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Organic heterojunctions for direct
solar fuel generation

Reiner Sebastian Sprick® "™ Marc A. Little'™ & Andrew I. Cooper!™

Organic polymers have demonstrated promise as photocatalysts, but their
photocatalytic efficiencies remain relatively low. Now, borrowing principles from
organic photovoltaics, heterojunctions of polymer photocatalysts and small
molecule acceptors have been shown to have excellent solar hydrogen pro-
duction efficiencies.

There has been a surge of interest over the last decade in organic photocatalysts for solar fuel
production!. Hydrogen production from water has been studied extensively: in particular, direct
photochemical water splitting has been touted for its technological simplicity—no metal contacts
or wiring is required—which could make it potentially scalable, if solar efficiencies can be
improved. Traditionally, inorganic semiconductors have dominated the field of photocatalysis,
but the discovery of carbon nitride photocatalysts in 2009 by Xinchen Wang and co-workers
provoked intense interest in soft organic materials as photocatalysts2. Many carbon nitride based
materials followed, as well as other organic materials with more well-defined structures, such as
conjugated polymers, conjugated microporous polymers, and covalent organic frameworks. All
of these materials have been reported to act as photocatalysts for hydrogen production from
water in the presence of hole-scavengers!.

The key challenge for organic polymer photocatalysts is the relatively low photocatalytic
efficiency compared to inorganic semiconductors. In part, this is due to the high exciton binding
energies in organic materials—typically on the order of tenths of electronvolts—that result from
the Coulombic attraction between the negative and positive charges that are generated after light
absorption. Organic semiconductors also have comparatively poor charge-transport, which
results in short exciton diffusion lengths and poor exciton separation. Hence, most charges
generated in these organic solids will not reach the surface and reduce protons, particularly in
the case of micron-sized particles, which results in low overall efficiencies because charges are
lost due to recombination.

Another problem is that most of the organic photocatalysts investigated so far do not absorb
light where the output of the Sun that reaches the Earth’s surface is strongest; indeed, most
materials reported only absorb visible light up to around 500 nm. While far infrared light does
not have the required energy to facilitate water splitting, many photons in the red region are not
used to generate hydrogen by the organic catalysts reported thus far.
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Recently, McCulloch and co-workers overcame these lim-
itations by using conjugated polymer/non-fullerene acceptor
heterojunction nanoparticles®. The energy off-set of the con-
jugated polymer (PTB7-Th) relative to the acceptor molecule
(EH-IDTBR) results in exciton separation at the interface.
This approach has been used extensively in organic photo-
voltaic devices* (Fig. 1a) and it was found to be highly effective
here for photocatalytic hydrogen production. Control of the
interface and mixing was found to be crucial, and core-shell
nanoparticles were found to be inefficient. A transition to
heterojunctions was made by controlling the polymer-acceptor
interface (Fig. 1b). Much higher photocatalytic activities were
observed for these heterojunction photocatalysts compared to
the core-shell photocatalysts after loading with a metal co-
catalyst in the presence of a sacrificial hole scavenger (Fig. 2).
While the so-called external quantum efficiencies (EQE) were
relatively low (2% at 400 nm to 6.2% at 700 nm) compared to
state-of-the-art organic photocatalysts (e.g., 22.8% at 420 nm
for covalent triazine-based frameworks”), the light absorption
was extended to the range of 500-750 nm for the PTB7-
Th/EH-IDTBR heterojunctions, thus covering a much larger
proportion of the visible light spectrum, which greatly
enhances the performance of these heterojunction composites.
This is an important step forward in the control of function for
organic photocatalysts.

Independently, we explored a very similar approach in
creating heterojunctions of conjugated polymers/non-fullerene
acceptors using a semi-automated robotic screening approach
that allowed us to explore a large number of donor-acceptor
combinations and different ratios, including ternary systems®.
As in the work of McCulloch and co-workers, we also
found that this approach leads to large improvements in
activity for sacrificial hydrogen production from water.
Similarly, we also used nanoparticles because it increases the
area of the composite that is in contact with water and hole
scavenger.

The organic heterojunction approach can, in principle, be
extended to a whole range of other organic materials including
covalent organic frameworks (COFs) and molecular organic
crystals. COFs and molecular crystals are modular materials,
meaning that they can be processed into co-crystals or solid
solutions to tune their structures and functions. However, it
remains challenging to alter structural features in these organic

Organic photovoltaic cells
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solids in a purposeful way to achieve superior function: for
example, to favorably tune their light adsorption profile, charge-
transport behavior, electronic conductivity, porosity, and
wettability.

Recently, we have been studying the relationship between
the structures of COFs and organic molecular crystals and
their photocatalytic performance. Previously, we found that a
porous fused sulfone-based 2D COF could be dye sensitised to
improve its photocatalytic performance (FS-COF, Fig. 3a)’. By
introducing a near-infrared absorbing dye into the pores of FS-
COF, we increased the EQE of the COF from 0.6 to 2.2% at
600 nm. Likewise, FS-COF was completely inactive at 700 nm,
while the COF composite had an EQE of 0.7%. The dye-
sensitised COF showed a 61% enhancement in hydrogen
production under visible light irradiation. The high photo-
catalytic rate for this material was ascribed to aligned stacking
of 2D layers in FS-COF, but it is often difficult to control
interlayer packing in COFs—also, single crystals of COFs are
very rared. By comparison, it is often straightforward to pro-
duce molecular crystals with high crystallinity, which offers
exciting opportunities to deconvolute structure-property rela-
tionships at the atomistic level. For example, in a recent study,
we found a molecular crystal (TBAP-q, Fig. 3b) that is the first
example of a hydrogen-bonded organic framework (HOF) that
shows appreciable photocatalytic hydrogen evolution from
water under sacrificial conditions®. TBAP-a is highly porous,
but we attribute the high proton reduction rate for this
material more to the aligned stacking of conjugated pyrene
cores than to its porosity. We screened for the crucial n-
stacking motif in this study using in silico searches (Fig. 3c).
Interestingly, the EQE for TBAP-a is 4.1% at 420 nm, which is
higher than some conjugated polymer catalysts, even though
this material lacks extended conjugated bonding.

In principle, crystal engineering with COFs and molecular
crystals can be used to control the interface of donor/acceptor
components with atomistic precision. It should, therefore, be
possible to create heterojunctions of crystalline materials by
combining two components, as in the polymer approach
reported by McCulloch and co-workers, perhaps to create
controlled, near-ideal interdigitated structures that give an
even higher photocatalytic performance. The future looks
bright, both for polymer heterojunctions and crystalline
organic photocatalysts.

Organic photocatalysts
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Fig. 1 Different architectures that have been used in organic photovoltatic cells?. a Device architectures and b photocatalyst structures. ¢ The

photocatalyst system used by McCulloch and co-workers3.
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Fig. 2 Hydrogen production using different types of photocatalyst morphologies. Photocatalytic activity of core-shell photocatalysts (a, b) and
heterojunction photocatalysts (¢, d) used by McCulloch and co-workers3. Reproduced with permission3. Copyright 2020, Nature Research.
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Fig. 3 Dye-sensitised COF and molecular crystal photocatalysts. a Synthesis of FS-COF, which adsorbs a near-infrared absorbing dye to create a dye-
sensitised COF that has an enhanced hydrogen production rate under visible light irradiation’. b, ¢ Chemical structure of TBAP, which was predicted to
form a porous hydrogen-bonded structure, TBAP-a, that features aligned stacks of pyrene along its pore walls and has a high hydrogen reduction rate
under visible light irradiation. The colors in the plot denote the degree of pyrene overlap, or stacking, in the predicted crystal structures, showing that most
low-energy predicted structures, such as TBAP-a, are dominated by pyrene stacks®.

Outlook

Organic heterojunctions have shown new potential for direct
photocatalytic hydrogen production by borrowing principles

from organic photovoltaics. These ideas might also be applicable
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to carbon dioxide reduction and nitrogen fixation. The ability to
process organic materials at low temperatures into films offers
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the potential for future applications on a large scale, and also for
the development of Z-schemes to facilitate overall water splitting
without using scavengers.
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