synthetic routes with MEEA* to further update its
heuristic guidance iteratively. Retro*+31 has illustrated the effectiveness of
this self-improved learning process.

MEEA* search is utilized to identify the synthetic pathways for mole-
cules in the USPTO training set. The expansion policy and cost estimator
from Retro*+31 are employed as the initial heuristic functions to assist
MEEA* search. There are 299202molecules in the USPTO training set, and
MEEA* has successfully identified synthetic pathways for 299024 of them.
The chemical reactions that appear in the collected synthetic pathways will
be used to update the expansion policy. The synthetic cost is calculated as
cðaÞ ¼ log prðajmÞ, prepared for the training of the cost estimator. pr is the
expansion policy used by Retro*30, which is trained using actual chemical
reactions and can be used to measure the likelihood of a reaction taking
place. It needs to be noted that the updated policy and newly trained value
function are exclusively employed in MEEA*-PC, and additional ablation
studies are provided in the Supplementary Note 6 and Supplementary
Table 4 for further analysis.

Single-step retrosynthetic model
In this paper, a template-based single-step retrosynthesis model is
adopted by treating the problem as a classification task based on reaction
templates. The identical network architecture as Retro*+ is employed,
which is a neural network comprising a single hidden layer with 512
dimensions. The network parameters are updated using the cross-
entropy loss, with Retro*+’s model serving as the initial model for the
training process. We utilize the Adam optimizer with a learning rate of
0.001, and the batch size is set to 1024. The architecture of the network is
presented in Supplementary Note 3.

Cost estimator and path consistency
The cost estimator is employed to predict the cost of synthesizing all
molecules in the state s = {mi,mj,⋯ }. However, previous cost estimator
algorithms, such as Retro* and Retro*+, were limited to predicting the
synthetic cost of onemolecule at a time. The total synthetic cost for state s is
calculated as the summation of independent predictions of synthetic costs
for all molecules within s,

hðsÞ ¼
X
m2s

hðmÞ; ð5Þ

where h is a cost estimation function. In this paper, we have designed a
network to estimate the synthetic cost jointly for allmoleculeswithin a given
state s, as illustrated in Eq. (6). This computational approach provides
greater flexibility than the method in Eq. (5), allowing the model to utilize
inter-molecular information to improve the prediction performance,

hðsÞ ¼ hðmi;mj; � � �Þ: ð6Þ

Multiple molecules are fed into the same network to extract their feature
embeddings. The global embedding eg is computed as the sum of all
molecules’ embedding evi , which can be viewed as a representation of the
entire state. Global embedding eg is further fed into a fully connected layer to
obtain the cost estimation of the state directly.

Through analysis of the collected synthetic pathways, the states of each
step in the synthesis process, as well as the associated real synthetic cost c(s),
are obtained and utilized as training data for the cost estimator. The mean
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square error is utilized as the loss function, as shown in Eq. (7). The Adam
optimizerwith a learning rate of 0.001 is employed toupdate theparameters,
and the batch size is set to 256.

LRLðsÞ ¼ ðhðsÞ � cðsÞÞ2 ð7Þ

After obtaining a function model that can directly evaluate the entire
state, we consider incorporating the path consistency constraint into the
model’s learning process to improve its generalization ability. Path con-
sistency is defined as f values on one optimal path should be identical. For a
collected synthetic pathway {s0, s1,⋯ , sN}, PC constraint is evaluated by the
deviation of the state evaluation f(st) from the learning target, which is the
average state evaluation along the estimated optimal path.

LPCðsÞ ¼ f ðsÞ � �f ðsÞ� �2
;�f ðsÞ ¼ 1

N þ 1

XN
i¼0

f ðsiÞ ð8Þ

As illustrated in Eq. (2), the PC loss is used as a regularization term for the
reinforcement learning loss, which is adjusted by the hyperparameter λ.
During training, λ is set to 5.5.

Test dataset
The United States Patent Office (USPTO) dataset is a publicly available
reaction dataset, which consists of approximately 3.8 million reactions
collected from patents granted between 1976 and September 2016. It is
widely used for machine learning applications because of its size,
diversity, and accessibility. USPTO dataset is prepossessed and split into
train/validation/test sets by Retro*30 as a benchmark dataset for retro-
synthesis planning problems. For eachmolecule in theUSPTO dataset, a
brute-force search is conducted to determine if it can be synthesized
using reactions within the USPTO training data. For each synthesizable
molecule, the shortest-possible synthesis pathways are collected to train
a single-step expansion policy, which is used to provide the most
potential reactions for multi-step retrosynthesis planning algorithms.
Only molecules, for which the reactions in their synthesis pathways are
all covered by the top-50 predictions by the single-step expansion policy,
are preserved in the test benchmark. As a result, the distribution of
molecules in the USPTO test benchmark differs from the distribution of
molecules in real life.

To enable a more rigorous evaluation of the algorithm’s performance
in real-world scenarios, nine additional real-world molecular datasets are
also utilized as the test set. logS44 logP45, and Toxicity LD5046 are used to
predict the solubility, hydrophobic property, and toxicity of molecules
separately. The Ames dataset47 is a standardized collection of data used to
assess the genetic toxicity of bacteria, i.e., whether it induces mutations.
Humanblood-brain barrier penetration (BBBP)48 is a crucial property in the
process of drug design. Dipeptidyl peptidase-4 (DPP4) inhibitors49 are an
essential drug in the treatment of type-2 diabetes mellitus. β-secretase 1
(BACE-1) inhibitors50 are a class of drugs that target the BACE-1 enzyme,
which plays a key role in the production of β-amyloid peptides in Alzhei-
mer’s disease. Inhibition of protein-protein interactions in SVS51 is of great
interest in drug design and discovery, because dysfunction of PPIs can lead
to various diseases, including immunodeficiency, autoimmune disorders,
allergy, drug addiction, and cancer. ClinTox52 compromises FDA-approved
drugs and compounds that have undergone clinical trials but failed due to
toxicity-related issues. Those drug molecules in ClinTox are selected by
experts for clinical trials in the early stages of drug development, which is
suitable to evaluate the efficacy of retrosynthesis planning algorithms in
drug design. More information about the test dataset is summarized in
Supplementary Note 4 and Supplementary Table 2. To increase the chal-
lenge of the test, datasets are preprocessed as follows:
• Remove molecules present in either the USPTO database or the

building block set.
• Removemolecules solved by aheuristic BFSplanning algorithmwithin

50 steps.

• Remove molecules that can be solved by Retro* in one step.

Although biosynthetic natural products and chemically synthesized
compounds share certain similarities, they are fundamentally distinct in
terms of structural space and reaction types41. NPs exhibit a greater diversity
and more complex structures, and existing organic retrosynthesis tools
cannot be directly used for biosynthesis prediction. What’s more, NPs can
be synthesized from a dozen simple building blocks, in contrast to millions
of building blocks required in the preceding organic dataset. 388 molecules
collected by BioNavi-NP are used to test the performance in the synthesis of
natural products.

Data availability
All related data in this paper are public. The eMolecules dataset can be
downloaded fromhttp://downloads.emolecules.com/free/2023-12-01/. The
USPTO benchmark can be downloaded from https://github.com/
binghong-ml/retro_star. Other test molecule datasets are available in
https://weilab.math.msu.edu/DataLibrary/2D/. We provide the source data
underlying Fig. 2c, d, as well as Fig. 4a–c, in Supplementary Data 1–5.

Code availability
The source code of MEEA* is available at https://github.com/
CMACH508/MEEA.
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