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It is known that metal nanoparticles (NPs) may be dynamic and atoms may move within

them even at fairly low temperatures. Characterizing such complex dynamics is key for

understanding NPs’ properties in realistic regimes, but detailed information on, e.g., the

stability, survival, and interconversion rates of the atomic environments (AEs) populating

them are non-trivial to attain. In this study, we decode the intricate atomic dynamics of metal

NPs by using a machine learning approach analyzing high-dimensional data obtained from

molecular dynamics simulations. Using different-shape gold NPs as a representative example,

an AEs’ dictionary allows us to label step-by-step the individual atoms in the NPs, identifying

the native and non-native AEs and populating them along the MD simulations at various

temperatures. By tracking the emergence, annihilation, lifetime, and dynamic interconversion

of the AEs, our approach permits estimating a “statistical equivalent identity” for metal NPs,

providing a comprehensive picture of the intrinsic atomic dynamics that shape their

properties.
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Metal nanoparticles (NPs) exhibit properties significantly
differing from their bulk counterparts due to their size,
shape, surface, and dynamical features1–4. However,

this requires obtaining detailed insight into their atomic structure
and dynamics which are typically not easy to attain.

Gold (Au) NPs are a relevant example. Being the most stable
among transition metals, bulk Au is often considered an inert
catalyst. On the other hand, Au nanoparticles (Au NPs) are in
comparison surprisingly active and effective catalysts3–6, capable,
e.g., of oxidizing CO into CO2 in atmospheric conditions4,7, and
of catalyzing various other oxidative transformations4. Notably,
Au NPs also feature surface plasmon resonance (SPR)2 and
several other distinct physical and chemical attributes, somehow
directly related to the shape and features of their surface, which
make them interesting candidates for sensor devices and bio-
medical applications2,8.

Metals, in general, are known to assume a non-trivial dynamic
behavior, where atoms enter a dynamic steady state and can move
in the lattice, well below their melting temperature9–13. Such
atomic mobility allows dynamic transformations of the material’s
surface and reconstruction of specific atomic environments12,14–23.
This is even more relevant in the case of metal NPs, due to a well-
known (albeit not general) dependence of their melting tempera-
ture with size24,25, meaning that smaller NPs may exhibit sig-
nificant surface atomic mobility even at relatively low
temperature26. Understanding the dynamic properties of the
atomic sites that populate the surface of Au NPs and how these
evolve and change in time in relevant conditions is thus of utmost
importance. For example, it may facilitate the rational design of
more effective NP-based heterogeneous catalysis strategies27,28.
Indeed, seminal work in the field has underscored the importance
of understanding the dynamic formation of transient active sites on
the surface of Au NPs29. These sites, which form only under
specific reaction conditions, play a crucial role in catalytic pro-
cesses, underscoring the need for methods capable of accurately
predicting and studying these transient sites and their dynamics.
For this purpose, experimental investigation techniques have been
recently developed, increasing the resolution up to single
particles30 or even individual atoms5,26. For example, high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) experiments of supported Au NPs provided
direct evidence that atoms move in the NPs at finite
temperatures5,26. However, unraveling such atomic motion and
obtaining quantitative insight about it remains non-trivial for a
series of fundamental reasons, including, e.g., the structural dis-
persion and variable distribution of atomic surface sites, which
details get considerably smoothed out in ensemble-averaged
characterizations30, or the fact that experimentally-reconstructed
NP models do not contain information concerning the identity of
the individual atoms (so that following their dynamics over time is
impractical)5,26.

Widely used for studying metals and metal clusters23,31–39,
computational modeling holds considerable potential in this sense.
Molecular simulations have been used to study Au NPs with con-
siderable success5,40–44. The intrinsic ability of atomistic simulations
to capture individual atomic motions and track them over time is
particularly advantageous for the reconstruction of the internal
atomic dynamics of NPs23,27. Machine learning approaches were
recently found very useful to analyze molecular dynamics (MD)
trajectories of various types of complex molecular systems23,45–49,
including Au NPs41. In particular, unsupervised clustering and
advanced statistical analyses of high-dimensional smooth overlap of
atomic positions (SOAP)50,51 data extracted from MD simulations
recently allowed to reconstruct the structural/dynamical complexity
of a variety of molecular materials/systems23,45,46 and to build
robust data-driven metrics48,49 useful for their classification47.

In this work, we focus on the temperature-dependent proper-
ties of Au NPs and provide insights into the underlying physical
mechanisms that drive their behavior in different conditions. To
achieve this, we designed and employed an unbiased analysis
pipeline that combines a bottom-up data-driven approach with a
top–down dictionary-based approach that is described herein.
This pipeline allows us to resolve at atomistic-resolution the
complex dynamics and identify the statistical identities of metal
NPs of different shapes and sizes in relevant conditions. We
simulate various types of Au NPs (i.e., icosahedral, decahedral,
octahedral) on relevant spatiotemporal scales. Our data-driven
approach, based on SOAP features and clustering techniques,
identifies and characterizes metastable states with greater accu-
racy and efficiency than previous methods. Particularly, a com-
bination of bottom-up and top–down SOAP-based data-driven
analyses reveal the atomic environments (AEs) that statistically
populate Au NPs along the MD simulations at various tem-
peratures, permitting tracking the native and non-native AEs—
that is, AEs typical of other types of NPs—that continuously
emerge/resorb on the NPs. This allows us to obtain precious
information on their emergence, annihilation, survival lifetime,
and dynamic interconversion, and a unique insight into how such
innate atomic dynamics shape the “statistical identity" of the NPs
in given conditions. By quantifying these properties, our analysis
not only elucidates the fundamental behavior of NPs but can also
serve as a predictive tool for their performance in various
applications, e.g., catalysis, ultimately leading to more sustainable
and cost-effective industrial processes.

Results
Characterizing the innate dynamics of a gold NP via machine
learning of atomic environments. As a first representative
example of ideal Au NPs, we investigate, analyze and reconstruct
the innate atomic dynamics of a 309 atoms icosahedron (Ih309) at
various temperatures. An icosahedral NP can be imagined as a
series of concentric shells that envelop a single central atom. The
first shell that resembles an icosahedron is constituted by the first
12 atoms surrounding the central one. Larger icosahedra can be
generated by adding further surrounding atomic shells, while at
each new larger shell, the NP resembles more and more the ideal
platonic solid with 20 equilateral triangles as faces and 12 ver-
texes. Ideal atomic icosahedral NPs can be thus obtained as
composed of 13, 55, 147, 309, 561, 923, etc., atoms)—the so-called
“magic atomic numbers" for icosahedral NPs. As a relevant
example, here we start by studying the behavior of an ideal Au
icosahedral NP composed of 309 atoms (Fig. 1: Ih309) at different
temperatures via classical molecular dynamics (MD) simulations.

As a first step, we built an atomistic model of Ih309 (Fig. 1a–c)
that we simulated via 2 μs of MD at 300 K (see Methods section
for complete computational details). From the resulting MD
trajectories, we extracted 1000 frames sampled every 1 ns from
the last 1 μs of MD (during which the population of the detected
AEs plateau—MD steady state—see Supplementary Fig. S6).
Recently proven useful to reconstruct the structural and
dynamical complexity of various types of self-organizing
molecular/atomic systems23,45–47,49, we used the smooth overlap
of atomic positions (SOAP) vectors50,51 as abstract high-
dimensional descriptors capable of retaining rich information
on order/disorder in the AEs–i.e., in the local atoms’ displace-
ment (Fig. 1a: in yellow) around each atom in the NP (in blue)
within a cutoff. In particular, our SOAP analysis is performed
using a cutoff of rcut= 4.48 Å, which was found as the best
compromise between the cost of the calculation and the highest
retained information in this case. We used SOAP rather than
other geometrical analysis tools (such as polyhedral template
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matching52 or common neighbors analysis53), because it is a non
discreet descriptor that can capture the local atomic environment
more accurately and robustly than conventional methods that
tend to ignore the surface details of the system. SOAP also has the
advantage of being easier to extract data from it out of the box.
These features make SOAP suitable for studying dynamic
materials with diverse structures and properties. At each sampled
frame (1000) during the MD simulation, we calculated the
SOAP50,51 power spectrum for each atom (309) at that frame in
the Ih309 NP, obtaining a global SOAP dataset composed of
309,000 SOAP spectra in total. From this SOAP dataset, we then
identified the main AEs that populate the Ih309 NP at 300 K via
unsupervised clustering using the HDBSCAN* algorithm (see
Methods section for complete details)54.

This analysis finds eight different clusters (AEs) emerging in
the Ih309 at 300 K (Fig. 1b–f). Particularly evident in Fig. 1b, c, the
identified SOAP clusters correspond to different structural AEs
on the Ih309 NP. In detail (Fig. 1d), we obtain an “Ico" AE,
corresponding to the central atom of the icosahedral Ih309 NP (in
blue). Shown in Fig. 1c, such AE is different from the “Bulk" AEs
(in violet) surrounding it in the bulk of the NP (this 13 atoms AE
is non-crystalline, i.e., it is not possible to cover the whole space
by units of this AE). The analysis detects “SubSurf" and
“5foldedSS" AEs, identifying the atoms in the first layer below
the NP surface (deep blue) and vertexes (characterized by a
5-folded symmetry axis: in light blue). On the surface of the
(ideal) Ih309 NP (Fig. 1b), our analysis detects a “Faces" (dark
green)—close compact FCC(111) facet environments –, “Edges"

(light green), and “Vertexes" AEs (the lowest coordinated atoms
in the NP, in yellow). Shown in Fig. 1d, the analysis also detects
an additional pink cluster, namely, a “Concave" AE identifying the
centers of the so-called rosettes (Fig. 1e)44. Noteworthy, such
concave AEs are not present in the ideal Ih309 NP (Fig. 1b) but
they emerge along the MD (see also Supplementary Movie 1),
while their formation is known to be an energetically favored
event on the surface of icosahedral NPs44,55. Figure 1e shows a
representative MD snapshot of the Ih309 at 300 K, where a rosette
triplet—formation of rosettes pertaining to three neighbor
vertexes, known experimentally—is clearly visible. Notably, each
rosette center (pink) has six atom neighbors while classic vertexes
(yellow) have five in a Ih309 NP. In particular, once a rosette
triplet is formed, this configuration is found stable during the MD
simulation, while even at 300 K, this is accompanied by
continuous collective atoms motions that do not change the
overall shape of the surface of the icosahedral NP (see
Supplementary Movie 1).

Figure 1f shows the PCA (projection on the two first
components PC1 and PC2) of the SOAP power spectra dataset,
colored based on the SOAP clusters detected via unsupervised
HDBSCAN* clustering. From the inverse logarithm of the PCA
density, it is also possible to obtain the corresponding free energy
surface of Fig. 1g. From these two plots, we can clearly distinguish
three different zones on the PCA and obtain the first qualitative
information on their interconnection. The clump of AEs on the
left collects the bulk and subsurface environments (dark blue,
violet, and light blue). These SOAP environments correspond to

Fig. 1 Bottom-up machine learning of atomic environments (AEs) and AEs’ dynamics in Ih309 at 300 K. a A SOAP vector is centered in each atom of the
Au NP (in blue), obtaining a SOAP spectrum which is a characteristic fingerprint of the level of order/disorder in the displacement of the neighbor Au
atoms (in gold) within a cutoff (shown as a transparent sphere). The SOAP spectra of all atoms in the NP (309) are calculated on 1000 frames taken every
1 ns along the last 1 μs of MD (see also Supplementary Fig. S6), obtaining a SOAP dataset containing 309,000 SOAP spectra in total. The main AEs that
populate the Ih309 NP are identified via unsupervised clustering using the HDBSCAN* algorithm (see Methods section for details). b, cMain AEs present on
the surface (b) and in the interior (c) of the ideal Ih309 NP before simulation starts (at 0 K). d Color legend showing a structural interpretation of the AEs
detected by the SOAP clusters. e Snapshot of Ih309 taken from the MD simulation (at 2 μs) at 300 K, with Au atoms colored based on the detected SOAP
clusters. f PCA projection on the two first principal components of the SOAP dataset. The different colors identify the various main clusters detected by
HDBSCAN*. g The inverse logarithm of the density of the SOAP dataset, identifying the SOAP clusters (AEs) as local energy minima. h Normalized
transition matrix reporting the probabilities for an atom in a given AE at time t to remain in that AE (pii) or to undergo a transition to a different AE (pi→j) in
dt (i.e., at t+ dt, with dt= 1 ns in our analyses). All pii and pi→j values in the matrix are × 10−2.
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quite dense areas in the PCA, which indicates substantially low
mobility at 300 K of the atoms that belong to these AEs in the
Ih309 NP. The right part of the PCA is much less compact,
indicating that the surface AEs (dark-, light green, and yellow
AEs: faces, edges, and vertexes) are in comparison much more
dynamic at 300 K. Between the bulk and surface areas, there is a
smaller zone in the PCA connecting them. The vast majority of
these environments are classified as “Concave" (pink), which
suggests that at room temperature the interior and exterior of
these NPs communicate essentially via the creation of local “point
defects” created on their surface—if we think of rosettes in this
sense, as they are not present in the ideal icosahedral NP. The free
energy surface of Fig. 1g is derived from the density of points in
each cluster, but it is not weighted by the population of each
cluster. This means it does not fully represent the probability of
an individual atom to visit the landscape. Nonetheless, this shows
(i) how the various detected SOAP clusters (AEs) correspond to
local density maxima and energy minima and (ii) that the barriers
separating the surface states are relatively low, which allows for
the considerable atomic exchange between these AEs.

Quantitative information on the internal dynamics of the NP
can be obtained by tracking the SOAP spectra of all atoms at each
sampled MD snapshot and monitoring their change. In
particular, this allows us to analyze what SOAP AE each atom
belongs to at time t and at each successive timestep (i.e., at t+ dt,
with dt= 1 ns in our analyses). Figure 1h shows a normalized
transition matrix for the Ih309 NP at 300 K. This contains all
probabilities (all values reported in the matrix are to be intended
as multiplied by × 10−2) for an atom in a given AE i to remain in
that AE (pii) or to undergo a transition to a different AE (pi→j) in
dt (the rows of the matrix sum to 1). Note that while such
normalized transition matrices are non-symmetric (due to
normalization), the corresponding raw matrices counting all
transitions between the AEs observed along the MD are
substantially symmetric (Supplementary Fig. S2), as it pertains
to a microscopic equilibrium along the sampled MD regime
(Supplementary Fig. S6). Figure 1h shows that at 300 K the deep/
core AEs tend to be rather stable (pii ~ 1: atoms belonging to such
AEs have a high probability of remaining in such state in
dt= 1 ns). On the other hand, a significant inter-AE exchange is
already observable (pi→j ≥ 1) at this temperature on the NP
surface. Indeed, the matrix shows that in such conditions most of
the action takes place in the sub-square in the matrix connecting
the ’Faces’, ’Edges’, and ’Vertexes’ AEs (dark-, light green, and
yellow AEs).

From the transition probabilities of Fig. 1h, it is possible to
estimate the average lifetime of the various AEs and the transition
rates between them. In particular, the off-diagonal entries (pi→j)
divided by dt give the transition rates between two AEs i→ j, ki→j,
from which one can estimate the characteristic timescales for the
various transitions as: τi!j ¼ k�1

i!j. The number of times a given
transition event i→ j is registered in the system along the last
1000 ns is reported in Supplementary Fig. S2 as explicitly counted
along the MD simulation, or it can be also estimated as:
ni→j= [i] ⋅ 1000/τi→j, where [i] is the average number of atoms
in the ith AE (Supplementary Fig. S1). For example, in the Ih309 NP
at 300 K an atom in the Faces AE (dark-green) has a transition
probability to the Edges AE (light green) of pFaces→Edges ~ 0.12
(~12 × 10−2), indicating a transition rate of kFaces→Edges ~ 0.12 ns−1

and characteristic transition timescale τFaces→Edges ~ 8.3 ns (Sup-
plementary Fig. S2 and S6: transition event observed ~6700 times
along the last 1 μs of MD simulation). Furthermore, since this is
the fastest transition involving the Faces AE, this sets the bottom
limit for the lifetime of an atom in the (111) faces of this NP at
300 K (minimum residence time) as τFaces ~ 8.3 ns.

Similar estimations for other dynamic transitions between the
AEs within the NP can be calculated from the transition matrix of
Fig. 1h in an analogous way. We note that given the time window
used for the analysis we report herein (dt= 1 ns), any observed
communication/exchange between the AEs involves processes
happening on the ns scale or slower, thus reducing the
probabilities that the AE exchanges are related to thermal
vibrations (values related to pi→j < 0.01 (i.e., 1 × 10−2 in Fig. 1h)
should be considered as purely qualitative, as these pertain to
events that are only sparsely observed along the MD simulation).
We also underline that, while the exact estimated values for AEs’
lifetimes, probabilities, and transition rates may slightly change
depending on the employed FF43,56–58, tests conducted with
different types of FFs59,60 provided very similar results in terms of
NP dynamics, confirming the generality of our observations.

We simulated the Ih309 NP also at 400 K and 500 K by running
2 μs of MD(see also Supplementary Movie 2). We then extracted
the SOAP spectra for all atoms from 1000 frames taken from the
last 1 μs of MD following the same protocol used at 300 K. Fig. 2
shows the results of these additional analyses. In particular, in
these analyses, we used the simulation at 300 K as the training set
for both the PCA computation and clustering (HDBSCAN*)
analyses of the MD trajectories of the Ih309 NP at 400 K and
500 K (see Methods section for complete computational details).
The PCAs of Fig. 2b, f show how the clusters on the surface of the
NP become more adjacent to each other at 400 K and 500 K than
at 300 K. Moreover, the FESs of Fig. 2c, g indicate that the
minima corresponding to different surface AEs at 300 K tend to
merge together when the temperature increases. In particular, at
500 K, the surface AEs constitute a unique large minimum,
meaning that at such temperature, e.g., Faces and Edges AEs are
in continuous exchange with each other and that these effectively
form a unique fuzzy surface state (i.e., computing the PCA on the
MD trajectory at 500 K would not find at all two distinct Faces
and Edges AEs, but one single environment). The communication
between Faces, Edges, and Vertexes AEs increases with increasing
temperature. This is even more evident in the normalized
transition matrices of Fig. 2d, h. The sub-square in the matrices
connecting the ’Edges’, ’Faces’, and ’Vertexes’ AEs shows that
atoms belonging to these environments have larger probabilities
to exchange with each other at 400 K and 500 K than at 300 K. In
particular, at 400 K, such a surface atomic mobility is evident, but
these atoms have still a higher probability of remaining in their
environment than of jumping into another one in dt= 1 ns
(pii > 50%). On the other hand, at 500 K the residence probability
for atoms in the surface AEs drops close to, and in some cases
also below 50%, suggesting that in such conditions the NP surface
is pre-melting61. We note that, in good approximation, the
number of atoms in each environment does not vary much
during the simulations at all temperatures (Supplementary
Fig. S6). This suggests that, despite such rich atomic mobility,
the Ih309 NP surface remains structurally that of an icosahedron
at all analyzed temperatures. It is also interesting to note that the
transition matrix of Fig. 2h shows sparsely observed dynamic
interconnections between the central atom of the NP and the
surface AEs at 500 K. This does not mean that the central atom is
diffusing to the NP surface, but rather that at such temperature
internal voids may rarely form in the NP center, which makes the
SOAP spectrum of deep bulk atoms change occasionally and
become similar to that of surface AEs. This fits well with previous
reports showing similar central vacancies in Ih30955,62.

While evidence of surface dynamics in Au NPs have been
reported5,27, obtaining clear insights on the processes that
characterize such dynamics, or on whether this is essentially
due to, e.g., local atomic reconfigurations or atomic diffusion is
non-trivial. Tracking the motions and the fluctuations in the
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SOAP spectra of the individual atoms in the NP, our approach
provide clear evidence that the dynamics of these NPs is not due
only to oscillations between adjacent/similar AEs, but to real
microscopic atomic diffusion. As a representative example, in

Fig. 3 we show the detail of the evolution during 1 μs of MD of an
atom that is an Ih309 vertex at the start of the simulation.
Figure 3a, b show respectively the temporal trajectory of the atom
and the SOAP AEs that this visits in this time frame, revealing

Fig. 2 Effect of temperature on the Ih309 NP dynamics. a MD frame of the Ih309 NP taken from the equilibrated-phase MD simulation at 400 K (atoms
colored based on SOAP clusters of Figure 1). b PCA projection of the SOAP dataset obtained from the MD simulation of the Ih309 NP at 400 K. c Free
energy surface (FES) obtained from SOAP PCA. d Normalized transition matrix indicating the residence (pii) and transition probabilities between the AEs in
the Ih309 NP at 400 K of temperature in the time interval dt= 1 ns (all pii and pi→j values are × 10−2). e MD frame of the Ih309 NP taken from the
equilibrated-phase MD simulation at 500 K. f PCA projection of the SOAP dataset obtained from the MD simulation of the Ih309 NP at 500 K. g Associated
free energy surface (FES). h Normalized transition matrix indicating the residence (pii) and transition pi→j) probabilities ( × 10−2) between the AEs in the
Ih309 NP at 500 K in the time interval dt= 1 ns.

Fig. 3 Atomic diffusion on the Ih309 NP. a MD trajectory of an atom in the Ih309 NP at 300 K, colored based on simulation time. b MD trajectory of the
same atom colored based on its SOAP AE (Fig. 1): being initially a vertex, the atom diffuses on the NP surface visiting various surface and even subsurface
AEs. c AEs visited by the tracked atom during the MD of the Ih309 NP at 300 K. d AEs' transitions of all (309) atoms in the Ih309 NP at 300 K: at room
temperature, only the surface of the NP appears as dynamic. e AEs' atomic transitions in the Ih309 NP at 400 K. f AEs' atomic transitions in the Ih309 NP at
500 K: surface pre-melting.
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how even at 300 K such atom visits a surprisingly large collection
of different (surface and subsurface) SOAP AEs (Fig. 3b). In
particular, such vertex atom diffuses first to surface AEs, and
then also penetrates into the subsurface. Its diffusion is described
in detail also in the plot of Fig. 3c, showing how such an atom
also becomes at a certain point (~820 ns of MD) a rosette center
(pink).

Figure 3d–f show the AEs visited by all the 309 atoms in the
NP at 300 K (d), 400 K (e), and 500 K (f). These graphs reveal
which environments are most prone to exchange in this NP. In
particular, at 300 K only Faces and Edges surface AEs are
dynamic. At 400 K the dynamics of the NP surface increases, but
remains similar to that at 300 K (which fits well with the
transition matrices of Fig. 1h and Fig. 2d). On the other hand, at
500 K the atoms exchange between all surface and subsurface AEs
(surface pre-melting).

We underline how all the analyses reported above are purely
bottom-up, meaning that all information on the AEs, their
similarity, classification, and dynamics are reconstructed only
from the MD trajectories and in an unbiased data-driven way. At
the same time, such data-driven analyses are not always
straightforward to interpret. For example, given the surface of
such NPs is in continuous motion and new non-native states may
also emerge in these NPs (e.g., concave ones), a relevant question
is whether such new non-native emerging AEs are closer to the
native ones (proper of that type of ideal NP) or, e.g., to other AEs
native of different types of NPs. To answer such questions and
obtain a more complete picture, we employed a different type of
analysis.

A dictionary of Au NPs SOAP environments. To complement
our study, we designed a different top–down analysis. We defined
a “general" and transferable dictionary of SOAP environments
analyzing ideal Au NPs (at 0 K) of different sizes and morphol-
ogies. We then used it to identify the native and non-native AEs
that emerge in the simulated NPs and to analyze their dynamics
at different temperatures.

We created a dictionary of Au AEs (Fig. 4) that contains all AE
typical of different-shape NPs. In particular, we calculated the
SOAP atomic spectra of two ideal icosahedral Au NPs: Ih309,
simulated in Figs. 1–3, and a larger one composed of 923 Au
atoms (Fig. 4a, right: in blue). We also calculated the SOAP
atomic spectra of three decahedra composed of 348 (Dh348,
simulated in the next section), 1086, and 1734 Au atoms, and two
truncated octahedra, composed of 309 (To309, simulated in the
next sections) and 807 Au atoms (To807). In the AE dictionary, we
also added an additional To976 (not included in the figure). Such a
collection of NPs allowed us to maximize the number of sample
AEs, obtaining a complete SOAP dictionary for Ih, Dh, and To Au
NPs.

The obtained AE dictionary contains a total of 47 different
SOAP environments. Figure 4b shows the 12 ones typical of
icosahedral Au NPs, organized hierarchically in a dendrogram
based on their SOAP distance and similarity (see Methods).
Figure 4c shows the dendrogram containing the 22 environments
characteristic of the decahedral Au NP. Figure 4d shows the
dendrogram of the 13 SOAP AEs typical of truncated-octahedral
and cuboctahedral NPs. Finally, Fig. 4e shows the complete SOAP
dictionary, containing all AEs proper of Ih, Dh, and To Au NPs,
organized based on their SOAP distance and similarity (see
Methods). Such a dictionary of SOAP spectra can be then used to
compare and classify the AEs that emerge along the MD
simulations of a given NP, and to understand if on that specific
NP AEs emerge which are closer to those present in NPs of other
shapes. While the dendrogram of Fig. 5e contains the complete

information, this also shows, e.g., that most of the bulk
environments across different-shape NPs are basically identical
to each other. Thus, to ensure to capture relevant variations in
our analysis, we opted to “truncate” the dendrogram at the
distance of dSOAP= 0.08 (and considering as relevant only
differences larger than this), see Supplementary Fig. S11 and
Supplementary Fig. S12 for an example on how the choice of this
parameter influences the environments and the analysis of the
dynamics. The cut at dSOAP= 0.08 reduces the 47 AEs to 10 AEs,
improving the clarity and the statistical relevance of the
subsequent analysis. Nonetheless, the resolution of such analysis
can be in principle adapted, based on the relevance of the
difference between the AEs. This “cut” provides a coarse-grained
analysis, which regroups all AEs with dSOAP < 0.08 in macro-
clusters in all SOAP environments.

In particular, the truncated dendrogram of Fig. 5a shows the
final 10 AEs considered in the analysis. The b AE collects all NP
bulk environments. The ss and ss’ AEs collect all subsurface AEs:
ss identify the AEs under the FCC(111) and FCC(001) NP faces
and those under the NP edges, ss’ identify the “non-standard"
subsurface AEs under the vertexes and the convex elements. The c
and c’ AEs enclose the concave environments. The s, e, and e’
enclose all surface AEs: s collects the AEs proper of FCC(111) and
FCC(001) faces, e, and e’ collects edge AEs, while v and v’ those
proper of vertexes. We used the “coarse-grained" SOAP
dictionary for analyzing our MD simulations and distinguishing
between native and non-native AEs emerging in the simulated
NPs.

A dynamic dance of native and non-native AEs shaping the
surface identity of Au NPs. In Fig. 5b we show the Ih309 NP in its
ideal configuration (at 0 K: after minimization) and at various
temperatures (top-to-bottom: 300 K, 400 K, 500 K). In particular,
the Ih309 snapshots at 300 K, 400 K, 500 K correspond to the same
MD frames of Fig. 1e, and Fig. 2a, e, but in Fig. 5b the atoms are
colored based on the similarity of their atomic environments and
those contained in the SOAP dictionary of Fig. 5a (top–down
analysis). This analysis allows us to track in detail which ones of
the AEs populating the Ih309 NP at the various temperature
belong to the family of the native ones, typical of icosahedral NPs,
and which ones are non-native—namely, closer to those natives
of different-shape NPs, such as e.g., decahedra or truncated
octahedra. For each NP snapshot, a pie chart (bottom-right)
shows the percentage of surface atoms belonging to native (in
gray) and non-native AEs (in pink) in the Ih309. The analysis
shows how the percentage of emerging non-native environments
increases with increasing temperature, essentially due to increased
thermal fluctuations and surface reconstructions.

The histograms of Fig. 5c report the average number of atoms
belonging to each AE in the last 1 μs of MD (equilibrated-phase
MD trajectories). For each AE, we represent the count with four
columns (Fig. 5c): the first one refers to the AE populations in the
ideal Ih309 NP, and the other three columns refer to the AE
populations in the same NPs at the three simulated temperatures.
The v’ (purple), s’ (light green), c (green) AEs are non-native AEs,
in that these are not present in the ideal Ih309 (identified by
arrows), and in icosahedral NPs in general, but emerge in Ih309
with temperature.

At each MD timestep, we know the cluster each atom belongs
to so that we can track where the atoms come from and where
they go in terms of AEs. This allows us to draw the chord
diagrams of Fig. 5d, showing the dynamic interconnections
between the various AEs populating the NP. Qualitatively, the
width of the corona arcs represents the total number of
transitions that happened to a given cluster during the simulation,
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and the chords between two clusters show the interconnections
between the various AEs, the more the base of the chord is
extended the more the cluster has given atoms to the one it is
connected to. The color of the chords indicates the net flux (e.g.,
the chord connecting the red (s) and violet (v0) clusters is violet,
meaning that more atoms are observed to undergo a transition in
v0 ! s direction than vice versa). The results qualitatively show
with what AEs the non-native v’, s’, and c ones are primarily
connected, suggesting where these non-native AEs come from
and where they go. In particular, v’ is connected with e edge
atoms (light orange). The non-native concave c and c’ AEs are
connected with edge (orange), surface (red), and vertex (violet)
atoms. The chord diagrams show that the exchange between the
AEs increases with temperature (increasing number of chords
and of chords’ widths moving left-to-right in Fig. 5d). As seen
also in Fig. 1, this analysis confirms that at 300 K only surface AEs
exchange dynamically, while ss and b clusters remain relatively
static and separated (dynamic surface and static interior).

Increasing the temperature, and in particular, at 500 K (Fig. 5d:
right), the interior of the NP starts to communicate with the
surface (see cyan and gray chords going towards surface AEs).

To obtain more quantitative information on the complex
atomic dynamics present in the NPs, we calculated the transition
probabilities for atoms belonging to such AEs to remain in or
undergo a transition into the different AEs in Δt= 1 ns (same
analysis of Figs. 1h, Fig. 2d, h, but with this new set of top–down
detected AEs). The transition matrices of Fig. 5e show that deep
AEs (b and ss) have diagonal entries residence probabilities pii ~ 1
(dark colors). This confirms the rather static behavior of the
interior of the NPs at all temperatures. At 500 K the blue ss’ AE
starts to communicate with the surface of the NP and, in
particular, with the green c and c’ concave AEs. The matrices of
Fig. 5e thus show that the formation of the rosettes on Ih309
comes from such deep states, as well as (in large part) from the
surface (red, s) and edge (e,e’) AEs. From the transition matrices
of Fig. 5 it is possible to estimate, e.g., the transition probabilities,

Fig. 4 A dictionary of atomic SOAP NP environments. a Icosahedral (blue), decahedral (green), and truncated-octahedral Au NPs used to generate the
SOAP dictionary of AEs. Together with the NPs that we simulate herein (the three on the left), also larger size NPs are included in the dictionary, in order to
guarantee that this contains all AEs typical of the NP families. b Dendrogram connecting the various SOAP AEs proper of icosahedral NPs (blue) connected
based on their SOAP distance. c Dendrogram for the SOAP AEs native of ideal decahedral NPs (green). d Dendrogram for the SOAP AEs native of ideal
decahedral NPs (purple). e Global dendrogram connecting all the AEs of the various NP types, hierarchically classified based on their SOAP similarity using
the SOAP distance. Cutting the dendrogram at a certain SOAP distance provides a coarse-grained dictionary that groups together the AEs with SOAP
distance dSOAP≤ 0.08.
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rates, timescales, and lifetimes of all these top–down detected AEs
as done from that of Fig. 1h. For example, in the Ih309 NP at
300 K the non-native concave c’ AE (light green) has a transition
probability to the surface (red, s) AE of pc0!s � 0:4, indicating a
transition rate of kc0!s � 0:4 ns−1 and characteristic transition
timescale τc0!s ¼ 2:5 ns (transition event observed ~ 4700 times
along 1 μs of MD: see Supplementary Fig. S3). Given that in the c’
row of the matrix the c0 ! s transition is by far the fastest one, in
good approximation, this allows estimating the bottom limit of
the lifetime of one atom in the c’ AE in the range of τc0 � 2:5 ns.
Similar estimations of the characteristic timescales for all
transitions between the AEs in the NP can be easily performed
from all the pi→j reported in the transition matrices of Fig. 5e.
Such analyses thus provide not only an estimation of the average

composition of an NP but also, and perhaps even more
interestingly for practical applications (e.g., reactivity), detailed
information on the lifetime of all the native and non-native AEs
populating it. In fact, the capability of an AE to activate a
chemical reaction is directly related to its lifetime vs. by the
characteristic time of the reaction itself on that AE. For example,
while it is known that different atomic sites have, e.g., different
reactivity and efficiency in catalyzing chemical reactions63,
obtaining a structural/dynamical map showing how long all
AEs in the NPs live (τi) and how quickly they interconvert into
other ones (τi→j) is key to understand their effective efficiency in
catalyzing a reaction. In fact, from a statistical point of view, if
one AE has a given average lifetime τi, but the characteristic
timescale for the reaction to occur on that specific AE is τreact > τi,

Fig. 5 Top–down data-driven reconstruction of the innate dynamics and statistical identity of the Ih309 NP. a Dictionary of AEs and associated
dendrogram used for the top–down analyses, obtained via cutting the complete dendrogram at dSOAP= 0.08 (as shown in Fig. 4e). b The Ih309 NP before
simulation start (top, 0 K), in steady state MD frames, taken from the MD simulations at temperature 300 K, 400 K, or 500 K (top-to-down). Coloring
based on the dictionary AEs a: the pie charts indicate in magenta the percentage of atoms on the NP surface that do not belong to environments native to
ideal icosahedral NPs. c Histogram counting the average number of atoms in each cluster during the last 1 μs of MD at 300 K, 400 K, 500 K (second-left to
right columns for each AE), compared to the AE populations in the ideal (0 K) Ih309 NP (leftmost column for each AE). Standard deviations as vertical black
lines. An arrow in place of the first column highlights the absence of certain AEs in the ideal Ih309 NP—i.e., these AEs are non-native of ideal icosahedral,
and emerge with temperature (e.g., in Ih309: v0 , c0 and c AEs in light-purple, light- and dark-green respectively). d Chord diagrams showing the
interconnection between all AEs communicate with each other in Ih309 at various temperatures. Non-native AEs emerging in Ih309 are identified by colored
arrows in the chord plot at 300 K (cf. main text for details). e Normalized transition matrices reporting the probabilities for atoms in the Ih309 NP at the
various temperatures to remain in a given AE (pii) or to exchange into another one (pi→j) in the time interval of dt= 1 ns.
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the probability for effectively activating the reaction on that AE
would be proportional to τi/τreact. This would provide an
indication of how many times, in principle, the reactant should
get in touch with the same AE to effectively activate a given
reaction. Of course, performing practical estimations in this sense
would require focusing on a realistic case and also estimating the
reactivity of all visited AEs in the NP. While this is not the main
point of this paper, this is certainly feasible, which underlines the
potential of the approach. Moreover, we stress that such a purely
probabilistic interpretation stands as far as the reactive species do
not significantly alter the dynamics and features of the AEs
present on the NP—e.g., no or negligible chemisorption (if such a
condition does not hold, a proper reactive parametrization and
simulation of the system is needed, where new AEs may appear
on the NP surface upon interaction with the reactants)64.

As to what is seen in the matrix of Fig. 2h, the matrix of Fig. 5e
(right) shows that at 500 K the surface of Ih309 NP is basically
pre-melted61 (pii of surface AEs < 0.5, meaning that in Δt= 1 ns
the atoms in those AEs have a higher probability to move to
another AE, rather than to remain in the same one). This
indicates that the entire Ih309 has atomic dynamics faster than
the nanosecond scale (liquid-like dynamics). On the other hand,
at the resolution of our analyses, the atomic dynamics on the NP
surface appear more “discrete” at 300 K and 400 K (solid-like
dynamics).

We repeated the same analysis for the Dh348 NP (Fig. 6). The
data show that this NP is more stable than Ih309 at all simulated
temperatures. This NP has been chosen because its ideal
conformation shows at least one atom per each cluster in the
set that we identified with the cut. Consequently, this results in
the pie charts of Fig. 6a showing always 0% pink. At 300 K and
400 K, the internal b and ss AEs are not in communication with
the surface. At 500 K, some communication arises but also at such
high temperatures in this case the atomic dynamics on the NP
surface appear as “discrete" and closer to that of Ih309 at 300 K
and 400 K (solid-like dynamics).

Among the investigated NPs, To309 (Fig. 7) is one of the most
interesting. In fact, the To309 arrangement is known to be a non-
favorable FCC arrangement. Indeed, To309 is more dynamic than
Dh348 at all investigated temperatures (see also Supplementary
Movie 3). Interestingly, at 300 K this NP is found less stable and
more dynamic than Ih309, with ~24% of its surface atoms in non-
native AEs (pie charts in Fig. 6a and histograms of Fig. 6b).
However, at 500 K, To309 is found more stable than Ih309 and its
surface shows “discrete" atomic dynamics. Raw transition
matrices for Dh348 and To309 are provided in Supplementary
Fig. S4 and S5.

We compared the chord diagrams obtained with the top–down
and bottom-up analysis (see Supplementary Fig. S10) to evaluate
their consistency in terms of fluxes. The results show that the two
analyses are consistent in this regard. However, comparing actual
kinetics is not straightforward because the AEs identified by the
two analyses are not directly related. The top–down analysis
defines AEs based on a dictionary, while the bottom-up analysis
derives them from the MD trajectories. Moreover, the consistency
between the two analyses strongly depends on the cutoff for the
dendrogram in the top–down analysis. Both analyses are
therefore complementary and provide different insights into the
atomic dynamics of Au NP’s.

Altogether, these results show that such analysis is transferable
and flexible. In particular, this can be used (i) to obtain a
thorough characterization of the complex atomic dynamics of the
NPs that is difficult to attain with other approaches, and ii to
compare and classify different types of metal NPs based on the
AEs that emerge and populate their structure and on their
complex dynamics.

Discussion
Understanding the intricate atomic dynamics on the surface of
metal NPs in relevant regimes is paramount for unveiling the
physical chemistry and diverse properties of the nanoparticles.
This characterization, while fundamental, typically poses sig-
nificant challenges, both experimentally and computationally. In
this work, we achieve such a detailed characterization via the use
of a concerted ML approach that includes a combination of a
bottom-up and top–down data-driven analyses of steady-state
MD trajectories of various types of Au NPs. In the first step, the
bottom-up ML analysis detects in a purely data-driven way the
main atomic environments (AEs) that populate an NP in MD
steady state based on the levels of order/disorder and the struc-
tural similarity/dissimilarity between them as captured by high-
dimensional SOAP data extracted from the MD trajectories, and
further dimensionality reduction and unsupervised clustering
(Figs. 1 and 2). The choice of the SOAP descriptor, having a
defined distance metric, allows us to perform advanced analysis
techniques, i.e., density based clustering, to better understand and
classify the atomic environments at the surface. Tracking the
individual atoms along the MD and classifying them based on the
detected SOAP environments allows for resolving the complex
atomic dynamic that is present on the NP surface at different
temperatures (see transition matrices in Figs. 1, 2). In particular,
this allowed us to identify in a data-driven unbiased way all the
AEs that populate the NPs in the MD local equilibrium and to
understand where these come from and where they go in terms of
interconversion into other AEs. On a second step, a top–down
data-driven classification based on the similarity/distance
between/from the SOAP spectra of each atom at each sampled
step of the steady state MD trajectories and the SOAP spectra
characteristic of a variety of different Au NPs contained in a
SOAP spectra dictionary. Such a SOAP dictionary contains the
SOAP spectra of all AEs proper of ideal, e.g., icosahedral, dec-
ahedral, and truncated-octahedral Au NPs, which allows us to
learn which ones of the AEs appearing on the surface of a given
simulated NP in MD steady state are “native” of that type of NP,
and which ones are “non-native” (i.e., typical of ideal NPs of a
different shape). We repeat such analysis on three types of
different-shape Au NPs (Figs. 5–7: i.e., Ih309, Dh348, and To309).
Notably, such analysis allows us not only to estimate the “sta-
tistical equivalent identity” of the various NPs—namely, what do
the NPs look-like in relevant dynamic regimes (histograms of
Figs. 5–7) –, but also obtain relevant dynamic information as on
the average lifetime and interconnection rates of all visited atomic
(native and non-native) environments present on their surface
(transition matrices in Figs. 5–7). While the dictionary of AEs
presented herein is based on the analyzed set of Au NPs, it can be
easily expanded to include more particle geometries. Never-
theless, the provided analysis already shows the generality of such
an approach, i.e., it can be applied to any kind of metal NP.
Moreover, our analysis can be easily applied without further
tuning to metallic systems in which vacancies arises, i.e., on that
case the user would just need to add some new environments to
the AE dictionary.

With our methodology, we achieve an unparalleled atomistic-
level understanding of the behavior of Au NPs at various tem-
peratures, a level of detail rarely achieved in experimental studies
due to the challenges associated with tracking individual atomic
motions over time. The in-depth understanding of the dynamic
properties of atomic sites populating the surface of Au NPs, as
presented in this study, is of significant practical relevance. Par-
ticularly, it can inform the design of more effective NP-based
heterogeneous catalysts, enhancing the efficiency of industrial
processes. We envisage that this may offer a useful platform for
predictions—e.g., for estimating whether the NP’s reactivity in
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given conditions will be likely to increase or decrease if the
conditions change (e.g., changing the temperature), based on the
changes in the intrinsic dynamics of the atoms within the NP and
the survival timescales of all the AEs populating it. While the
examples provided for catalytic applications are speculative, they
underscore the broader implications of our analysis. The detailed
understanding of the intrinsic structural dynamics of NPs under
application conditions, as provided here, has indeed far-reaching
potential. For instance, this knowledge could be instrumental in
optimizing the performance of Au NPs not only in catalysis but
also in sensor devices and biomedical applications, where their
unique physical and chemical properties are highly valued.

We expect that the approaches that we present herein will see a
broad application in many other cases, opening new routes
towards the discovery of structural-dynamic-property relation-
ships of a variety of similar metal NP systems.

Methods
Atomistic models and MD simulations of the NPs. The atomistic models for the
Ih309, Dh348, and To309 NPs were built with the tool “clusterCreator"65. Preliminary
basin hopping calculations showed that, at these sizes, Au favors the formation of
decahedral NPs, followed by the icosahedron and the cuboctahedron (see Sup-
plementary Table S2). To simulate the NPs, we used the SMATB56–58 potential

available in LAMMPS66 (Supplementary Table S1)43. The NP models were initially
minimized using the built-in command in LAMMPS (set up with etol= 10−6

ftol= 10−8, maxiter= 1000, and maxeval= 10000), then we performed a small
thermalization of 20000 MD steps with the timestep set to 1 fs on the NP with the
velocities initialized to the desired temperature and with the thermostat with the
same settings of the main simulation. We then simulated different Au NPs at
temperatures of 300 K, 400 K, and 500 K. All MD simulations were conducted in
the canonical ensemble using the LAMMPS’s Langevin thermostat, using a time-
step of 5 fs, and a damping parameter for the Langevin thermostat set to 100 ps.
We simulated each NP system for a total of 2 μs of MD. During the simulations, all
NP systems reached a steady state in the MD regime (equilibrium). All our analyses
were thus conducted on 1000 frames taken every 1 ns along the last 1 μs of each
MD simulation, during which the populations of all detected AEs plateaued (see
Supplementary Fig. S6–S9).

SOAP analysis. We used the SOAP50 as high-dimensional abstract descriptors of
the local atomic environment that surround each atom in the NPs during the
simulations. The SOAP spectra of each atom in the NPs (Fig. 1a) were calculated at
each of the 1000 MD snapshots taken from the last 1 μs of the simulations (every
1 ns), using the atomic positions as they are, without any preprocessing procedure.
We thus come out with SOAP datasets containing a total of 309,000, 348,000, or
309,000 SOAP spectra for Ih309, Dh348, and To309 simulated systems respectively, at
each temperature. We used dscribe67 to generate the SOAP vectors with the fol-
lowing parameters: rcut= ~ 4.48 Å (corresponding to 110% of the Au FCC lattice
parameter, which includes in the calculation up to the first two neighbors in FCC,
and up to the third in the HCP case even in case of some small local fluctuations).
We set up the lmax parameters for the spherical harmonics to 8, and the nmax

Fig. 6 Top–down analysis of AEs in the Dh348 NP. a Snapshots of the ideal Dh348 (0 K) and at 300 K, 400 K, and 500 K. Atoms within the NPs are colored
based on the AEs dictionary. b Histogram counting the average number of atoms in each AE during the last 1 μs of MD simulation at 300 K, 400 K, 500 K
(second-left to right columns for each AE). Standard deviations as vertical black lines. c Normalized transition matrices reporting the probabilities for atoms
in the Dh348 NP to remain in a given AE (pii) or to exchange into another one (pi→j) in the time interval of dt= 1 ns at the various temperatures. d The chord
diagrams show the dynamic interconnections between all AEs detected in the NP at different temperatures.
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parameter to set up the number of radial basis functions to use to 8. With these
parameters, the SOAP spectrum for each atom is a vector of 576 components
(of which 324 are unique).

Bottom-up analysis: PCA and clustering. We then reduced the dimensionality of
our SOAP vectors by projecting the normalized SOAP vector on the principal
components (PCs) using the PCA algorithm from scikit–learn68, and taking into
consideration only the first three PCs, hence reducing the number of components
from 576 to 3. This allows retaining ~ 99% of the total variance in the SOAP datasets.
We computed the PCA using the data from the Ih309 at 300 K simulation, and then
we projected the data from the simulations at the other temperatures on the com-
puted PCs. In particular, we applied the clustering method HDBSCAN*54 (we set up
HDBSCAN* with the following parameters: min_cluster_size=125, cluster_selec-
tion_method="eom") to the first 3 PCs of the data from Ih309 300 K simulation to
identify the main AEs visited by the atoms during the simulation. We then used the
trained algorithm to predict the clusters in the other simulations, by applying the
trained predictor on the first 3 PCs of the simulations Ih309 at 400 K, and Ih309 at 500
K. Note that the analysis presented in Fig. 1 is not the direct result of the learning on
the training set (the Ih309 300 K), but the application of the trained prediction
algorithm to that training set, to have a more homogeneous procedure with the other
two datasets of Ih309 at the higher temperatures presented in Fig. 2. The prediction
procedure classifies some of the data points as noise, for the sake of this paper we
extracted the ’exemplar’ data points from the learning set, each one assigned to its
cluster, and then we assigned each of the noise points to the cluster of the ’euclidean
closest’ exemplar point. In Fig. 1b, c we show the environment (learned on the

simulation of Ih309 at 300 K) that the SOAP+PCA+HDBSCAN* procedure predicted
on the ideal Ih309 structure.

Top–down analysis: similarity, distance, and dictionary. For the analysis, we
presented in Figs. 4–7, we used the well–defined SOAP distance51 to classify the
environments visited during the simulations, as done in other previous works47–49.

The SOAP distance between two SOAP spectra a! and b
!

is calculated as:

dSOAP a!; b
!� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2K a!; b

!� �r
ð1Þ

where, with the SOAP power spectrum representation that we are using,

K a!; b
!� �

¼ a!� b
!

a!
�� �� b

!��� ��� :
To apply such a classification we built a dictionary: we attempted to create the

most complete dictionary for icosahedral, decahedral, and octahedral NPs’ AEs by
choosing the most different environments from various minimized Au NPs. To
enrich our dictionary, together with the NPs that we effectively simulated in this
work, we also included larger-size NPs possessing a higher variety of AEs in their
ideal state. We obtained a dictionary of 47 elements. To simplify its usage, we
hierarchically classified its elements using the hierarchical clustering algorithms
implemented in scipy69. First of all, we used Equation (1) for calculating the
distance between each of the environments belonging to the dictionary. Then we
created a binary tree that represents this classification by using the “complete”

Fig. 7 Top–down analysis of AEs in the To309 NP. a Snapshots of the ideal To309 (0 K) and at 300 K, 400 K, and 500 K. Atoms within the NPs are colored
based on the AEs dictionary (the pie charts indicate in magenta the percentage of atoms on the NP surface that does not belong to environments native to
ideal truncated-octahedral or cuboctahedral NPs. b Histogram counting the average number of atoms in each AE during the last 1 μs of MD simulation at
300 K, 400 K, 500 K (second-left to right columns for each AE). Standard deviations as vertical black lines. c Normalized transition matrices reporting the
probabilities for atoms in the To309 NP to remain in a given AE (pii) or to exchange into another one (pi→j) in the time interval of dt= 1 ns at the various
temperatures. d The chord diagrams show the dynamic interconnections between all AEs detected in the NP at different temperatures.
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algorithm for hierarchical clustering, which at each step couples the closest
elements in the set and assigns to the newly formed couple the largest distance
from each remaining element of the set, and uses the new distance in the next steps
until it has completed the classification. We represent this tree in the dendrogram
in Fig. 4e, where we show that we have chosen to apply a cut at the distance of
0.08 [dSOAP]. This cut leads to the creation of 10 different groups of dictionary
entries (that can be seen more clearly in Fig. 5a) with similar geometrical
characteristics, from the original 47 environments. During the MD simulations
analysis, we assigned an environment to one of these 10 clusters in two steps. The
first step is to classify it as one of the 47 elements of the original environment
dictionary: we do this simply by assigning it to the closest element of the dictionary
in terms of the SOAP distance (using Equation (1)). The second step is to classify
our analyzed environment by assigning it to the cluster to which its closest
reference belongs.

Temporal analysis. We calculated the transition matrices from the cluster infor-
mation of each atom along the simulation45,47. Transition matrices are calculated
by accumulating a table whose elements are the number of transitions i→j or i→i
in the main diagonals that happen at each time step. We then obtain the probability
for an atom to undergo a transition into another specific AE (or of remaining in the
same AE) after each timestep (in dt= 1 ns in our analyses) by normalizing each
row to 1. In the figures in which we show a transition matrix, we decided to
represent with blank squares the transitions not observed.

Data availability
Details on the analysis procedures and for the simulations’ setup, are provided in the
Methods section and in the Supplementary Information file. Additional images on the
non-normalized transition matrices, and on the attained steady-states during the MD are
provided in the Supplementary Information file. Complete data and materials pertaining
to the atomistic simulations and data analyses conducted herein (input files, model files,
raw data, analysis tools, etc.) are available at: https://doi.org/10.5281/zenodo.8108900.
Other information needed is available from the corresponding author upon reasonable
request.
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